1
|
He B, Zhang Q, Guo Y, Ao Y, Tie K, Xiao H, Chen L, Xu D, Wang H. Prenatal smoke (Nicotine) exposure and offspring's metabolic disease susceptibility in adulthood. Food Chem Toxicol 2022; 168:113384. [PMID: 36041661 DOI: 10.1016/j.fct.2022.113384] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 08/06/2022] [Accepted: 08/17/2022] [Indexed: 11/17/2022]
Abstract
Exposure to smoking (nicotine) during pregnancy not only directly affects fetal development, but also increases susceptibility to metabolic diseases in adulthood, but the mechanism of action remains unclear. Here, we review epidemiological and laboratory studies linking these relationships. In addition to the direct effect of nicotine on the fetus, intrauterine neuroendocrine-metabolic programming mediated by maternal glucocorticoid overexposure also plays an important role, involving glucocorticoid-insulin-like growth factor 1 (GC-IGF1) axis, hypothalamic-pituitary-adrenal (HPA) axis, renin-angiotensin system (RAS) and other endocrine systems. Epigenetics is involved in intrauterine neuroendocrine-metabolic programming, metabolic disease susceptibility and multigenerational inheritance. There are "two programming" and "two strikes" mechanisms for the occurrence of fetal-originated metabolic diseases in adulthood. These innovative research summaries and academic viewpoints provide experimental and theoretical basis for systematically elucidating the occurrence and development of fetal-originated metabolic diseases.
Collapse
Affiliation(s)
- Bo He
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan, 430071, China; School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, 650500, China
| | - Qi Zhang
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan, 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China
| | - Yu Guo
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan, 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China
| | - Ying Ao
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan, 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China
| | - Kai Tie
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China
| | - Hao Xiao
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China
| | - Liaobin Chen
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China
| | - Dan Xu
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China; Department of Pharmacy, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China.
| | - Hui Wang
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan, 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China.
| |
Collapse
|
2
|
Xue B, Yu Y, Beltz TG, Guo F, Wei SG, Johnson AK. Loss of the Protective Effect of Estrogen Contributes to Maternal Gestational Hypertension-Induced Hypertensive Response Sensitization Elicited by Postweaning High-Fat Diet in Female Offspring. J Am Heart Assoc 2022; 11:e023685. [PMID: 35014859 PMCID: PMC9238517 DOI: 10.1161/jaha.121.023685] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Background A recent study conducted in male offspring demonstrated that maternal gestational hypertension (MHT) induces hypertensive response sensitization (HTRS) elicited by postweaning high‐fat diet (HFD). In this study, we investigated the sensitizing effect of MHT on postweaning HFD‐induced hypertensive response in female rat offspring and assessed the protective role of estrogen in HTRS. Methods and Results The results showed that MHT also induced a sensitized HFD‐elicited hypertensive response in intact female offspring. However, compared with male offspring, this MHT‐induced HTRS was sex specific in that intact female offspring exhibited an attenuated increase in blood pressure. Ovariectomy significantly enhanced the HFD‐induced increase in blood pressure and the pressor response to centrally administered angiotensin II or tumor necrosis factor‐α in offspring of normotensive dams, which was accompanied by elevated centrally driven sympathetic activity, upregulated mRNA expression of prohypertensive components, and downregulated expression of antihypertensive components in the hypothalamic paraventricular nucleus. However, when compared with HFD‐fed ovariectomized offspring of normotensive dams, the MHT‐induced HTRS and pressor responses to centrally administered angiotensin II or tumor necrosis factor‐α in HFD‐fed intact offspring of MHT dams were not potentiated by ovariectomy, but the blood pressure and elicited pressor responses as well as central sympathetic tone remained higher. Conclusions The results indicate that in adult female offspring MHT induced HTRS elicited by HFD. Estrogen normally plays a protective role in antagonizing HFD prohypertensive effects, and MHT compromises this normal protective action of estrogen by augmenting brain reactivity and centrally driven sympathetic activity.
