1
|
Mukisa J, Kyobe S, Amujal M, Katagirya E, Diphoko T, Sebetso G, Mwesigwa S, Mboowa G, Retshabile G, Williams L, Mlotshwa B, Matshaba M, Jjingo D, Kateete DP, Joloba ML, Mardon G, Hanchard N, Hollenbach JA. High KIR diversity in Uganda and Botswana children living with HIV. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.03.626612. [PMID: 39677597 PMCID: PMC11642868 DOI: 10.1101/2024.12.03.626612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Killer-cell immunoglobulin-like receptors (KIRs) are essential components of the innate immune system found on the surfaces of natural killer (NK) cells. The KIRs encoding genes are located on chromosome 19q13.4 and are genetically diverse across populations. KIRs are associated with various disease states including HIV progression, and are linked to transplantation rejection and reproductive success. However, there is limited knowledge on the diversity of KIRs from Uganda and Botswana HIV-infected paediatric cohorts, with high endemic HIV rates. We used next-generation sequencing technologies on 312 (246 Uganda, 66 Botswana) samples to generate KIR allele data and employed customised bioinformatics techniques for allelic, allotype and disease association analysis. We show that these sample sets from Botswana and Uganda have different KIRs of different diversities. In Uganda, we observed 147 vs 111 alleles in the Botswana cohort, which had a more than 1 % frequency. We also found significant deviation towards homozygosity for the KIR3DL2 gene for both rapid (RPs) and long-term non-progressors (LTNPs)in the Ugandan cohort. The frequency of the bw4-80I ligand was also significantly higher among the LTNPs than RPs (8.9 % Vs 2.0%, P-value: 0.032). In the Ugandan cohort, KIR2DS4*001 (OR: 0.671, 95 % CI: 0.481-0.937, FDR adjusted Pc=0.142) and KIR2DS4*006 (OR: 2.519, 95 % CI: 1.085-5.851, FDR adjusted Pc=0.142) were not associated with HIV disease progression after adjustment for multiple testing. Our study results provide additional knowledge of the genetic diversity of KIRs in African populations and provide evidence that will inform future immunogenetics studies concerning human disease susceptibility, evolution and host immune responses.
Collapse
Affiliation(s)
- John Mukisa
- Department of Immunology and Molecular Biology, Makerere University, College of Health Sciences, P.O.BOX 7072, Kampala, Uganda
| | - Samuel Kyobe
- Department of Medical Microbiology, Makerere University, College of Health Sciences, P.O.BOX 7072, Kampala, Uganda
| | - Marion Amujal
- Department of Immunology and Molecular Biology, Makerere University, College of Health Sciences, P.O.BOX 7072, Kampala, Uganda
| | - Eric Katagirya
- Department of Immunology and Molecular Biology, Makerere University, College of Health Sciences, P.O.BOX 7072, Kampala, Uganda
| | - Thabo Diphoko
- Department of Biological Sciences, University of Botswana, Gaborone, Botswana
| | - Gaseene Sebetso
- Department of Biological Sciences, University of Botswana, Gaborone, Botswana
| | - Savannah Mwesigwa
- Department of Immunology and Molecular Biology, Makerere University, College of Health Sciences, P.O.BOX 7072, Kampala, Uganda
| | - Gerald Mboowa
- Department of Immunology and Molecular Biology, Makerere University, College of Health Sciences, P.O.BOX 7072, Kampala, Uganda
- Global Pathogen Genomics, Broad Institute, Cambridge, USA
| | - Gaone Retshabile
- Department of Biological Sciences, University of Botswana, Gaborone, Botswana
| | - Lesedi Williams
- Department of Biological Sciences, University of Botswana, Gaborone, Botswana
| | - Busisiwe Mlotshwa
- Department of Biological Sciences, University of Botswana, Gaborone, Botswana
| | - Mogomotsi Matshaba
- Botswana-Baylor Children’s Clinical Centre of Excellence, P/Bag BR 129, Gaborone, Botswana
| | - Daudi Jjingo
- College of Computing and Information Sciences, Makerere University, Kampala, Uganda
- African Center of Excellence in Bioinformatics and Data Science, Makerere University, Kampala, Uganda
| | - David P. Kateete
- Department of Immunology and Molecular Biology, Makerere University, College of Health Sciences, P.O.BOX 7072, Kampala, Uganda
