1
|
Brown MR, Abbott RJ, Twyford AD. The emerging importance of cross-ploidy hybridisation and introgression. Mol Ecol 2024; 33:e17315. [PMID: 38501394 DOI: 10.1111/mec.17315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/21/2024] [Accepted: 02/23/2024] [Indexed: 03/20/2024]
Abstract
Natural hybridisation is now recognised as pervasive in its occurrence across the Tree of Life. Resurgent interest in natural hybridisation fuelled by developments in genomics has led to an improved understanding of the genetic factors that promote or prevent species cross-mating. Despite this body of work overturning many widely held assumptions about the genetic barriers to hybridisation, it is still widely thought that ploidy differences between species will be an absolute barrier to hybridisation and introgression. Here, we revisit this assumption, reviewing findings from surveys of polyploidy and hybridisation in the wild. In a case study in the British flora, 203 hybrids representing 35% of hybrids with suitable data have formed via cross-ploidy matings, while a wider literature search revealed 59 studies (56 in plants and 3 in animals) in which cross-ploidy hybridisation has been confirmed with genetic data. These results show cross-ploidy hybridisation is readily overlooked, and potentially common in some groups. General findings from these studies include strong directionality of hybridisation, with introgression usually towards the higher ploidy parent, and cross-ploidy hybridisation being more likely to involve allopolyploids than autopolyploids. Evidence for adaptive introgression across a ploidy barrier and cases of cross-ploidy hybrid speciation shows the potential for important evolutionary outcomes.
Collapse
Affiliation(s)
- Max R Brown
- Institute of Ecology and Evolution, University of Edinburgh, Edinburgh, UK
- School of Life Sciences, Anglia Ruskin University, Cambridge, UK
| | - Richard J Abbott
- School of Biology, University of St Andrews, St Andrews, Fife, UK
| | - Alex D Twyford
- Institute of Ecology and Evolution, University of Edinburgh, Edinburgh, UK
- Royal Botanical Garden Edinburgh, Edinburgh, UK
| |
Collapse
|
2
|
Indira Cervantes-Díaz C, Patiño-Conde V, González-Rodríguez A, Quesada M, Cuevas E. Molecular and morphological evidence of hybridization between two dimorphic sympatric species of Fuchsia (Onagraceae). AOB PLANTS 2024; 16:plad089. [PMID: 38213511 PMCID: PMC10783250 DOI: 10.1093/aobpla/plad089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 12/16/2023] [Indexed: 01/13/2024]
Abstract
Hybridization is commonly reported in angiosperms, generally based on morphology, and in few cases confirmed by molecular markers. Fuchsia has a long tradition of ornamental cultivars with different hybrids produced by artificial crosses, so natural hybridization between sympatric Fuchsia species could be common. Natural hybridization between F. microphylla and F. thymifolia was tested using six newly developed microsatellites for F. microphylla in addition to other molecular markers with codominant and maternal inheritance. Geometric morphometrics of leaves and floral structures were also used to identify putative hybrids. Hybrids showed a different degree of genetic admixture between both parental species. Chloroplast DNA (cpDNA) sequences indicated that hybridization occurs in both directions, in fact, some of the hybrids showed new haplotypes for cpDNA and ITS (internal transcriber spacer of nuclear ribosomal RNA genes) sequences. The morphology of hybrid individuals varied between the two parental species, but they could be better identified by their leaves and floral tubes. Our study is the first to confirm the hybridization in natural populations of Fuchsia species and suggests that hybridization has probably occurred repeatedly throughout the entire distribution of the species. Phylogeographic analysis of both species will be essential to understanding the impact of hybridization throughout their complete distribution.
