1
|
Alsuhibani AA, Alobaid NA, Alahmadi MH, Alqannas JS, Alfreaj WS, Albadrani RF, Alamer KA, Almogbel YS, Alhomaidan A, Guo JJ. Antifungal Agents' Trends of Utilization, Spending, and Prices in the US Medicaid Programs: 2009-2023. Antibiotics (Basel) 2025; 14:518. [PMID: 40426584 PMCID: PMC12108345 DOI: 10.3390/antibiotics14050518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2025] [Revised: 05/13/2025] [Accepted: 05/14/2025] [Indexed: 05/29/2025] Open
Abstract
Background: Fungal infections, particularly among immunocompromised individuals, present significant challenges due to rising incidence rates, treatment costs, and increasing resistance to antifungal agents. This study evaluates trends in antifungal use among Medicaid beneficiaries, focusing on prescribing patterns, costs, and pricing to optimize therapy. Methods: Using the national Medicaid outpatient pharmacy claims data collected by the US Center of Medicare and Medicaid Services, a retrospective drug utilization analysis was conducted for antifungal medications from 2009 to 2023. Antifungal medications were categorized based on therapeutic use. The study examined annual utilization, reimbursement, and pricing trends, along with the market share. Results: Overall Medicaid utilization of superficial fungal infections' (SFIs') medications increased from 3.95 million prescriptions in 2009 to 6.16 million in 2023. Nystatin was the most frequently utilized SFI agent, while fluconazole emerged as the most commonly prescribed agent for invasive fungal infections (IFIs). In 2022, a notable spike occurred in the number of prescriptions for both SFIs and IFIs. Medicaid's total expenditure on SFI medications rose from USD 121.9 million in 2009 to USD 155 million in 2023, while spending on IFI medications fluctuated substantially, peaking at USD 156.8 million in 2022 before declining to USD 80.7 million in 2023. After being introduced to the market, efinaconazole became the most expensive SFI agent over the years. Isavuconazole, the latest approved IFI medication, demonstrated sustained utilization, reimbursement, and price increases. Conclusions: The substantial rise in antifungal utilization and spending underscores the growing financial burden on Medicaid, emphasizing the need for policy interventions to manage costs and generic drug substitution while ensuring equitable access to these essential treatments. However, this study is limited by the lack of clinical outcome data and information on off-label use. Additionally, reimbursement data may not accurately reflect actual drug prices.
Collapse
Affiliation(s)
- Abdulrahman A. Alsuhibani
- Department of Pharmacy Practice, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia; (N.A.A.); (M.H.A.); (J.S.A.); (W.S.A.); (R.F.A.); (Y.S.A.)
| | - Norah A. Alobaid
- Department of Pharmacy Practice, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia; (N.A.A.); (M.H.A.); (J.S.A.); (W.S.A.); (R.F.A.); (Y.S.A.)
| | - Manar H. Alahmadi
- Department of Pharmacy Practice, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia; (N.A.A.); (M.H.A.); (J.S.A.); (W.S.A.); (R.F.A.); (Y.S.A.)
| | - Jood S. Alqannas
- Department of Pharmacy Practice, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia; (N.A.A.); (M.H.A.); (J.S.A.); (W.S.A.); (R.F.A.); (Y.S.A.)
| | - Wejdan S. Alfreaj
- Department of Pharmacy Practice, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia; (N.A.A.); (M.H.A.); (J.S.A.); (W.S.A.); (R.F.A.); (Y.S.A.)
| | - Rana F. Albadrani
- Department of Pharmacy Practice, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia; (N.A.A.); (M.H.A.); (J.S.A.); (W.S.A.); (R.F.A.); (Y.S.A.)
| | - Khalid A. Alamer
- Pharmacy Practice Department, College of Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia;
| | - Yasser S. Almogbel
- Department of Pharmacy Practice, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia; (N.A.A.); (M.H.A.); (J.S.A.); (W.S.A.); (R.F.A.); (Y.S.A.)
| | - Ali Alhomaidan
- The Saudi Food and Drug Authority, Riyadh 13513, Saudi Arabia;
| | - Jeff J. Guo
- James L. Winkle College of Pharmacy, University of Cincinnati Academic Health Center, Cincinnati, OH 45267, USA;
| |
Collapse
|
2
|
Paduszynska MA, Neubauer D, Kamysz W, Kamysz E. Anticandidal Activity of Lipopeptides Containing an LL-37-Derived Peptide Fragment KR12. Molecules 2025; 30:1598. [PMID: 40286204 PMCID: PMC11990879 DOI: 10.3390/molecules30071598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/21/2025] [Accepted: 03/30/2025] [Indexed: 04/29/2025] Open
Abstract
Candidiasis belongs to common fungal infections and is usually mild and self-limiting. However, in patients with immunodeficiencies, it can transform into invasive infections with high mortality. Long-term antifungal treatment can lead to the emergence of resistance. The problem is further complicated by the development of fungal biofilm resistant to conventional antimicrobials. Due to a limited choice of available antifungals, the development of novel active agents, such as antimicrobial peptides (AMPs), is highly desirable. Human cathelicidin LL-37 is an intensively studied AMP with a confirmed broad spectrum of antimicrobial activities. Due to the relatively high costs of production, the design of shorter analogs of LL-37 has been recommended. In this study, we synthesized a KR12 amide, KRIVQRIKDFLR-NH2, and its 24 derivatives obtained by substitution with fatty acids. The compounds were tested for their antifungal potential. They exhibited activity against the Candida albicans, C. glabrata, C. tropicalis and C. lipolytica. Five compounds: C10-KR12-NH2, C12-KR12-NH2, C14-KR12-NH2, 2-butyloctanoic acid-KR12-NH2, and 4-phenylbenzoic acid-KR12-NH2 were highly active against planktonic cells. C14-KR12-NH2 demonstrated also activity against C. albicans biofilm cultured on polystyrene for 24, 48 and 72 h. Lipidation has proven to be an effective strategy for improving microbiological activity of the KR12-NH2 peptide.
