1
|
Pereira CH, Kittaka H, Ouille V EJ, Almeida JFQ, Pelaez A, Keshavarzian A, Blatter LA, Banach K. Colitis induced ventricular alternans increases the risk for ventricular arrhythmia. J Mol Cell Cardiol 2025:S0022-2828(25)00086-0. [PMID: 40409406 DOI: 10.1016/j.yjmcc.2025.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 05/08/2025] [Accepted: 05/19/2025] [Indexed: 05/25/2025]
Abstract
Inflammatory bowel disease was linked to an increased risk for conduction defects and ventricular arrhythmia. It coincides with dysregulation of gut microbiota, increased inflammation, and deregulation of the renin-angiotensin system. In this study, we aimed to determine the mechanism of colitis-induced electrophysiological remodeling that increases the risk for ventricular arrhythmia. In a mouse model of dextran sulfate sodium induced active colitis (3.5 %, 7 days) cardiac electrophysiological properties were quantified during active inflammation. Electrocardiographic recordings exhibited a prolonged QT duration in mice with active colitis compared to control. Field potential (FP) recordings of Langendorff perfused colitis-hearts exhibited increased FP dispersion, a reduced threshold for ventricular alternans, and an increased propensity for spatially discordant alternans. The increased propensity for alternans was also reflected in isolated ventricular myocytes where Ca2+ transient alternans occurred at lower pacing frequencies and increased alternans ratios. The action potential was unchanged during colitis but myocytes exhibited a prolonged Ca2+ transient duration that corresponded with attenuated phospholamban phosphorylation. Stimulating cellular SERCA activity (Istaroxime), normalized the propensity for alternans. Serum levels of Angiotensin II (AngII) were increased during colitis and Angiotensin-converting enzyme (ACE) inhibitor or AngII receptor type 1 blocker prevented the increased alternans inducibility in isolated myocytes and hearts. Our data demonstrate that active colitis promotes reversible remodeling of ventricular Ca2+ handling properties and increases the propensity for alternans and arrythmia. The changes can be prevented by ACE or AT1R inhibition supporting a cardiac benefit for controlling RAS signaling in patients with active colitis.
Collapse
Affiliation(s)
- Carlos H Pereira
- Department of Internal Medicine/Cardiology, Rush University Medical Center, 1750 W. Harrison St., Chicago, IL 60612, USA
| | - Hiroki Kittaka
- Department of Internal Medicine/Cardiology, Rush University Medical Center, 1750 W. Harrison St., Chicago, IL 60612, USA.
| | - Edward J Ouille V
- Department of Internal Medicine/Cardiology, Rush University Medical Center, 1750 W. Harrison St., Chicago, IL 60612, USA.
| | - Jonathas F Q Almeida
- Department of Pharmacology & Toxicology, Virginia Commonwealth University, 1220 E. Broad St, Richmond, VA 23298, USA.
| | - Andres Pelaez
- Department of Internal Medicine/Cardiology, Rush University Medical Center, 1750 W. Harrison St., Chicago, IL 60612, USA.
| | - Ali Keshavarzian
- Rush University Medical Center, 1725 W. Harrison St., Chicago, IL 60612, USA.
| | - Lothar A Blatter
- Dept. of Physiology & Biophysics, Rush University Medical Center, 1750 W. Harrison St., Chicago, IL 60612, USA.
| | - Kathrin Banach
- Department of Internal Medicine/Cardiology, Rush University Medical Center, 1750 W. Harrison St., Chicago, IL 60612, USA.