| | - Moses L. Joloba
- Department of Immunology and Molecular Biology, Makerere University, College of Health Sciences, P.O.BOX 7072, Kampala, Uganda
| | - Graeme Mardon
- Department of Molecular and Human Genetics and Department of Pathology, Baylor College of Medicine, Houston, Texas, USA
| | - Neil Hanchard
- National Human Genome Research Institute, Bethesda, Maryland, USA
| | - Jill A. Hollenbach
- Department of Neurology and Department of Epidemiology and Biostatistics, University of California San Francisco, CA, 94158, USA
| |
Collapse
|
2
|
Zhu J, Jin A, Pan B, Guo W, Yang W, Wang B. Exploring the role of KIR3DL2 on NK cells in hepatocellular carcinoma and its potential prognostic implications. iScience 2024; 27:110637. [PMID: 39262781 PMCID: PMC11388180 DOI: 10.1016/j.isci.2024.110637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 07/10/2024] [Accepted: 07/30/2024] [Indexed: 09/13/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a globally prevalent malignancy with a high recurrence rate, significantly impacting prognosis and survival. This study aims to identify prognostic molecular markers using single-cell sequencing of tumors and adjacent tissues in primary and recurrent HCC patients. We analyzed single-cell sequencing data from tumor and adjacent normal tissues of primary and recurrent HCC cases to compare immune cell quantity and gene expression profiles. Recurrent HCC patients exhibited a significant reduction in infiltrating NK cells expressing KIR3DL2. Pseudotemporal and cell communication analyses revealed these KIR3DL2high NK cells were in a quiescent state, suggesting NK cell exhaustion and poor prognosis. KIR3DL2 expression in peripheral blood NK cells correlated with that in tissues, highlighting its potential as a prognostic marker for HCC.
Collapse
Affiliation(s)
- Jie Zhu
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Anli Jin
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Baishen Pan
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Wei Guo
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Department of Laboratory Medicine, Shanghai Geriatric Medical Center, Zhongshan Hospital, Fudan University, Shanghai 201104, China
- Department of Laboratory Medicine, Xiamen Branch, Zhongshan Hospital, Fudan University, Xiamen 361015, China
- Department of Laboratory Medicine, Wusong Branch, Zhongshan Hospital, Fudan University, Shanghai 200940, China
| | - Wenjing Yang
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Beili Wang
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|
3
|
Drieux F, Lemonnier F, Gaulard P. How molecular advances may improve the diagnosis and management of PTCL patients. Front Oncol 2023; 13:1202964. [PMID: 37427095 PMCID: PMC10328093 DOI: 10.3389/fonc.2023.1202964] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 05/22/2023] [Indexed: 07/11/2023] Open
Abstract
Peripheral T-cell lymphomas (PTCL) comprised more than 30 rare heterogeneous entities, representing 10 to 15% of adult non-Hodgkin lymphomas. Although their diagnosis is still mainly based on clinical, pathological, and phenotypic features, molecular studies have allowed for a better understanding of the oncogenic mechanisms involved and the refinement of many PTCL entities in the recently updated classifications. The prognosis remains poor for most entities (5-year overall survival < 30%), with current conventional therapies based on anthracyclin-based polychemotherapy regimen, despite many years of clinical trials. The recent use of new targeted therapies appears to be promising for relapsed/refractory patients, such as demethylating agents in T-follicular helper (TFH) PTCL. However further studies are needed to evaluate the proper combination of these drugs in the setting of front-line therapy. In this review, we will summarize the oncogenic events for the main PTCL entities and report the molecular targets that have led to the development of new therapies. We will also discuss the development of innovative high throughput technologies that aid the routine workflow for the histopathological diagnosis and management of PTCL patients.