Collapse
Affiliation(s)
| | - Damian Neubauer
- Department of Inorganic Chemistry, Faculty of Pharmacy, Medical University of Gdansk, 80-416 Gdansk, Poland
| | - Wojciech Kamysz
- Department of Inorganic Chemistry, Faculty of Pharmacy, Medical University of Gdansk, 80-416 Gdansk, Poland
| | - Elzbieta Kamysz
- Laboratory of Chemistry of Biological Macromolecules, Department of Molecular Biotechnology, Faculty of Chemistry, University of Gdansk, 80-308 Gdansk, Poland
| |
Collapse
|
3
|
Chakravarty K, Gaur S, Kumar R, Jha NK, Gupta PK. Exploring the Multifaceted Therapeutic Potential of Probiotics: A Review of Current Insights and Applications. Probiotics Antimicrob Proteins 2025; 17:341-363. [PMID: 39069588 DOI: 10.1007/s12602-024-10328-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/13/2024] [Indexed: 07/30/2024]
Abstract
The interplay between human health and the microbiome has gained extensive attention, with probiotics emerging as pivotal therapeutic agents due to their vast potential in treating various health issues. As significant modulators of the gut microbiota, probiotics are crucial in maintaining intestinal homeostasis and enhancing the synthesis of short-chain fatty acids. Despite extensive research over the past decades, there remains an urgent need for a comprehensive and detailed review that encapsulates probiotics' latest insights and applications. This review focusses on the multifaceted roles of probiotics in promoting health and preventing disease, highlighting the complex mechanisms through which these beneficial bacteria influence both gut flora and the human body at large. This paper also explores probiotics' neurological and gastrointestinal applications, focussing on their significant impact on the gut-brain axis and their therapeutic potential in a broad spectrum of pathological conditions. Current innovations in probiotic formulations, mainly focusing on integrating genomics and biotechnological advancements, have also been comprehensively discussed herein. This paper also critically examines the regulatory landscape that governs probiotic use, ensuring safety and efficacy in clinical and dietary settings. By presenting a comprehensive overview of recent studies and emerging trends, this review aims to illuminate probiotics' extensive therapeutic capabilities, leading to future research and clinical applications. However, besides extensive research, further advanced explorations into probiotic interactions and mechanisms will be essential for developing more targeted and effective therapeutic strategies, potentially revolutionizing health care practices for consumers.
Collapse
Affiliation(s)
- Kashyapi Chakravarty
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, Uttar Pradesh, 201309, India
| | - Smriti Gaur
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, Uttar Pradesh, 201309, India.
| | - Rohit Kumar
- Centre for Development of Biomaterials and Department of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, 201310, India
| | - Niraj Kumar Jha
- Department of Biotechnology, Sharda School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh, 201310, India
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, 602105, India
- School of Bioengineering & Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
- Centre of Research Impact and Outcome, Chitkara University, Rajpura, Punjab, 140401, India
| | - Piyush Kumar Gupta
- Centre for Development of Biomaterials and Department of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, 201310, India.
- Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun, Uttarakhand, 248002, India.
| |
Collapse
|
4
|
Dladla M, Gyzenhout M, Marias G, Ghosh S. Azole resistance in Aspergillus fumigatus- comprehensive review. Arch Microbiol 2024; 206:305. [PMID: 38878211 DOI: 10.1007/s00203-024-04026-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/28/2024] [Accepted: 05/31/2024] [Indexed: 06/23/2024]
Abstract
Aspergillus fumigatus is a ubiquitous filamentous fungus commonly found in the environment. It is also an opportunistic human pathogen known to cause a range of respiratory infections, such as invasive aspergillosis, particularly in immunocompromised individuals. Azole antifungal agents are widely used for the treatment and prophylaxis of Aspergillus infections due to their efficacy and tolerability. However, the emergence of azole resistance in A. fumigatus has become a major concern in recent years due to their association with increased treatment failures and mortality rates. The development of azole resistance in A. fumigatus can occur through both acquired and intrinsic mechanisms. Acquired resistance typically arises from mutations in the target enzyme, lanosterol 14-α-demethylase (Cyp51A), reduces the affinity of azole antifungal agents for the enzyme, rendering them less effective, while intrinsic resistance refers to a natural resistance of certain A. fumigatus isolates to azole antifungals due to inherent genetic characteristics. The current review aims to provide a comprehensive overview of azole antifungal resistance in A. fumigatus, discusses underlying resistance mechanisms, including alterations in the target enzyme, Cyp51A, and the involvement of efflux pumps in drug efflux. Impact of azole fungicide uses in the environment and the spread of resistant strains is also explored.