| |
Collapse
|
2
|
Sinha A, Roy S. Exploring the drug repurposing potential of lisinopril against TNBS-induced colitis in Wistar rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04212-w. [PMID: 40328912 DOI: 10.1007/s00210-025-04212-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Accepted: 04/22/2025] [Indexed: 05/08/2025]
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory condition of the gastrointestinal tract with a multifactorial etiology. Given the limitations and adverse effects of current therapies, there is a need for novel therapeutic approaches. Drug repurposing presents a promising opportunity to utilize medications with known safety and pharmacological profiles for alternative colitis treatment. Emerging evidence suggests the renin-angiotensin system (RAS) plays a significant role in the colitis pathophysiology. Angiotensin-converting enzyme (ACE) inhibitors may offer therapeutic potential by modulating pro-inflammatory cytokines and reducing oxidative stress. This study aims to evaluate the efficacy of lisinopril (LIS) in a 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitis model in Wistar rats. Colitis was induced in Wistar rats via a single intracolonic TNBS dose (100 mg/kg). Treatment groups received oral interventions for 5 days: 5-aminosalicylic acid (5-ASA; 25.5 mg/kg), LIS (10 mg/kg), or LIS (20 mg/kg). Efficacy was evaluated using the disease activity score rate (DASR), colon/body weight ratio (CBWR), and colon length, diameter, and pH. Colonic tissue was analyzed macroscopically and histopathologically. Inflammatory biomarkers interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), oxidative stress markers glutathione (GSH), and malondialdehyde (MDA), as well as C-reactive protein (CRP) and complete blood count (CBC), were measured. LIS significantly reduced colitis severity, decreasing DASR and CBWR, while restoring colon dimensions and pH. LIS showed potent anti-colitic effects by suppressing TNF-α and IL-6 levels, reducing MDA, and increasing GSH. LIS restored RBC and WBC levels while normalizing CRP and hemoglobin levels. Histopathological and macroscopic analyses confirmed colonic protection with minimal detrimental effects on the stomach and liver. LIS, particularly at 20 mg/kg, exhibited dose-dependent anti-inflammatory, antioxidant, and tissue-protective effects, showing promise as a therapeutic agent for colitis treatment.
Collapse
Affiliation(s)
- Akshit Sinha
- Amity Institute of Pharmacy, Lucknow, Amity University Uttar Pradesh, Sector 125, Noida, 201313, India
| | - Supriya Roy
- Amity Institute of Pharmacy, Lucknow, Amity University Uttar Pradesh, Sector 125, Noida, 201313, India.
- Amity Institute of Pharmacy, Amity University Uttar Pradesh Lucknow Campus, Lucknow, 226028, Uttar Pradesh, India.
| |
Collapse
|
3
|
Caballero Mateos AM, Cañadas de la Fuente GA, Gros B. Paradigm Shift in Inflammatory Bowel Disease Management: Precision Medicine, Artificial Intelligence, and Emerging Therapies. J Clin Med 2025; 14:1536. [PMID: 40095460 PMCID: PMC11899940 DOI: 10.3390/jcm14051536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/18/2025] [Accepted: 02/19/2025] [Indexed: 03/19/2025] Open
Abstract
Inflammatory bowel disease (IBD) management stands at the cusp of a transformative era, with recent breakthroughs heralding a paradigm shift in treatment strategies. Traditionally, IBD therapeutics revolved around immunosuppressants, but the landscape has evolved significantly. Recent approvals of etrasimod, upadacitinib, mirikizumab, and risankizumab have introduced novel mechanisms of action, offering renewed hope for IBD patients. These medications represent a departure from the status quo, breaking years of therapeutic stagnation. Precision medicine, involving Artificial Intelligence, is a pivotal aspect of this evolution, tailoring treatments based on genetic profiles, disease characteristics, and individual responses. This approach optimizes treatment efficacy, and paves the way for personalized care. Yet, the rising cost of IBD therapies, notably biologics, poses challenges, impacting healthcare budgets and patient access. Ongoing research strives to assess cost-effectiveness, guiding policy decisions to ensure equitable access to advanced treatments. Looking ahead, the future of IBD management holds great promise. Emerging therapies, precision medicine, and ongoing research into novel targets promise to reshape the IBD treatment landscape. As these advances continue to unfold, IBD patients can anticipate a brighter future, one marked by more effective, personalized, and accessible treatments.