Collapse
Affiliation(s)
- Cinthya Indira Cervantes-Díaz
- Laboratorio Nacional de Análisis y Síntesis Ecológica (LANASE), Escuela Nacional de Estudios Superiores, Unidad Morelia, Universidad Nacional Autónoma de México, Morelia 58190, Michoacán, México
- Facultad de Biología, Universidad Michoacana de San Nicolás de Hidalgo 58000, Morelia, Michoacán, México
| | - Violeta Patiño-Conde
- Laboratorio Nacional de Análisis y Síntesis Ecológica (LANASE), Escuela Nacional de Estudios Superiores, Unidad Morelia, Universidad Nacional Autónoma de México, Morelia 58190, Michoacán, México
| | - Antonio González-Rodríguez
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, Morelia 58190, Michoacán, México
| | - Mauricio Quesada
- Laboratorio Nacional de Análisis y Síntesis Ecológica (LANASE), Escuela Nacional de Estudios Superiores, Unidad Morelia, Universidad Nacional Autónoma de México, Morelia 58190, Michoacán, México
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, Morelia 58190, Michoacán, México
| | - Eduardo Cuevas
- Laboratorio Nacional de Análisis y Síntesis Ecológica (LANASE), Escuela Nacional de Estudios Superiores, Unidad Morelia, Universidad Nacional Autónoma de México, Morelia 58190, Michoacán, México
- Facultad de Biología, Universidad Michoacana de San Nicolás de Hidalgo 58000, Morelia, Michoacán, México
| |
Collapse
|
3
|
Staude IR, Ebersbach J. Neophytes may promote hybridization and adaptations to a changing planet. Ecol Evol 2023; 13:e10405. [PMID: 37593753 PMCID: PMC10427993 DOI: 10.1002/ece3.10405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 07/14/2023] [Accepted: 07/24/2023] [Indexed: 08/19/2023] Open
Abstract
Human activities erode geographic barriers, facilitating hybridization among previously isolated taxa. However, limited empirical research exists on the consequences of introduced species (neophytes) for hybridization and subsequent evolutionary outcomes. To address this knowledge gap, we employed a macroecological approach. First, we examined the spatial and phylogenetic overlap between neophytes and hybrids by integrating the Plants of the World Online database with the Global Naturalized Alien Flora database. Second, leveraging the largest dated plant phylogeny available, we compared diversification rates between genera containing hybrids and neophytes versus those without. Third, focusing on the extensively studied hybrid flora of Britain, we studied the spatial distributions of hybrids in relation to neophyte and native parents, assessing potential adaptations to anthropogenic disturbances and impacts on native species. Overall, our findings highlight positive ties between contemporary biodiversity redistribution and hybridization. Spatially (across countries) and phylogenetically (across genera), neophyte incidence was positively associated with hybrid incidence. Genera comprising both hybrids and neophytes displayed significantly higher diversification rates. Neophyte hybrids primarily occupied areas with a higher human footprint, with limited evidence of hybrids threatening native species throughout their range in more natural habitats. These results challenge the notion that species naturalizations and hybridizations exclusively yield negative outcomes for biodiversity. While it is conceivable that anthropogenic hybridization may facilitate recombination of genetic variation and contribute to conserving genetic diversity in disturbed environments, further research is needed to fully understand these processes.
Collapse
Affiliation(s)
- Ingmar R. Staude
- Institute of BiologyLeipzig UniversityLeipzigGermany
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
| | - Jana Ebersbach
- Institute of BiologyLeipzig UniversityLeipzigGermany
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
| |
Collapse
|
4
|
Touchard F, Simon A, Bierne N, Viard F. Urban rendezvous along the seashore: Ports as Darwinian field labs for studying marine evolution in the Anthropocene. Evol Appl 2023; 16:560-579. [PMID: 36793678 PMCID: PMC9923491 DOI: 10.1111/eva.13443] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 06/16/2022] [Accepted: 06/19/2022] [Indexed: 11/30/2022] Open
Abstract
Humans have built ports on all the coasts of the world, allowing people to travel, exploit the sea, and develop trade. The proliferation of these artificial habitats and the associated maritime traffic is not predicted to fade in the coming decades. Ports share common characteristics: Species find themselves in novel singular environments, with particular abiotic properties-e.g., pollutants, shading, protection from wave action-within novel communities in a melting pot of invasive and native taxa. Here, we discuss how this drives evolution, including setting up of new connectivity hubs and gateways, adaptive responses to exposure to new chemicals or new biotic communities, and hybridization between lineages that would have never come into contact naturally. There are still important knowledge gaps, however, such as the lack of experimental tests to distinguish adaptation from acclimation processes, the lack of studies to understand the putative threats of port lineages to natural populations or to better understand the outcomes and fitness effects of anthropogenic hybridization. We thus call for further research examining "biological portuarization," defined as the repeated evolution of marine species in port ecosystems under human-altered selective pressures. Furthermore, we argue that ports act as giant mesocosms often isolated from the open sea by seawalls and locks and so provide replicated life-size evolutionary experiments essential to support predictive evolutionary sciences.