Collapse
Affiliation(s)
- Mthokozisi Dladla
- Department of Genetics, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, 9301, South Africa
| | - Marieka Gyzenhout
- Department of Genetics, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, 9301, South Africa.
| | - Gert Marias
- Department of Plant Sciences, Division of Plant Pathology, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, South Africa
| | - Soumya Ghosh
- Department of Genetics, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, 9301, South Africa.
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa 616, Birkat Al Mawz, Oman.
| |
Collapse
|
5
|
Mathuria A, Ali N, Kataria N, Mani I. Drug repurposing for fungal infections. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 207:59-78. [PMID: 38942545 DOI: 10.1016/bs.pmbts.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
The rise of multidrug-resistant bacteria is a well-recognized threat to world health, necessitating the implementation of effective treatments. This issue has been identified as a top priority on the global agenda by the World Health Organization. Certain strains, such as Candida glabrata, Candida krusei, Candida lusitaniae, Candida auris, select cryptococcal species, and opportunistic Aspergillus or Fusarium species, have significant intrinsic resistance to numerous antifungal medicines. This inherent resistance and subsequent suboptimal clinical outcomes underscore the critical imperative for enhanced therapeutic alternatives and management protocols. The challenge of effectively treating fungal infections, compounded by the protracted timelines involved in developing novel drugs, underscores the pressing need to explore alternative therapeutic avenues. Among these, drug repurposing emerges as a particularly promising and expeditious solution, providing cost-effective solutions and safety benefits. In the fight against life-threatening resistant fungal infections, the idea of repurposing existing medications has encouraged research into both established and new compounds as a last-resort therapy. This chapter seeks to provide a comprehensive overview of contemporary antifungal drugs, as well as their key resistance mechanisms. Additionally, it seeks to provide insight into the antimicrobial properties of non-traditional drugs, thereby offering a holistic perspective on the evolving landscape of antifungal therapeutics.
Collapse
Affiliation(s)
- Anshu Mathuria
- Department of Biochemistry, Sri Venkateswara College, University of Delhi, New Delhi, India
| | - Namra Ali
- Department of Microbiology, Gargi College, University of Delhi, New Delhi, India
| | - Naina Kataria
- Department of Biochemistry, Sri Venkateswara College, University of Delhi, New Delhi, India
| | - Indra Mani
- Department of Microbiology, Gargi College, University of Delhi, New Delhi, India.
| |
Collapse
|
6
|
Niu X, Al-Hatmi AMS, Vitale RG, Lackner M, Ahmed SA, Verweij PE, Kang Y, de Hoog S. Evolutionary trends in antifungal resistance: a meta-analysis. Microbiol Spectr 2024; 12:e0212723. [PMID: 38445857 PMCID: PMC10986544 DOI: 10.1128/spectrum.02127-23] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 02/06/2024] [Indexed: 03/07/2024] Open
Abstract
The present paper includes a meta-analysis of literature data on 318 species of fungi belonging to 34 orders in their response to 8 antifungal agents (amphotericin B, caspofungin, fluconazole, itraconazole, ketoconazole, posaconazole, terbinafine, and voriconazole). Main trends of MIC results at the ordinal level were visualized. European Committee on Antimicrobial Susceptibility Testing and Clinical & Laboratory Standards Institute (CLSI) clinical breakpoints were used as the staff gauge to evaluate MIC values ranging from resistance to susceptibility, which were subsequently compared with a phylogenetic tree of the fungal kingdom. Several orders (Hypocreales, Microascales, and Mucorales) invariably showed resistance. Also the basidiomycetous orders Agaricales, Polyporales, Sporidiales, Tremellales, and Trichosporonales showed relatively high degrees of azole multi-resistance, while elsewhere in the fungal kingdom, including orders with numerous pathogenic and opportunistic species, that is, Onygenales, Chaetothyiales, Sordariales, and Malasseziales, in general were susceptible to azoles. In most cases, resistance vs susceptibility was consistently associated with phylogenetic distance, members of the same order showing similar behavior. IMPORTANCE A kingdom-wide the largest set of published wild-type antifungal data comparison were analyzed. Trends in resistance in taxonomic groups (monophyletic clades) can be compared with the phylogeny of the fungal kingdom, eventual relationships between fungus-drug interaction and evolution can be described.