Collapse
Affiliation(s)
- Antonio M. Caballero Mateos
- Department of Internal Medicine, Gastroenterology Unit, Hospital Santa Ana, 18600 Motril, Spain
- Institute of Biosanitary Research (IBS) Precision Medicine, 18012 Granada, Spain
| | - Guillermo A. Cañadas de la Fuente
- Department of Nursing, Faculty of Health Sciences, University of Granada, 18016 Granada, Spain;
- Brain, Mind and Behaviour Research Center (CIMCYC), University of Granada, Campus Universitario de Cartuja s/n, 18011 Granada, Spain
| | - Beatriz Gros
- Department of Gastroenterology and Hepatology, Reina Sofía University Hospital, IMIBIC, University of Cordoba, 14004 Cordoba, Spain;
- Biomedical Research Center in Hepatic and Digestive Disease, CIBEREHD, 28029 Madrid, Spain
| |
Collapse
|
4
|
Veisman I, Massey WJ, Goren I, Liu W, Chauhan G, Rieder F. Muscular hyperplasia in Crohn's disease strictures: through thick and thin. Am J Physiol Cell Physiol 2024; 327:C671-C683. [PMID: 38912732 PMCID: PMC11427014 DOI: 10.1152/ajpcell.00307.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/18/2024] [Accepted: 06/18/2024] [Indexed: 06/25/2024]
Abstract
Fibrostenosing Crohn's disease (CD) represents a challenging clinical condition characterized by the development of symptomatic strictures within the gastrointestinal tract. Despite therapeutic advancements in managing inflammation, the progression of fibrostenotic complications remains a significant concern, often necessitating surgical intervention. Recent investigations have unveiled the pivotal role of smooth muscle cell hyperplasia in driving luminal narrowing and clinical symptomatology. Drawing parallels to analogous inflammatory conditions affecting other organs, such as the airways and blood vessels, sheds light on common underlying mechanisms of muscular hyperplasia. This review synthesizes current evidence to elucidate the mechanisms underlying smooth muscle cell proliferation in CD-associated strictures, offering insights into potential therapeutic targets. By highlighting the emerging significance of muscle thickening as a novel therapeutic target, this review aims to inform future research endeavors and clinical strategies with the goal to mitigate the burden of fibrostenotic complications in CD and other conditions.
Collapse
Affiliation(s)
- Ido Veisman
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, United States
| | - William J Massey
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, United States
| | - Idan Goren
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, United States
| | - Weiwei Liu
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, United States
| | - Gaurav Chauhan
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, United States
| | - Florian Rieder
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, United States
- Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases and Surgery Institute, Cleveland Clinic Foundation, Cleveland, Ohio, United States
- Cleveland Clinic Program for Global Translational Inflammatory Bowel Diseases (GRID), Cleveland, Ohio, United States
| |
Collapse
|
5
|
Khan N, Kurnik-Łucka M, Latacz G, Gil K. Systematic-Narrative Hybrid Literature Review: Crosstalk between Gastrointestinal Renin-Angiotensin and Dopaminergic Systems in the Regulation of Intestinal Permeability by Tight Junctions. Int J Mol Sci 2024; 25:5566. [PMID: 38791603 PMCID: PMC11122119 DOI: 10.3390/ijms25105566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/12/2024] [Accepted: 05/18/2024] [Indexed: 05/26/2024] Open
Abstract
In the first part of this article, the role of intestinal epithelial tight junctions (TJs), together with gastrointestinal dopaminergic and renin-angiotensin systems, are narratively reviewed to provide sufficient background. In the second part, the current experimental data on the interplay between gastrointestinal (GI) dopaminergic and renin-angiotensin systems in the regulation of intestinal epithelial permeability are reviewed in a systematic manner using the PRISMA methodology. Experimental data confirmed the copresence of DOPA decarboxylase (DDC) and angiotensin converting enzyme 2 (ACE2) in human and rodent enterocytes. The intestinal barrier structure and integrity can be altered by angiotensin (1-7) and dopamine (DA). Both renin-angiotensin and dopaminergic systems influence intestinal Na+/K+-ATPase activity, thus maintaining electrolyte and nutritional homeostasis. The colocalization of B0AT1 and ACE2 indicates the direct role of the renin-angiotensin system in amino acid absorption. Yet, more studies are needed to thoroughly define the structural and functional interaction between TJ-associated proteins and GI renin-angiotensin and dopaminergic systems.