Collapse
Affiliation(s)
- Baojian Xue
- Department of Psychological and Brain Sciences University of Iowa Iowa City IA
| | - Yang Yu
- Department of Internal Medicine University of Iowa Iowa City IA
| | - Terry G Beltz
- Department of Psychological and Brain Sciences University of Iowa Iowa City IA
| | - Fang Guo
- Department of Psychological and Brain Sciences University of Iowa Iowa City IA
| | - Shun-Guang Wei
- Department of Internal Medicine University of Iowa Iowa City IA.,François M. Abboud Cardiovascular Research Center University of Iowa Iowa City IA
| | - Alan Kim Johnson
- Department of Psychological and Brain Sciences University of Iowa Iowa City IA.,Department of Neuroscience and Pharmacology University of Iowa Iowa City IA.,Department of Health and Human Physiology University of Iowa Iowa City IA.,François M. Abboud Cardiovascular Research Center University of Iowa Iowa City IA
| |
Collapse
|
3
|
Miranda RA, Gaspar de Moura E, Lisboa PC. Tobacco smoking during breastfeeding increases the risk of developing metabolic syndrome in adulthood: Lessons from experimental models. Food Chem Toxicol 2020; 144:111623. [PMID: 32738371 DOI: 10.1016/j.fct.2020.111623] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/01/2020] [Accepted: 07/13/2020] [Indexed: 12/11/2022]
Abstract
Metabolic syndrome (MetS) is characterized by increased abdominal fat, dyslipidemia, diabetes mellitus and hypertension. A high MetS prevalence is strongly associated with obesity. Obesity is a public health problem in which several complex factors have been implicated, including environmental pollutants. For instance, maternal smoking seems to play a role in obesogenesis in childhood. Given the association between endocrine disruptors, obesity and metabolic programming, over the past 10 years, our research group has contributed to studies based on the hypothesis that early exposure to nicotine/tobacco causes offspring to become MetS-prone. The mechanism by which tobacco smoking during breastfeeding induces metabolic dysfunctions is not completely understood; however, increased metabolic programming has been shown in studies that focus on this topic. Here, we reviewed the literature mainly based in light of our latest data from experimental models. Nicotine or tobacco exposure during breastfeeding induces several endocrine dysfunctions in a sex- and tissue-specific manner. This review provides an updated summary regarding the hypothesis that early exposure to nicotine/tobacco causes offspring to become MetS-prone. An understanding of this issue can provide support to prevent long-term disorders, mainly related to the risk of obesity and its comorbidities, in future generations.
Collapse
Affiliation(s)
- Rosiane A Miranda
- Laboratory of Endocrine Physiology, Department of Physiological Sciences, Roberto Alcantara Gomes Biology Institute, Rio de Janeiro State University, Rio de Janeiro, RJ, Brazil
| | - Egberto Gaspar de Moura
- Laboratory of Endocrine Physiology, Department of Physiological Sciences, Roberto Alcantara Gomes Biology Institute, Rio de Janeiro State University, Rio de Janeiro, RJ, Brazil
| | - Patrícia Cristina Lisboa
- Laboratory of Endocrine Physiology, Department of Physiological Sciences, Roberto Alcantara Gomes Biology Institute, Rio de Janeiro State University, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
4
|
Nan Y, Yi SJ, Zhu HL, Xiong YW, Shi XT, Cao XL, Zhang C, Gao L, Zhao LL, Zhang J, Xu DX, Wang H. Paternal cadmium exposure increases the susceptibility to diet-induced testicular injury and spermatogenic disorders in mouse offspring. CHEMOSPHERE 2020; 246:125776. [PMID: 31918093 DOI: 10.1016/j.chemosphere.2019.125776] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 12/25/2019] [Accepted: 12/27/2019] [Indexed: 06/10/2023]
Abstract
The impairments of gestational cadmium (Cd) exposure on testicular development and male fertility in offspring have been reported. Here, we investigated the effect of paternal low-concentration cadmium exposure on testicular development and spermatogenesis in offspring. Five-week-old male mice were exposed to cadmium chloride (100 mg/L) in drinking water for 20 weeks. Results presented that Cd did not affect the testicular histology and sperm count in mice. After mating with untreated females, pregnant mice and pups were then evaluated. No significant difference in the rate for successful pregnancy and the body weight of pups was observed in Cd-exposed mice compared to the controls. Male offspring were given with a chow and high-fat diet from postnatal day (PND) 35 to PND70. Our data indicated that high-fat diet obviously decreased No. of sperm in epididymides of adult offspring due to paternal Cd exposure. Testicular histology revealed that the percentage of seminiferous tubules in stages IX-XII and the atypical residual bodies positive tubules in CdH (paternal cadmium exposure and pubertal high-fat diet) group were higher than these in CdC (paternal cadmium exposure and pubertal chow diet) group. Further analysis demonstrated that high-fat diet markedly accelerated testicular apoptosis, as determined by TUNEL assay and immunostaining for cleaved caspase-3, in male offspring due to paternal Cd exposure. Collectively, high-fat diet exacerbates the damage of testicular development and spermatogenesis in offspring due to paternal cadmium exposure.