Collapse
Affiliation(s)
- Xueke Niu
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education of Guizhou & Key Laboratory of Microbiology and Parasitology of Education Department of Guizhou, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- Center of Expertise in Mycology of Radboud University Medical Center/Canisius Wilhelmina Hospital, Nijmegen, The Netherlands
| | - Abdullah M. S. Al-Hatmi
- Center of Expertise in Mycology of Radboud University Medical Center/Canisius Wilhelmina Hospital, Nijmegen, The Netherlands
- Natural & Medical Science Research Center, University of Nizwa, Nizwa, Oman
| | - Roxana G. Vitale
- Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Buenos Aires, Argentina
- Unidad de Parasitología, Sector Micología, Hospital J.M. Ramos Mejía, Buenos Aires, Argentina
| | - Michaela Lackner
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Sarah A. Ahmed
- Center of Expertise in Mycology of Radboud University Medical Center/Canisius Wilhelmina Hospital, Nijmegen, The Netherlands
| | - Paul E. Verweij
- Center of Expertise in Mycology of Radboud University Medical Center/Canisius Wilhelmina Hospital, Nijmegen, The Netherlands
| | - Yingqian Kang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education of Guizhou & Key Laboratory of Microbiology and Parasitology of Education Department of Guizhou, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
| | - Sybren de Hoog
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education of Guizhou & Key Laboratory of Microbiology and Parasitology of Education Department of Guizhou, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- Center of Expertise in Mycology of Radboud University Medical Center/Canisius Wilhelmina Hospital, Nijmegen, The Netherlands
| |
Collapse
|
7
|
Chen Y, Gao Y, Li Y, Yin J. Anti-Biofilm Activity of Assamsaponin A, Theasaponin E1, and Theasaponin E2 against Candida albicans. Int J Mol Sci 2024; 25:3599. [PMID: 38612411 PMCID: PMC11011434 DOI: 10.3390/ijms25073599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/14/2024] [Accepted: 03/20/2024] [Indexed: 04/14/2024] Open
Abstract
Biofilm formation plays a crucial role in the pathogenesis of Candida albicans and is significantly associated with resistance to antifungal agents. Tea seed saponins, a class of non-ionic triterpenes, have been proven to have fungicidal effects on planktonic C. albicans. However, their anti-biofilm activity and mechanism of action against C. albicans remain unclear. In this study, the effects of three Camellia sinensis seed saponin monomers, namely, theasaponin E1 (TE1), theasaponin E2 (TE2), and assamsaponin A (ASA), on the metabolism, biofilm development, and expression of the virulence genes of C. albicans were evaluated. The results of the XTT reduction assay and crystal violet (CV) staining assay demonstrated that tea seed saponin monomers concentration-dependently suppressed the adhesion and biofilm formation of C. albicans and were able to eradicate mature biofilms. The compounds were in the following order in terms of their inhibitory effects: ASA > TE1 > TE2. The mechanisms were associated with reductions in multiple crucial virulence factors, including cell surface hydrophobicity (CSH), adhesion ability, hyphal morphology conversion, and phospholipase activity. It was further demonstrated through qRT-PCR analysis that the anti-biofilm activity of ASA and TE1 against C. albicans was attributed to the inhibition of RAS1 activation, which consequently suppressed the cAMP-PKA and MAPK signaling pathways. Conversely, TE2 appeared to regulate the morphological turnover and hyphal growth of C. albicans via a pathway that was independent of RAS1. These findings suggest that tea seed saponin monomers are promising innovative agents against C. albicans.
Collapse
Affiliation(s)
- Yuhong Chen
- Key Laboratory of Tea Biology and Resources Utilization, Tea Research Institute, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, 9 South Meiling Road, Hangzhou 310008, China; (Y.C.); (Y.L.)
- Tea Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Ying Gao
- Key Laboratory of Tea Biology and Resources Utilization, Tea Research Institute, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, 9 South Meiling Road, Hangzhou 310008, China; (Y.C.); (Y.L.)
| | - Yifan Li
- Key Laboratory of Tea Biology and Resources Utilization, Tea Research Institute, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, 9 South Meiling Road, Hangzhou 310008, China; (Y.C.); (Y.L.)
| | - Junfeng Yin
- Key Laboratory of Tea Biology and Resources Utilization, Tea Research Institute, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, 9 South Meiling Road, Hangzhou 310008, China; (Y.C.); (Y.L.)
| |
Collapse
|
8
|
Bive BZ, Sacheli R, Mudogo CN, Zakayi PK, Bontems S, Lelo GM, Hayette MP. Correlation of antifungal susceptibility and sequence types within Cryptococcus neoformans VNI from HIV patients, and ERG11 gene polymorphism. J Mycol Med 2023; 33:101428. [PMID: 37651769 DOI: 10.1016/j.mycmed.2023.101428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/21/2023] [Accepted: 08/21/2023] [Indexed: 09/02/2023]
Abstract
INTRODUCTION Here we tested the correlation between minimum inhibitory concentrations (MICs) of major antifungal agents and sequence types (STs) within Cryptococcus neoformans VNI isolates, and explored the ERG11 gene of included strains. MATERIALS AND METHODS We analysed 23 C. neoformans strains categorised into two groups according to the distribution of the ST profile in Kinshasa clinics (Democratic Republic of Congo): major ST [ST93 (n = 15)], and less common STs [ST659 (n = 2), ST5 (n = 2), ST4 (n = 1), ST 53 (n = 1), ST31 (n = 1), and ST69 (n = 1)]. The MICs of the major antifungal agents [amphotericin B (AMB), 5-fluorocytosine (5FC) and fluconazole (FCZ)] were determined following EUCAST guidelines. ERG11 gene sequences were extracted from whole genome sequence of the isolates and compared with the wild-type gene sequence of the C. neoformans VNI. RESULTS Although major ST isolates appeared to have lower median MICs for AMB and 5FU than less common ST isolates (0.50 vs. 0.75 mg/L for AMB, 2 vs. 4 mg/L for 5FU, respectively), FCZ susceptibility was similar in both groups (4 mg/L) (p-value >0.05). The susceptibility profile of C. neoformans strains separately considered did not significantly affect the patients' clinical outcomes (p-value >0.05). Furthermore, two structural modalities of the ERG11 gene were observed: (1) that of the reference gene, and (2) that containing two exonic silent point substitutions, and one intronic point substitution located in a sequence potentially involved in pre-mRNA splicing (c.337-22C > T); with no association with the MICs of the isolates (p-value >0.05). CONCLUSIONS The lack of association/correlation found in this study calls for further investigations to better understand the mechanisms of C. neoformans resistance to antifungal agents.