Collapse
Affiliation(s)
- Nadia Khan
- Faculty of Medicine, Department of Pathophysiology, Jagiellonian University Medical College, Czysta 18, 31-121 Krakow, Poland
- Faculty of Pharmacy, Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Medyczna 9, 31-008 Krakow, Poland
| | - Magdalena Kurnik-Łucka
- Faculty of Medicine, Department of Pathophysiology, Jagiellonian University Medical College, Czysta 18, 31-121 Krakow, Poland
| | - Gniewomir Latacz
- Faculty of Pharmacy, Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Medyczna 9, 31-008 Krakow, Poland
| | - Krzysztof Gil
- Faculty of Medicine, Department of Pathophysiology, Jagiellonian University Medical College, Czysta 18, 31-121 Krakow, Poland
| |
Collapse
|
6
|
Shakibfar S, Allin KH, Jess T, Barbieri MA, Battini V, Simoncic E, Kirchgesner J, Ulven T, Sessa M. Drug Repurposing in Crohn's Disease Using Danish Real-World Data. Pragmat Obs Res 2024; 15:17-29. [PMID: 38404739 PMCID: PMC10894518 DOI: 10.2147/por.s444569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/08/2024] [Indexed: 02/27/2024] Open
Abstract
Aim Drug repurposing, utilizing electronic healthcare records (EHRs), offers a promising alternative by repurposing existing drugs for new therapeutic indications, especially for patients lacking effective therapies. Intestinal fibrosis, a severe complication of Crohn's disease (CD), poses significant challenges, increasing morbidity and mortality without available pharmacological treatments. This article focuses on identifying medications associated with an elevated or reduced risk of fibrosis in CD patients through a population-wide real-world data and artificial intelligence (AI) approach. Methods Patients aged 65 or older with a diagnosis of CD from 1996 to 2019 in the Danish EHRs were followed for up to 24 years. The primary outcome was the need of specific surgical procedures, namely proctocolectomy with ileostomy and ileocecal resection as proxies of intestinal fibrosis. The study explored drugs linked to an increased or reduced risk of the study outcome through machine-learning driven survival analysis. Results Among the 9179 CD patients, 1029 (11.2%) underwent surgery, primarily men (58.5%), with a mean age of 76 years, 10 drugs were linked to an elevated risk of surgery for proctocolectomy with ileostomy and ileocecal resection. In contrast, 10 drugs were associated with a reduced risk of undergoing surgery for these conditions. Conclusion This study focuses on repurposing existing drugs to prevent surgery related to intestinal fibrosis in CD patients, using Danish EHRs and advanced statistical methods. The findings offer valuable insights into potential treatments for this condition, addressing a critical unmet medical need. Further research and clinical trials are warranted to validate the effectiveness of these repurposed drugs in preventing surgery related to intestinal fibrosis in CD patients.