Collapse
Affiliation(s)
- Yuan Nan
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Song-Jia Yi
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Hua-Long Zhu
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Yong-Wei Xiong
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Xue-Ting Shi
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Xue-Lin Cao
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Cheng Zhang
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Lan Gao
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Ling-Li Zhao
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Jun Zhang
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - De-Xiang Xu
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China.
| | - Hua Wang
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China.
| |
Collapse
|
5
|
Lu Y, Ji B, Zhao G, Dai J, Sakurai R, Liu Y, Mou Q, Xie Y, Zhang Q, Xu S, Rehan VK. Comparison of Protective Effects of Electroacupuncture at ST 36 and LU 5 on Pulmonary and Hypothalamic Pituitary Adrenal Axis Changes in Perinatal Nicotine-Exposed Rats. BIOMED RESEARCH INTERNATIONAL 2020; 2020:3901528. [PMID: 32090085 PMCID: PMC6996710 DOI: 10.1155/2020/3901528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 11/18/2019] [Indexed: 12/02/2022]
Abstract
BACKGROUND Maternal smoking and/or exposure to environmental tobacco smoke continue to be significant factors in fetal and childhood morbidity and are a serious public health issue worldwide. Nicotine passes through the placenta easily with minimal biotransformation, entering fetal circulation, where it results in many harmful effects on the developing offspring, especially on the developing respiratory system. OBJECTIVES Recently, in a rat model, electroacupuncture (EA) at maternal acupoints ST 36 has been shown to block perinatal nicotine-induced pulmonary damage; however, the underlying mechanism and the specificity of ST 36 acupoints for this effect are unknown. Here, we tested the hypothesis that compared with EA at ST 36, EA at LU 5 acupoints, which are on lung-specific meridian, will be equally or more effective in preventing perinatal nicotine-induced pulmonary changes. METHODS Twenty-four pregnant rat dams were randomly divided into 4 groups: saline ("S"), nicotine ("N"), nicotine + ST 36 (N + ST 36), and nicotine + LU 5 (N + LU 5) groups. Nicotine (1 mg/kg, subcutaneously) and EA (at ST 36 or LU 5 acupoints, bilaterally) were administered from embryonic day 6 to postnatal day 21 once daily. The "S" group was injected saline. As needed, using ELISA, western analysis, q-RT-PCR, lung histopathology, maternal and offspring hypothalamic pituitary adrenal axes, offspring key lung developmental markers, and lung morphometry were determined. RESULTS With nicotine exposure, alveolar count decreased, but mean linear intercept and septal thickness increased. It also led to a decrease in pulmonary function and PPARγ and an increase of β-catenin and glucocorticoid receptor expression in lung tissue and corticosterone in the serum of offspring rats. Electroacupuncture at ST 36 normalized all of these changes, whereas EA at LU 5 had no obvious effect. CONCLUSION Electroacupuncture applied to ST 36 acupoints provided effective protection against perinatal nicotine-induced lung changes, whereas EA applied at LU 5 acupoints was ineffective, suggesting mechanistic specificity and HPA axis' involvement in mediating EA at ST 36 acupoints' effects in mitigating perinatal nicotine-induced pulmonary phenotype. This opens the possibility that other acupoints, besides ST 36, can have similar or even more robust beneficial effects on the developing lung against the harmful effect of perinatal nicotine exposure. The approach proposed by us is simple, cheap, quick, easy to administer, and is devoid of any significant side effects.
Collapse
Affiliation(s)
- Yawen Lu
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Bo Ji
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Guozhen Zhao
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jian Dai
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Reiko Sakurai
- Department of Pediatrics, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Yitian Liu
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Qiujie Mou
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yana Xie
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Qin Zhang
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Shuang Xu
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Virender Kumar Rehan
- Department of Pediatrics, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| |
Collapse
|