Collapse
Affiliation(s)
- Bive Zono Bive
- Molecular Biology Service, Department of Basic Sciences, Faculty of Medicine, University of Kinshasa, Kinshasa, Democratic Republic of the Congo; Department of Clinical Microbiology, National Reference Center for Mycosis, Center for Interdisciplinary Research on Medicines, University of Liege, Liege, Belgium.
| | - Rosalie Sacheli
- Department of Clinical Microbiology, National Reference Center for Mycosis, Center for Interdisciplinary Research on Medicines, University of Liege, Liege, Belgium
| | - Celestin Nzanzu Mudogo
- Molecular Biology Service, Department of Basic Sciences, Faculty of Medicine, University of Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - Pius Kabututu Zakayi
- Molecular Biology Service, Department of Basic Sciences, Faculty of Medicine, University of Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - Sébastien Bontems
- Department of Clinical Microbiology, Laboratory of Virology and Immunology, Center for Interdisciplinary Research on Medicines, University of Liege, Liege, Belgium
| | - Georges Mvumbi Lelo
- Molecular Biology Service, Department of Basic Sciences, Faculty of Medicine, University of Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - Marie-Pierre Hayette
- Department of Clinical Microbiology, National Reference Center for Mycosis, Center for Interdisciplinary Research on Medicines, University of Liege, Liege, Belgium
| |
Collapse
|
9
|
Durand R, Jalbert-Ross J, Fijarczyk A, Dubé AK, Landry CR. Cross-feeding affects the target of resistance evolution to an antifungal drug. PLoS Genet 2023; 19:e1011002. [PMID: 37856537 PMCID: PMC10617708 DOI: 10.1371/journal.pgen.1011002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 10/31/2023] [Accepted: 10/02/2023] [Indexed: 10/21/2023] Open
Abstract
Pathogenic fungi are a cause of growing concern. Developing an efficient and safe antifungal is challenging because of the similar biological properties of fungal and host cells. Consequently, there is an urgent need to better understand the mechanisms underlying antifungal resistance to prolong the efficacy of current molecules. A major step in this direction would be to be able to predict or even prevent the acquisition of resistance. We leverage the power of experimental evolution to quantify the diversity of paths to resistance to the antifungal 5-fluorocytosine (5-FC), commercially known as flucytosine. We generated hundreds of independent 5-FC resistant mutants derived from two genetic backgrounds from wild isolates of Saccharomyces cerevisiae. Through automated pin-spotting, whole-genome and amplicon sequencing, we identified the most likely causes of resistance for most strains. Approximately a third of all resistant mutants evolved resistance through a pleiotropic drug response, a potentially novel mechanism in response to 5-FC, marked by cross-resistance to fluconazole. These cross-resistant mutants are characterized by a loss of respiration and a strong tradeoff in drug-free media. For the majority of the remaining two thirds, resistance was acquired through loss-of-function mutations in FUR1, which encodes an important enzyme in the metabolism of 5-FC. We describe conditions in which mutations affecting this particular step of the metabolic pathway are favored over known resistance mutations affecting a step upstream, such as the well-known target cytosine deaminase encoded by FCY1. This observation suggests that ecological interactions may dictate the identity of resistance hotspots.
Collapse
Affiliation(s)
- Romain Durand
- Département de Biochimie, de Microbiologie et de Bio-informatique, Faculté des Sciences et de Génie, Université Laval, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Canada
- PROTEO, Le regroupement québécois de recherche sur la fonction, l’ingénierie et les applications des protéines, Université Laval, Québec, Canada
- Centre de Recherche sur les Données Massives (CRDM), Université Laval, Québec, Canada
- Département de Biologie, Faculté des Sciences et de Génie, Université Laval, Québec, Canada
| | - Jordan Jalbert-Ross
- Département de Biochimie, de Microbiologie et de Bio-informatique, Faculté des Sciences et de Génie, Université Laval, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Canada
- PROTEO, Le regroupement québécois de recherche sur la fonction, l’ingénierie et les applications des protéines, Université Laval, Québec, Canada
- Centre de Recherche sur les Données Massives (CRDM), Université Laval, Québec, Canada
| | - Anna Fijarczyk
- Département de Biochimie, de Microbiologie et de Bio-informatique, Faculté des Sciences et de Génie, Université Laval, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Canada
- PROTEO, Le regroupement québécois de recherche sur la fonction, l’ingénierie et les applications des protéines, Université Laval, Québec, Canada
- Centre de Recherche sur les Données Massives (CRDM), Université Laval, Québec, Canada
- Département de Biologie, Faculté des Sciences et de Génie, Université Laval, Québec, Canada
| | - Alexandre K. Dubé
- Département de Biochimie, de Microbiologie et de Bio-informatique, Faculté des Sciences et de Génie, Université Laval, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Canada
- PROTEO, Le regroupement québécois de recherche sur la fonction, l’ingénierie et les applications des protéines, Université Laval, Québec, Canada
- Centre de Recherche sur les Données Massives (CRDM), Université Laval, Québec, Canada
- Département de Biologie, Faculté des Sciences et de Génie, Université Laval, Québec, Canada
| | - Christian R. Landry
- Département de Biochimie, de Microbiologie et de Bio-informatique, Faculté des Sciences et de Génie, Université Laval, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Canada