Collapse
Affiliation(s)
- Saeed Shakibfar
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Kristine H Allin
- Center for Molecular Prediction of Inflammatory Bowel Disease (PREDICT), Department of Clinical Medicine, Aalborg University, Copenhagen, Denmark
| | - Tine Jess
- Center for Molecular Prediction of Inflammatory Bowel Disease (PREDICT), Department of Clinical Medicine, Aalborg University, Copenhagen, Denmark
| | - Maria Antonietta Barbieri
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Vera Battini
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
- Pharmacovigilance & Clinical Research, International Centre for Pesticides and Health Risk Prevention, Department of Biomedical and Clinical Sciences (DIBIC), ASST Fatebenefratelli-Sacco University Hospital, Università Degli Studi Di Milano, Milan, Italy
| | - Eva Simoncic
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Julien Kirchgesner
- Department of Gastroenterology, INSERM, Institut Pierre Louis d’Epidémiologie Et de Santé Publique, AP-HP, Hôpital Saint-Antoine, Sorbonne Université, Paris, France
| | - Trond Ulven
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Maurizio Sessa
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
7
|
Mei X, Mell B, Aryal S, Manandhar I, Tummala R, Zubcevic J, Lai K, Yang T, Li Q, Yeoh BS, Joe B. Genetically engineered Lactobacillus paracasei rescues colonic angiotensin converting enzyme 2 (ACE2) and attenuates hypertension in female Ace2 knock out rats. Pharmacol Res 2023; 196:106920. [PMID: 37716548 PMCID: PMC10976180 DOI: 10.1016/j.phrs.2023.106920] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/24/2023] [Accepted: 09/09/2023] [Indexed: 09/18/2023]
Abstract
Engineered gut microbiota represents a new frontier in medicine, in part serving as a vehicle for the delivery of therapeutic biologics to treat a range of host conditions. The gut microbiota plays a significant role in blood pressure regulation; thus, manipulation of gut microbiota is a promising avenue for hypertension treatment. In this study, we tested the potential of Lactobacillus paracasei, genetically engineered to produce and deliver human angiotensin converting enzyme 2 (Lacto-hACE2), to regulate blood pressure in a rat model of hypertension with genetic ablation of endogenous Ace2 (Ace2-/- and Ace2-/y). Our findings reveal a sex-specific reduction in blood pressure in female (Ace2-/-) but not male (Ace2-/y) rats following colonization with the Lacto-hACE2. This beneficial effect of lowering blood pressure was aligned with a specific reduction in colonic angiotensin II, but not renal angiotensin II, suggesting the importance of colonic Ace2 in the regulation of blood pressure. We conclude that this approach of targeting the colon with engineered bacteria for delivery of ACE2 represents a promising new paradigm in the development of antihypertensive therapeutics.
Collapse
Affiliation(s)
- Xue Mei
- Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Blair Mell
- Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Sachin Aryal
- Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Ishan Manandhar
- Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Ramakumar Tummala
- Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Jasenka Zubcevic
- Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Khanh Lai
- Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Tao Yang
- Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Qiuhong Li
- Department of Ophthalmology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Beng San Yeoh
- Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Bina Joe
- Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA.
| |
Collapse
|
8
|
Dengler F, Domenig O, Kather S, Burgener IA, Steiner JM, Heilmann RM. Dysregulation of intestinal epithelial electrolyte transport in canine chronic inflammatory enteropathy and the role of the renin-angiotensin-aldosterone-system. Front Vet Sci 2023; 10:1217839. [PMID: 37720474 PMCID: PMC10500592 DOI: 10.3389/fvets.2023.1217839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 08/18/2023] [Indexed: 09/19/2023] Open
Abstract
Chronic diarrhea is a hallmark sign of canine chronic inflammatory enteropathy (CIE), leading to fluid and electrolyte losses. Electrolyte homeostasis is regulated by the renin-angiotensin-aldosterone-system (RAAS), which might be involved in (counter-)regulating electrolyte losses in canine CIE. Whether and which electrolyte transporters are affected or if RAAS is activated in canine CIE is unknown. Thus, intestinal electrolyte transporters and components of the RAAS were investigated in dogs with CIE. Serum RAAS fingerprint analysis by mass spectrometry was performed in 5 CIE dogs and 5 healthy controls, and mRNA levels of intestinal electrolyte transporters and local RAAS pathway components were quantified by RT-qPCR in tissue biopsies from the ileum (7 CIE, 10 controls) and colon (6 CIE, 12 controls). Concentrations of RAAS components and mRNA expression of electrolyte transporters were compared between both groups of dogs and were tested for associations among each other. In dogs with CIE, associations with clinical variables were also tested. Components of traditional and alternative RAAS pathways were higher in dogs with CIE than in healthy controls, with statistical significance for Ang I, Ang II, and Ang 1-7 (all p < 0.05). Expression of ileal, but not colonic electrolyte transporters, such as Na+/K+-ATPase, Na+/H+-exchanger 3, Cl- channel 2, down-regulated in adenoma, and Na+-glucose-cotransporter (all p < 0.05) was increased in CIE. Our results suggest that the dys- or counter-regulation of intestinal electrolyte transporters in canine CIE might be associated with a local influence of RAAS. Activating colonic absorptive reserve capacities may be a promising therapeutic target in canine CIE.