Collapse
Affiliation(s)
| | - Alexis Simon
- ISEM, EPHE, IRDUniversité MontpellierMontpellierFrance
- Center of Population Biology and Department of Evolution and EcologyUniversity of California DavisDavisCaliforniaUSA
| | | | | |
Collapse
|
5
|
Status and Trends in the Rate of Introduction of Marine Non-Indigenous Species in European Seas. DIVERSITY 2022. [DOI: 10.3390/d14121077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Invasive alien species are a major worldwide driver of biodiversity change. The current study lists verified records of non-indigenous species (NIS) in European marine waters until 2020, with the purpose of establishing a baseline, assessing trends, and discussing appropriate threshold values for good environmental status (GES) according to the relevant European legislation. All NIS records were verified by national experts and trends are presented in six-year assessment periods from 1970 to 2020 according to the European Union Marine Strategy Framework Directive. Altogether, 874 NIS have been introduced to European marine waters until 2020 with the Mediterranean Sea and North-East Atlantic Ocean hosting most of the introductions. Overall, the number of new introductions has steadily increased since 2000. The annual rate of new introductions reached 21 new NIS in European seas within the last six-year assessment period (2012–2017). This increase is likely due to increased human activities and research efforts that have intensified during the early 21st century within European Seas. As Europe seas are not environmentally, nor geographically homogenous, the setting of threshold values for assessing GES requires regional expertise. Further, once management measures are operational, pathway-specific threshold values would enable assessing the effectiveness of such measures.
Collapse
|
6
|
Extensive hybridization in Ranunculus section Batrachium (Ranunculaceae) in rivers of two postglacial landscapes of East Europe. Sci Rep 2022; 12:12088. [PMID: 35840607 PMCID: PMC9287324 DOI: 10.1038/s41598-022-16224-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 07/06/2022] [Indexed: 11/21/2022] Open
Abstract
We demonstrate a wide distribution and abundance of hybrids between the river species Ranunculus aquatilis, R. fluitans and R. kauffmannii with the still water species R. circinatus (Batrachium, Ranunculaceae) in rivers of two postglacial landscapes of East Europe, i.e., Lithuania and Central European Russia. The Batrachium species and hybrid diversity is higher in the rivers of Lithuania (4 species and 3 hybrids vs. 2 and 1) and represented mainly by western R. aquatilis, R. fluitans and their hybrids whereas in Central European Russia, the East European species R. kauffmannii and its hybrid are the only dominant forms. Hybrids make up about 3/4 of the studied individuals found in 3/4 of the studied river localities in Lithuania and 1/3 of the individuals found in 1/3 of the localities in Central European Russia. Such extensive hybridization in river Batrachium may have arisen due to the specificity of rivers as open-type ecosystems. It may have been intensified by the transformation of river ecosystems by human activities and the postglacial character of the studied landscapes combined with ongoing climate change. Almost all hybrids of R. aquatilis, R. fluitans and R. kauffmannii originated from unidirectional crossings in which R. circinatus acted as a pollen donor. Such crossings could be driven by higher frequency and abundance of R. circinatus populations as well as by some biological mechanisms. Two hybrids, R. circinatus × R. fluitans and R. circinatus × R. kauffmannii, were formally described as R. × redundans and R. × absconditus. We found a hybrid which most likely originated from additional crossing between R. aquatilis and R. circinatus × R. fluitans.