- PROTEO, Le regroupement québécois de recherche sur la fonction, l’ingénierie et les applications des protéines, Université Laval, Québec, Canada
- Centre de Recherche sur les Données Massives (CRDM), Université Laval, Québec, Canada
- Département de Biologie, Faculté des Sciences et de Génie, Université Laval, Québec, Canada
| |
Collapse
|
10
|
Shahmiri M, Bleackley MR, Dawson CS, van der Weerden NL, Anderson MA, Mechler A. Membrane binding properties of plant defensins. PHYTOCHEMISTRY 2023; 209:113618. [PMID: 36828099 DOI: 10.1016/j.phytochem.2023.113618] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 02/18/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
The membrane interaction characteristics of five antifungal plant defensin peptides: NaD1, and the related HXP4 and L5, as well as NaD2 and the related ZmD32 were studied. These peptides were chosen to cover a broad range of cationic charges with little structural variations, allowing for assessment of the role of charge in their membrane interactions. Membrane permeabilizing activity against C. albicans was confirmed and quantified for benchmarking purposes. Viscoelastic characteristics of the membrane interactions were studied in typical neutral and charged model membranes using quartz crystal microbalance with dissipation (QCM-D. Frequency-dissipation fingerprinting analysis of the QCM-D results revealed that all of the peptides were able to bind to all studied model membranes albeit with slightly different viscoelastic character for each membrane type. However, characteristic disruption patterns were not observed suggesting that the membrane disrupting activity of these defensins is mostly specific to fungal membranes, and that increasing the peptide charge does not enhance their action. The results also show that the presence of specific sterols has a profound effect on the ability of the peptides to disrupt the membrane.
Collapse
Affiliation(s)
- Mahdi Shahmiri
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Vic, 3086, Australia; Department of Medical Nanotechnology, School of Advanced Technologies in Medicine (SATiM), Tehran University of Medical Sciences, Tehran, Iran
| | - Mark R Bleackley
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Vic, 3086, Australia
| | - Charlotte S Dawson
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Vic, 3086, Australia
| | - Nicole L van der Weerden
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Vic, 3086, Australia
| | - Marilyn A Anderson
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Vic, 3086, Australia
| | - Adam Mechler
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Vic, 3086, Australia.
| |
Collapse
|
11
|
Vanreppelen G, Wuyts J, Van Dijck P, Vandecruys P. Sources of Antifungal Drugs. J Fungi (Basel) 2023; 9:jof9020171. [PMID: 36836286 PMCID: PMC9965926 DOI: 10.3390/jof9020171] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/22/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
Due to their eukaryotic heritage, the differences between a fungal pathogen's molecular makeup and its human host are small. Therefore, the discovery and subsequent development of novel antifungal drugs are extremely challenging. Nevertheless, since the 1940s, researchers have successfully uncovered potent candidates from natural or synthetic sources. Analogs and novel formulations of these drugs enhanced the pharmacological parameters and improved overall drug efficiency. These compounds ultimately became the founding members of novel drug classes and were successfully applied in clinical settings, offering valuable and efficient treatment of mycosis for decades. Currently, only five different antifungal drug classes exist, all characterized by a unique mode of action; these are polyenes, pyrimidine analogs, azoles, allylamines, and echinocandins. The latter, being the latest addition to the antifungal armamentarium, was introduced over two decades ago. As a result of this limited arsenal, antifungal resistance development has exponentially increased and, with it, a growing healthcare crisis. In this review, we discuss the original sources of antifungal compounds, either natural or synthetic. Additionally, we summarize the existing drug classes, potential novel candidates in the clinical pipeline, and emerging non-traditional treatment options.
Collapse
|
12
|
The Pga59 cell wall protein is an amyloid forming protein involved in adhesion and biofilm establishment in the pathogenic yeast Candida albicans. NPJ Biofilms Microbiomes 2023; 9:6. [PMID: 36697414 PMCID: PMC9877000 DOI: 10.1038/s41522-023-00371-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 01/09/2023] [Indexed: 01/26/2023] Open
Abstract
The human commensal fungus Candida albicans can attach to epithelia or indwelling medical devices and form biofilms, that are highly tolerant to antifungal drugs and can evade the immune response. The cell surface protein Pga59 has been shown to influence adhesion and biofilm formation. Here, we present evidence that Pga59 displays amyloid properties. Using electron microscopy, staining with an amyloid fibre-specific dye and X-ray diffraction experiments, we showed that the predicted amyloid-forming region of Pga59 is sufficient to build up an amyloid fibre in vitro and that recombinant Pga59 can also adopt a cross-β amyloid fibre architecture. Further, mutations impairing Pga59 amyloid assembly led to diminished adhesion to substrates and reduced biofilm production. Immunogold labelling on amyloid structures extracted from C. albicans revealed that Pga59 is used by the fungal cell to assemble amyloids within the cell wall in response to adhesion. Altogether, our results suggest that Pga59 amyloid properties are used by the fungal cell to mediate cell-substrate interactions and biofilm formation.