Collapse
Affiliation(s)
- Franziska Dengler
- Institute of Physiology, Pathophysiology and Biophysics, University of Veterinary Medicine Vienna, Vienna, Austria
| | | | - Stefanie Kather
- Department for Small Animals, College of Veterinary Medicine, University of Leipzig, Leipzig, SN, Germany
| | - Iwan A. Burgener
- Small Animal Internal Medicine, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Joerg M. Steiner
- Gastrointestinal Laboratory, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States
| | - Romy M. Heilmann
- Department for Small Animals, College of Veterinary Medicine, University of Leipzig, Leipzig, SN, Germany
| |
Collapse
|
9
|
Heilmann RM, Csukovich G, Burgener IA, Dengler F. Time to eRAASe chronic inflammation: current advances and future perspectives on renin-angiotensin-aldosterone-system and chronic intestinal inflammation in dogs and humans. Front Vet Sci 2023; 10:1180125. [PMID: 37456955 PMCID: PMC10340121 DOI: 10.3389/fvets.2023.1180125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 06/16/2023] [Indexed: 07/18/2023] Open
Abstract
Chronic idiopathic intestinal inflammation is an increasing worldwide problem that affects companion animals, especially dogs, and human patients. Although these disease entities have been intensely investigated recently, many questions remain, and alternative therapeutic options are needed. Diarrhea caused by dysregulation of intestinal electrolyte transport and subsequent fluid and electrolyte losses often leads to secondary consequences for the patient. Currently, it is not exactly clear which mechanisms are involved in the dysregulation of intestinal fluid absorption, but differences in intestinal electrolyte shifts between human and canine patients suggest species-specific regulatory or counterregulatory mechanisms. Several intestinal electrolyte transporters are differentially expressed in human patients with inflammatory bowel disease (IBD), whereas there are virtually no studies on electrolyte transporters and their endocrine regulation in canine chronic inflammatory enteropathy. An important mechanism involved in regulating fluid and electrolyte homeostasis is the renin-angiotensin-aldosterone-system (RAAS), which may affect intestinal Na+ transport. While RAAS has previously been considered a systemic regulator of blood pressure, additional complex roles of RAAS in inflammatory processes have been unraveled. These alternative RAAS pathways may pose attractive therapeutic targets to address diarrhea and, thus, electrolyte shifts in human IBD and canine chronic inflammatory enteropathy. This article comparatively summarizes the current knowledge about electrolyte transport in human IBD and canine chronic inflammatory enteropathy and the role of RAAS and offers perspectives for novel therapeutic avenues.