Collapse
Affiliation(s)
- Fanny Drieux
- Service d’Anatomie et de Cytologie Pathologiques, INSERM U1245, Centre Henri Becquerel, Rouen, France
| | - François Lemonnier
- Unité hémopathies Lymphoïdes, Hôpitaux Universitaires Henri Mondor, Assistance Publique des Hôpitaux de Paris, Créteil, France
- Institut Mondor de Recherche Biomédicale, INSERM U955, Université Paris Est Créteil, Créteil, France
| | - Philippe Gaulard
- Institut Mondor de Recherche Biomédicale, INSERM U955, Université Paris Est Créteil, Créteil, France
- Département de Pathologie, Hôpitaux Universitaires Henri Mondor, Assistance Publique des Hôpitaux de Paris, Créteil, France
| |
Collapse
|
4
|
KIR3DL2 contributes to the typing of acute adult T-cell leukemia and is a potential therapeutic target. Blood 2022; 140:1522-1532. [PMID: 35687761 DOI: 10.1182/blood.2022016765] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 05/25/2022] [Indexed: 11/20/2022] Open
Abstract
Adult T-cell leukemia (ATL) is a lymphoid neoplasm caused by human T-cell leukemia virus type 1 (HTLV-1), which encodes the transcriptional activator Tax, which participates in the immortalization of infected T cells. ATL is classified into 4 subtypes: smoldering, chronic, acute, and lymphoma. We determined whether natural killer receptors (NKRs) were expressed in ATL. NKR expression (KIR2DL1/2DS1, KIR2DL2/2DL3/2DS2, KIR3DL2, NKG2A, NKG2C, and NKp46) was assessed in a discovery cohort of 21 ATL, and KIR3DL2 was then assessed in 71 patients with ATL. KIR3DL2 was the only NKR among those studied frequently expressed by acute-type vs lymphoma- and chronic/smoldering-type ATL (36 of 40, 4 of 16, and 1 of 15, respectively; P = .001), although acute- and lymphoma-type ATL had similar mutation profiles by targeted exome sequencing. The correlation of KIR3DL2 expression with promoter demethylation was determined by microarray-based DNA methylation profiling. To explore the role of HTLV-1, KIR3DL2 and TAX messenger RNA (mRNA) expression levels were assessed by PrimeFlow RNA in primary ATL and in CD4+ T cells infected with HTLV-1 in vitro. TAX mRNA and KIR3DL2 protein expressions were correlated on ATL cells. HTLV-1 infection triggered KIR3DL2 by CD4+ cells but Tax alone did not induce KIR3DL2 expression. Ex vivo, autologous, antibody-dependent cell cytotoxicity using lacutamab, a first-in-class anti-KIR3DL2 humanized antibody, selectively killed KIR3DL2+ primary ATL cells ex vivo. To conclude, KIR3DL2 expression is associated with acute-type ATL. Transcription of KIR3DL2 may be triggered by HTLV-1 infection and correlates with hypomethylation of the promoter. The benefit of targeting KIR3DL2 with lacutamab is being further explored in a randomized phase 2 study in peripheral T-cell lymphoma, including ATL (registered on https://clinicaltrials.gov as #NCT04984837).
Collapse
|
5
|
Hu Y, Shu XS, Yu J, Sun MA, Chen Z, Liu X, Fang Q, Zhang W, Hui X, Ying Y, Fu L, Lu D, Kumar R, Wang Y. Improving the diversity of captured full-length isoforms using a normalized single-molecule RNA-sequencing method. Commun Biol 2020; 3:403. [PMID: 32732980 PMCID: PMC7393167 DOI: 10.1038/s42003-020-01125-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 07/02/2020] [Indexed: 12/26/2022] Open
Abstract
Human genes form a large variety of isoforms after transcription, encoding distinct transcripts to exert different functions. Single-molecule RNA sequencing facilitates accurate identification of the isoforms by extending nucleotide read length significantly. However, the gene or isoform diversity is lowly represented by the mRNA molecules captured by single-molecule RNA sequencing. Here, we show that a cDNA normalization procedure before the library preparation for PacBio RS II sequencing captures 3.2–6.0 fold more full-length high-quality isoform species for different human samples, as compared to the non-normalized capture procedure. Many lowly expressed, functionally important isoforms can be detected. In addition, normalized PacBio RNA sequencing also resolves more allele-specific haplotype transcripts. Finally, we apply the cDNA normalization based long-read RNA sequencing method to profile the transcriptome of human gastric signet-ring cell carcinomas, identify new cancer-specific transcriptome signatures, and thus, bring out the utility of the improved protocols in gene expression studies. Hu et al. combine cDNA normalization before library preparation with a software tool to increase the capture of RNA isoform species in single-molecule RNA sequencing. They demonstrate that this approach can detect previously unknown transcripts in gastric signet-ring cell carcinomas that are not present in non-malignant tissue.