Collapse
|
7
|
Williams J, Lambert AM, Long R, Saltonstall K. Does hybrid Phragmites australis differ from native and introduced lineages in reproductive, genetic, and morphological traits? AMERICAN JOURNAL OF BOTANY 2019; 106:29-41. [PMID: 30633812 DOI: 10.1002/ajb2.1217] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 10/03/2018] [Indexed: 06/09/2023]
Abstract
PREMISE OF THE STUDY Hybridization between previously isolated species or lineages can stimulate invasiveness because of increased genetic diversity and inherited traits facilitating competitive and reproductive potential. We evaluated differences in stand characteristics and sexual and vegetative reproduction among native, introduced, and hybrid Phragmites australis lineages in the southwestern United States. We also assessed the degree of hybridization among lineages and backcrossing of hybrids with parental lineages. METHODS Growth and morphological characteristics were measured in native, introduced, and hybrid Phragmites stands to evaluate relative cover and dominance in associated plant communities. Panicles were collected from stands to evaluate germination, dormancy, and differences in seed traits. Seedlings from germination trials were genotyped to determine frequency of crossing and backcrossing among lineages. KEY RESULTS Introduced and hybrid Phragmites stands had significantly greater stem and panicle densities than native stands and were more likely to be dominant members of their respective plant communities. Hybrid seed outputs were significantly greater, but hybrid seeds had lower germination rates than those from native and introduced lineages. We detected a novel hybridization event between native and introduced lineages, but found no strong evidence of hybrids backcrossing with parental lineages. CONCLUSIONS Hybrid Phragmites in the Southwest exhibits reproductive, genetic, and morphological characteristics from both parental lineages that facilitate dispersal, establishment, and aggressive growth, including high reproductive output, rhizome viability, and aboveground biomass, with smaller seeds and greater genetic diversity than its progenitors. Our results show hybrids can inherit traits that confer invasiveness and provide insight for managing this species complex and other cryptic species with native and introduced variants with potential for intraspecific hybridization.
Collapse
Affiliation(s)
- Jared Williams
- Marine Science Institute and Cheadle Center for Biodiversity and Ecological Restoration, University of California, Santa Barbara, CA, 93106-6150, USA
| | - Adam M Lambert
- Marine Science Institute and Cheadle Center for Biodiversity and Ecological Restoration, University of California, Santa Barbara, CA, 93106-6150, USA
| | - Randy Long
- Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA, 93106, USA
| | - Kristin Saltonstall
- Smithsonian Tropical Research Institute, Apartado, 0843-03092, Balboa, Ancon, Republic of Panama
| |
Collapse
|
8
|
Wang X, Gussarova G, Ruhsam M, de Vere N, Metherell C, Hollingsworth PM, Twyford AD. DNA barcoding a taxonomically complex hemiparasitic genus reveals deep divergence between ploidy levels but lack of species-level resolution. AOB PLANTS 2018; 10:ply026. [PMID: 29765588 PMCID: PMC5941139 DOI: 10.1093/aobpla/ply026] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 04/20/2018] [Indexed: 05/18/2023]
Abstract
DNA barcoding is emerging as a useful tool not only for species identification but also for studying evolutionary and ecological processes. Although plant DNA barcodes do not always provide species-level resolution, the generation of large DNA barcode data sets can provide insights into the mechanisms underlying the generation of species diversity. Here, we study evolutionary processes in taxonomically complex British Euphrasia (Orobanchaceae), a group with multiple ploidy levels, frequent self-fertilization, young species divergence and widespread hybridization. We use a phylogenetic approach to investigate the colonization history of British Euphrasia, followed by a DNA barcoding survey and population genetic analyses to reveal the causes of shared sequence variation. Phylogenetic analysis shows Euphrasia have colonized Britain from mainland Europe on multiple occasions. DNA barcoding reveals that no British Euphrasia species has a consistent diagnostic sequence profile, and instead, plastid haplotypes are either widespread across species, or are population specific. The partitioning of nuclear genetic variation suggests differences in ploidy act as a barrier to gene exchange, while the divergence between diploid and tetraploid ITS sequences supports the polyploids being allotetraploid in origin. Overall, these results show that even when lacking species-level resolution, analyses of DNA barcoding data can reveal evolutionary patterns in taxonomically complex genera.