Collapse
Affiliation(s)
- Romy M. Heilmann
- Department for Small Animals, College of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| | - Georg Csukovich
- Small Animal Internal Medicine, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Iwan A. Burgener
- Small Animal Internal Medicine, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Franziska Dengler
- Institute of Physiology, Pathophysiology and Biophysics, University of Veterinary Medicine Vienna, Vienna, Austria
| |
Collapse
|
10
|
Sinha A, Vaggu RG, Swain R, Patnaik S. Repurposing of RAS-Pathway Mediated Drugs for Intestinal Inflammation Related Diseases for Treating SARS-CoV-2 Infection. Curr Microbiol 2023; 80:194. [PMID: 37106165 PMCID: PMC10136399 DOI: 10.1007/s00284-023-03304-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/16/2023] [Indexed: 04/29/2023]
Abstract
Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2) is an emerging zoonotic virus, which causes Coronavirus Disease 2019 (COVID-19). Entry of coronaviruses into the cell depends on binding of the viral spike (S) proteins to cellular receptors Angiotensin-converting enzyme 2 (ACE2). The virus-mediated reduction of ACE2/Ang1-7 causes flooding of inflammatory cytokines. A similar scenario of hyper immunologic reaction has been witnessed in the context of Intestinal Inflammatory Diseases (IIDs) with the deregulation of ACE2. This review summarizes several IIDs that lead to such susceptible conditions. It discusses suitable mechanisms of how ACE2, being a crucial regulator of the Renin-Angiotensin System (RAS) signaling pathway, can affect the physiology of intestine as well as lungs, the primary site of SARS-CoV-2 infection. ACE2, as a SARS-CoV-2 receptor, establishes a critical link between COVID-19 and IIDs. Intercessional studies targeting the RAS signaling pathway in patients may provide a novel strategy for addressing the COVID-19 crisis. Hence, the modulation of these key RAS pathway members can be beneficial in both instances. However, it's difficult to say how beneficial are the ACE inhibitors (ACEI)/ Angiotensin II type-1 receptor blockers (ARBs) during COVID-19. As a result, much more research is needed to better understand the relationship between the RAS and SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Anupriya Sinha
- School of Biotechnology, KIIT University, Campus-XI, Bhubaneswar, Odisha, 751024, India
| | | | - Ramakrushna Swain
- School of Biotechnology, KIIT University, Campus-XI, Bhubaneswar, Odisha, 751024, India
| | - Srinivas Patnaik
- School of Biotechnology, KIIT University, Campus-XI, Bhubaneswar, Odisha, 751024, India.
| |
Collapse
|
11
|
Murad H, Ahmed O, Alqurashi T, Hussien M. Olmesartan medoxomil self-microemulsifying drug delivery system reverses apoptosis and improves cell adhesion in trinitrobenzene sulfonic acid-induced colitis in rats. Drug Deliv 2022; 29:2017-2028. [PMID: 35766160 PMCID: PMC9246205 DOI: 10.1080/10717544.2022.2086939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Olmesartan medoxomil (OM) is an angiotensin receptor blocker. This study aimed to investigate the effects of OM self-microemulsifying drug delivery system (OMS) in trinitrobenzene sulfonic acid (TNBS)-induced acute colitis in rats. Besides two control groups, five TNBS-colitic-treated groups (n = 8) were given orally sulfasalazine (100 mg/kg/day), low and high doses of OM (3.0 and 10.0 mg/kg/day) (OML and OMH) and of OMS (OMSL and OMSH) for seven days. A colitis activity score was calculated. The colon was examined macroscopically. Colonic levels of myeloperoxidase, tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), malondialdehyde, and reduced glutathione were measured. Plasma and colonic olmesartan levels were measured. Colonic sections were subjected to hematoxylin and eosin staining and immunohistochemical staining for E-cadherin, caspase-3, and matrix metalloproteinase-9 (MMP-9). Protein expression of E-cadherin, Bcl-2 associated X protein (Bax), and B-cell lymphoma 2 (Bcl-2), and cleaved caspase-3 by Western blot was done. TNBS-colitic rats showed increased colonic myeloperoxidase, TNF-α, IL-6, and malondialdehyde, decreased colonic glutathione, histopathological, immunohistochemical, and protein expression alterations. OMS, compared with OM, dose-dependently achieved higher colonic free olmesartan concentration, showed better anti-inflammatory, antioxidant, and anti-apoptotic effects, improved intestinal barrier, and decreased mucolytic activity. OMS more effectively up-regulated the reduced Bcl-2, Bcl-2/Bax ratio, and E-cadherin expression, and down-regulated the overexpressed Bax, cleaved caspase-3, and MMP-9. OMSL exerted effects comparable to OMH. Sulfasalazine exerted maximal colonic protective effects and almost completely reversed colonic damage, and OMSH showed nearly similar effects with non-significant differences in-between or compared with the normal control group. In conclusion, OMS could be a potential additive treatment for Crohn's disease colitis.