Collapse
|
13
|
Andrade-Pinheiro JC, Sobral de Souza CE, Ribeiro DA, Silva ADA, da Silva VB, dos Santos ATL, Juno Alencar Fonseca V, de Macêdo DG, da Cruz RP, Almeida-Bezerra JW, Machado AJT, de Freitas TS, de Brito ES, Ribeiro PRV, da Costa JGM, Coutinho HDM, Kowalska G, Rowiński R, Kowalski R, Morais-Braga MFB. LC-MS Analysis and Antifungal Activity of Turnera subulata Sm. PLANTS (BASEL, SWITZERLAND) 2023; 12:415. [PMID: 36679128 PMCID: PMC9862381 DOI: 10.3390/plants12020415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/09/2023] [Accepted: 01/13/2023] [Indexed: 06/17/2023]
Abstract
Fungi of the Candida genus are responsible for invasive candidiasis, which affects people all over the world and has high mortality rates. This is due to their virulence factors, which give them great resistance and pathogenicity. In addition, the emergence of multidrug-resistant strains makes it difficult to treat these infections. In this way, natural products have emerged as an alternative to standard drugs, where plants known for their medicinal properties such as Turnera subulata become attractive to research. The present work aimed to analyze the ethanol extract of Turnera subulata leaves against standard strains of Candida albicans, Candida krusei and Candida tropicalis using broth microdilution techniques. The identification of the compounds in T. subulata leaves by LC-MS revealed the presence of a wide variety of substances such as carboxylic acids and terpenes, with flavonoids and fatty acids being more evident. The antifungal assays showed that the extract was not able to inhibit the growth of the tested strains at concentrations with a clinical relevance. However, at higher concentrations, it was able to inhibit the fungal dimorphism of C. albicans and C. tropicalis. It is possible that the T. subulata extract has potential as an inhibitor of fungal virulence factors without affecting the cell viability. Further research should be carried out in order to assess its inhibitory potential for other fungal virulence factors.
Collapse
Affiliation(s)
- Jacqueline Cosmo Andrade-Pinheiro
- Pimenta Campus, Regional University of Cariri (URCA), Av. Cel Antônio Luis, 1161, Pimenta, Crato 63105-010, Brazil
- Laboratório de Bioensaios, Federal University of Cariri (UFCA), R. Olegário Emidio de Araujo, s/n, Centro, Brejo Santo 63260-000, Brazil
| | | | - Daiany Alves Ribeiro
- Pimenta Campus, Regional University of Cariri (URCA), Av. Cel Antônio Luis, 1161, Pimenta, Crato 63105-010, Brazil
| | - Andressa de Alencar Silva
- Pimenta Campus, Regional University of Cariri (URCA), Av. Cel Antônio Luis, 1161, Pimenta, Crato 63105-010, Brazil
| | - Viviane Bezerra da Silva
- Department of Botany, Federal University of Pernambuco (UFPE), Av. Prof. Moraes Rego, 1235, Recife 50670-901, Brazil
| | | | - Victor Juno Alencar Fonseca
- Pimenta Campus, Regional University of Cariri (URCA), Av. Cel Antônio Luis, 1161, Pimenta, Crato 63105-010, Brazil
| | - Delmacia Gonçalves de Macêdo
- Pimenta Campus, Regional University of Cariri (URCA), Av. Cel Antônio Luis, 1161, Pimenta, Crato 63105-010, Brazil
| | - Rafael Pereira da Cruz
- Pimenta Campus, Regional University of Cariri (URCA), Av. Cel Antônio Luis, 1161, Pimenta, Crato 63105-010, Brazil
| | | | | | - Thiago Sampaio de Freitas
- Pimenta Campus, Regional University of Cariri (URCA), Av. Cel Antônio Luis, 1161, Pimenta, Crato 63105-010, Brazil
| | - Edy Sousa de Brito
- Embrapa Agroindústria Tropical, Tropical R. Pernambuco, 2270-Pici, Fortaleza 60511-110, Brazil
| | | | | | | | - Grażyna Kowalska
- Department of Tourism and Recreation, University of Life Sciences in Lublin, 15 Akademicka Str., 20-950 Lublin, Poland
| | - Rafał Rowiński
- Department of Tourism and Recreation, University of Life Sciences in Lublin, 15 Akademicka Str., 20-950 Lublin, Poland
| | - Radosław Kowalski
- Department of Analysis and Food Quality Assessment, University of Life Sciences in Lublin, 8 Skromna Str., 20-704 Lublin, Poland
| | | |
Collapse
|
14
|
Griffiths JS, Orr SJ, Morton CO, Loeffler J, White PL. The Use of Host Biomarkers for the Management of Invasive Fungal Disease. J Fungi (Basel) 2022; 8:jof8121307. [PMID: 36547640 PMCID: PMC9784708 DOI: 10.3390/jof8121307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 12/03/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Invasive fungal disease (IFD) causes severe morbidity and mortality, and the number of IFD cases is increasing. Exposure to opportunistic fungal pathogens is inevitable, but not all patients with underlying diseases increasing susceptibility to IFD, develop it. IFD diagnosis currently uses fungal biomarkers and clinical risk/presentation to stratify high-risk patients and classifies them into possible, probable, and proven IFD. However, the fungal species responsible for IFD are highly diverse and present numerous diagnostic challenges, which culminates in the empirical anti-fungal treatment of patients at risk of IFD. Recent studies have focussed on host-derived biomarkers that may mediate IFD risk and can be used to predict, and even identify IFD. The identification of novel host genetic variants, host gene expression changes, and host protein expression (cytokines and chemokines) associated with increased risk of IFD has enhanced our understanding of why only some patients at risk of IFD actually develop disease. Furthermore, these host biomarkers when incorporated into predictive models alongside conventional diagnostic techniques enhance predictive and diagnostic results. Once validated in larger studies, host biomarkers associated with IFD may optimize the clinical management of populations at risk of IFD. This review will summarise the latest developments in the identification of host biomarkers for IFD, their use in predictive modelling and their potential application/usefulness for informing clinical decisions.