Collapse
Affiliation(s)
- Xumei Wang
- School of Pharmacy, Xi’an Jiaotong University, Xi’an, P.R. China
| | - Galina Gussarova
- Tromsø University Museum, UiT The Arctic University of Norway, Langnes, Tromsø, Norway
- CEES-Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Blindern, Oslo, Norway
- Department of Botany, Faculty of Biology, St Petersburg State University, Universitetskaya nab., Russia
| | | | - Natasha de Vere
- National Botanic Garden of Wales, Llanarthne, Carmarthenshire, UK
- Institute of Biological, Environmental & Rural Sciences (IBERS), Aberystwyth University, Penglais, Aberystwyth, Ceredigion, UK
| | | | | | - Alex D Twyford
- University of Edinburgh, Institute of Evolutionary Biology, Edinburgh, UK
- Corresponding author’s e-mail address:
| |
Collapse
|
9
|
Vallejo-Marín M, Hiscock SJ. Hybridization and hybrid speciation under global change. THE NEW PHYTOLOGIST 2016; 211:1170-87. [PMID: 27214560 DOI: 10.1111/nph.14004] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 04/07/2016] [Indexed: 05/24/2023]
Abstract
Contents 1170 I. 1170 II. 1172 III. 1175 IV. 1180 V. 1183 1184 References 1184 SUMMARY: An unintended consequence of global change is an increase in opportunities for hybridization among previously isolated lineages. Here we illustrate how global change can facilitate the breakdown of reproductive barriers and the formation of hybrids, drawing on the flora of the British Isles for insight. Although global change may ameliorate some of the barriers preventing hybrid establishment, for example by providing new ecological niches for hybrids, it will have limited effects on environment-independent post-zygotic barriers. For example, genic incompatibilities and differences in chromosome numbers and structure within hybrid genomes are unlikely to be affected by global change. We thus speculate that global change will have a larger effect on eroding pre-zygotic barriers (eco-geographical isolation and phenology) than post-zygotic barriers, shifting the relative importance of these two classes of reproductive barriers from what is usually seen in naturally produced hybrids where pre-zygotic barriers are the largest contributors to reproductive isolation. Although the long-term fate of neo-hybrids is still to be determined, the massive impact of global change on the dynamics and distribution of biodiversity generates an unprecedented opportunity to study large numbers of unpredicted, and often replicated, hybridization 'experiments', allowing us to peer into the birth and death of evolutionary lineages.
Collapse
Affiliation(s)
- Mario Vallejo-Marín
- Biological and Environmental Sciences, School of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| | - Simon J Hiscock
- University of Oxford Botanic Garden, Rose Lane, Oxford, OX1 4AZ, UK
| |
Collapse
|
10
|
Saltonstall K, Lambert AM, Rice N. What happens in Vegas, better stay in Vegas: Phragmites australis hybrids in the Las Vegas Wash. Biol Invasions 2016. [DOI: 10.1007/s10530-016-1167-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
11
|
Sutherland WJ, Roy DB, Amano T. An agenda for the future of biological recording for ecological monitoring and citizen science. Biol J Linn Soc Lond 2015. [DOI: 10.1111/bij.12576] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- William J. Sutherland
- Conservation Science Group; Department of Zoology; University of Cambridge; Downing Street Cambridge CB2 3EJ UK
| | - David B. Roy
- Biological Records Centre; Centre for Ecology and Hydrology; Benson Lane Crowmarsh Gifford Wallingford Oxfordshire OX10 8BB UK
| | - Tatsuya Amano
- Conservation Science Group; Department of Zoology; University of Cambridge; Downing Street Cambridge CB2 3EJ UK
| |
Collapse
|
12
|
Pocock MJO, Roy HE, Preston CD, Roy DB. The Biological Records Centre: a pioneer of citizen science. Biol J Linn Soc Lond 2015. [DOI: 10.1111/bij.12548] [Citation(s) in RCA: 121] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Michael J. O. Pocock
- Biological Records Centre; Centre for Ecology & Hydrology; Maclean Building Benson Lane Crowmarsh Gifford Wallingford Oxfordshire OX10 8BB UK
| | - Helen E. Roy
- Biological Records Centre; Centre for Ecology & Hydrology; Maclean Building Benson Lane Crowmarsh Gifford Wallingford Oxfordshire OX10 8BB UK
| | - Chris D. Preston
- Biological Records Centre; Centre for Ecology & Hydrology; Maclean Building Benson Lane Crowmarsh Gifford Wallingford Oxfordshire OX10 8BB UK
| | - David B. Roy
- Biological Records Centre; Centre for Ecology & Hydrology; Maclean Building Benson Lane Crowmarsh Gifford Wallingford Oxfordshire OX10 8BB UK
| |
Collapse
|
13
|
Affiliation(s)
- Helen E. Roy
- Biological Records Centre; Centre for Ecology and Hydrology; Benson Lane Wallingford Oxfordshire OX10 8BB UK
| | - Christopher D. Preston
- Biological Records Centre; Centre for Ecology and Hydrology; Benson Lane Wallingford Oxfordshire OX10 8BB UK
| | - David B. Roy
- Biological Records Centre; Centre for Ecology and Hydrology; Benson Lane Wallingford Oxfordshire OX10 8BB UK
| |
Collapse
|