Collapse
Affiliation(s)
- Hussam Murad
- Department of Pharmacology, Faculty of Medicine, Rabigh campus, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Osama Ahmed
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Thamer Alqurashi
- Department of Pharmacology, Faculty of Medicine, Rabigh campus, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mostafa Hussien
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
12
|
Moraes Holst L, Halfvarson J, Carlson M, Hedin C, Kruse R, Lindqvist CM, Bergemalm D, Almér S, Bresso F, Ling Lundström M, Repsilber D, D’Amato M, Keita Å, Hjortswang H, Söderholm J, Sundin J, Törnblom H, Simrén M, Strid H, Magnusson MK, Öhman L. Downregulated Mucosal Autophagy, Alpha Kinase-1 and IL-17 Signaling Pathways in Active and Quiescent Ulcerative Colitis. Clin Exp Gastroenterol 2022; 15:129-144. [PMID: 35928254 PMCID: PMC9343467 DOI: 10.2147/ceg.s368040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 07/07/2022] [Indexed: 11/23/2022] Open
Abstract
Background Improved mucosal immune profiling in active and quiescent colonic inflammatory bowel disease (IBD) is needed to develop therapeutic options for treating and preventing flares. This study therefore aimed to provide a comprehensive mucosal characterization with emphasis on immunological host response of patients with active ulcerative colitis (UC active), UC during remission (UC remission) and active colonic Crohn’s disease (CD active). Methods Colonic biopsies from 47 study subjects were collected for gene expression and pathway analyses using the NanoString host-response panel, including 776 genes and 56 immune-related pathways. Results The majority of mucosal gene expression and signaling pathway scores were increased in active IBD (n=27) compared to healthy subjects (n=10). However, both active IBD and UC remission (n=10) demonstrated decreased gene expression and signaling pathway scores related to autophagy, alpha kinase-1 and IL-17 signaling pathways compared to healthy subjects. Further, UC remission was characterized by decreased scores of several signaling pathways linked to homeostasis along with increased mononuclear cell migration pathway score as compared to healthy subjects. No major differences in the colonic mucosal gene expression between CD active (n=7) and UC (n=20) active were observed. Conclusion This study indicates that autophagy, alpha kinase-1 and IL-17 signaling pathways are persistently downregulated in UC irrespective of disease activity. Further, UC patients in remission present a unique mucosal environment, potentially preventing patients from reaching and sustaining true homeostasis. These findings may enable better comprehension of the remitting and relapsing pattern of colonic IBD and guide future treatment and prevention of flares.
Collapse
Affiliation(s)
- Luiza Moraes Holst
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Jonas Halfvarson
- Department of Gastroenterology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Marie Carlson
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Charlotte Hedin
- Department of Medicine Solna, Karolinska Institute, Stockholm, Sweden
| | - Robert Kruse
- Department of Clinical Research Laboratory, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Carl Mårten Lindqvist
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Daniel Bergemalm
- Department of Gastroenterology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Sven Almér
- Department of Medicine Solna, Karolinska Institute, Stockholm, Sweden
| | - Francesca Bresso
- Karolinska University Hospital, Gastroenterology Unit, Department of Gastroenterology, Dermatovenereology and Rheumatology, Stockholm, Sweden
| | | | - Dirk Repsilber
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Mauro D’Amato
- Clinical Epidemiology Division, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
- Gastrointestinal Genetics Lab, CIC bioGUNE - BRTA, Derio, Spain
| | - Åsa Keita
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Henrik Hjortswang
- Department of Clinical and Experimental Science, Linköping University, Linköping, Sweden
| | - Johan Söderholm
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Johanna Sundin
- Department of Internal Medicine & Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, Gothenburg, Sweden
| | - Hans Törnblom
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Magnus Simrén
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Center for Functional Gastrointestinal and Motility Disorders, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Hans Strid
- Department of Internal Medicine, Södra Älvsborg Hospital, Borås, Sweden
| | - Maria K Magnusson
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Lena Öhman
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Correspondence: Lena Öhman, Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden, Tel +46703616499, Email
| |
Collapse
|