Collapse
Affiliation(s)
- Yueming Hu
- School of Basic Medicine, Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Xing-Sheng Shu
- School of Basic Medicine, Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Jiaxian Yu
- School of Basic Medicine, Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Ming-An Sun
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Zewei Chen
- School of Basic Medicine, Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Xianming Liu
- Department of Gastrointestinal Surgery, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, Shenzhen, 518020, China
| | - Qiongfang Fang
- School of Basic Medicine, Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Wei Zhang
- Shenzhen GenRead Tech. Co. LTD., Shenzhen, 518132, China
| | - Xinjie Hui
- School of Basic Medicine, Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Ying Ying
- School of Basic Medicine, Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Li Fu
- School of Basic Medicine, Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Desheng Lu
- School of Basic Medicine, Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Rakesh Kumar
- Rajiv Gandhi Centre for Biotechnology, Trivendrum, 695014, Kerala, India.,Virginia Commonwealth University School of Medicine, Richmond, 23298, USA.,Rutgers New Jersey Medical School, Newark, 07103, USA
| | - Yejun Wang
- School of Basic Medicine, Shenzhen University Health Science Center, Shenzhen, 518060, China.
| |
Collapse
|
6
|
Adkins BD, Ramos JC, Bliss-Moreau M, Gru AA. Updates in lymph node and skin pathology of adult T-cell leukemia/lymphoma, biomarkers, and beyond. Semin Diagn Pathol 2020; 37:1-10. [PMID: 31889601 PMCID: PMC7668393 DOI: 10.1053/j.semdp.2019.12.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Adult T-cell leukemia/lymphoma (ATLL) is a mature T-cell lymphoproliferative disorder associated with the human T lymphotropic virus (HTLV-1) infection. ATLL predominantly affects individuals within HTLV-1 endemic areas such as Japan, areas of Africa, South America, and the Caribbean. HTLV-1 preferentially infects CD4+ T-cells, and several genetic hits must occur before ATLL develops. ATLL is classically divided into four clinical variants based on manifestations of disease: acute, chronic, lymphomatous, and smouldering. As of 2019, a new subtype has been described: lymphoma type of ATL, extranodal primary cutaneous. In this review, emphasis will be taken to describe the common clinicopathologic manifestations of the disease, advances in biomarker discovery, mutational landscape and targeted therapeutic approaches to treat this highly aggressive and frequently lethal type of T-cell lymphoma.
Collapse
Affiliation(s)
- Brian D Adkins
- Department of Pathology, University of Virginia, Charlottesville, VA, United States
| | - Juan C Ramos
- Division of Hematology, University of Miami Miller School of Medicine, Sylvester Comprehensive Cancer Center, Miami, FL, United States
| | - Meghan Bliss-Moreau
- Department of Pathology, University of Virginia, Charlottesville, VA, United States
| | - Alejandro A Gru
- Pathology & Dermatology, Hematopathology and Dermatopathology Sections, University of Virginia, Charlottesville, VA, United States.
| |
Collapse
|
7
|
Van Der Weyden C, Bagot M, Neeson P, Darcy PK, Prince HM. IPH4102, a monoclonal antibody directed against the immune receptor molecule KIR3DL2, for the treatment of cutaneous T-cell lymphoma. Expert Opin Investig Drugs 2018; 27:691-697. [DOI: 10.1080/13543784.2018.1498081] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Carrie Van Der Weyden
- Department of Haematology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Martine Bagot
- Department of Dermatology, Hôpital Saint-Louis, Paris, France
- Inserm U976, Paris, France
| | - Paul Neeson
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Phil K. Darcy
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - H. Miles Prince
- Department of Haematology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
- Epworth Healthcare, Richmond, Victoria, Australia
| |
Collapse
|