Collapse
Affiliation(s)
- James S. Griffiths
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King’s College London, London WC2R 2LS, UK
| | - Selinda J. Orr
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Science, Queen’s University Belfast, Belfast BT9 7BL, UK
| | | | - Juergen Loeffler
- Department of Internal Medicine II, University Hospital of Würzburg, 97070 Würzburg, Germany
| | - P. Lewis White
- Public Health Wales, Microbiology Cardiff, University Hospital of Wales, Heath Park, Cardiff CF14 4XW, UK
- Correspondence:
| |
Collapse
|
15
|
Miguel GA, Carlsen S, Arneborg N, Saerens SM, Laulund S, Knudsen GM. Non-Saccharomyces yeasts for beer production: Insights into safety aspects and considerations. Int J Food Microbiol 2022; 383:109951. [DOI: 10.1016/j.ijfoodmicro.2022.109951] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 09/14/2022] [Accepted: 09/22/2022] [Indexed: 11/05/2022]
|
16
|
Kaur H, Krishnamoorthi S, Dhaliwal N, Biswal M, Singh S, Muthu V, Rudramurthy SM, Agarwal R, Ghoshal S, Singh S, Malhotra P, Jain S, Samujh R, Ghosh A, Chakrabarti A. Antifungal prescription practices and consumption in a tertiary care hospital of a developing country. Mycoses 2022; 65:935-945. [PMID: 35934811 DOI: 10.1111/myc.13514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 07/12/2022] [Accepted: 08/01/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Antifungal stewardship is a less explored component of antimicrobial stewardship programmes, especially in developing countries. OBJECTIVE We aimed to determine antifungal prescription practices in a tertiary centre of a developing country to identify the challenges for antifungal stewardship programmes. METHODS Four single-day point prevalent surveys were performed in inpatient units and data were collected from medical records. Antifungal use was recorded in terms of consumption, therapeutic strategies and appropriateness. RESULTS We found a 2.42%-point prevalence of antifungal prescriptions. Antifungal use was higher in children than adults (4.1% vs. 2.03%), medical than surgical units (3.7% vs. 1.24%) and ICUs than general wards (5.8% vs. 1.9%). The highest antifungal use was observed in the haematology-oncology units (29.3%) followed by emergency (16.2%) and gastroenterology units (11.6%). Among 215 prescriptions, amphotericin B was the most commonly prescribed (50.2%) followed by fluconazole (31.6%). The targeted antifungal therapy was practised more commonly (31.5%) than empiric (29.1%), pre-emptive (22.6%) and prophylactic (16.8%) therapy. Amphotericin B was commonly used for pre-emptive (p = .001) and targeted (p = .049) therapy, while fluconazole (p = .001) and voriconazole (p = .011) for prophylaxis. The prescriptions were inappropriate in 25.1% due to the wrong choice of antifungal (44.4%), indication (27.7%) and dosage (24%). The overall mean antifungal consumption was 2.71 DDD/1000 PD and 8.96 DOT/1000 PD. CONCLUSIONS We report here the low prevalence of antifungal use at a tertiary care centre in a developing country. Though training for antifungal use would be important for antifungal stewardship, the challenge would remain with the affordability of antifungals.
Collapse
Affiliation(s)
- Harsimran Kaur
- Department of Medical Microbiology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | | | - Navneet Dhaliwal
- Department of Hospital Administration, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Manisha Biswal
- Department of Medical Microbiology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Shreya Singh
- Department of Medical Microbiology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Valliappan Muthu
- Department of Pulmonary Medicine, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Shivaprakash M Rudramurthy
- Department of Medical Microbiology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Ritesh Agarwal
- Department of Pulmonary Medicine, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Sushmita Ghoshal
- Department of Radiotherapy and Oncology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Surjit Singh
- Department of Paediatric Medicine, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Pankaj Malhotra
- Department of Clinical Hematology & Medical Oncology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Sanjay Jain
- Department of Internal Medicine, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Ram Samujh
- Department of Paediatric Surgery, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Anup Ghosh
- Department of Medical Microbiology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | | |
Collapse
|
17
|
Yang M, Lai W, Li J, Ye L. Design, Synthesis and Antifungal Activity of Phloroglucinol Derivatives. Pharm Chem J 2022. [DOI: 10.1007/s11094-022-02651-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
18
|
Yakobov N, Mahmoudi N, Grob G, Yokokawa D, Saga Y, Kushiro T, Worrell D, Roy H, Schaller H, Senger B, Huck L, Riera Gascon G, Becker HD, Fischer F. RNA-dependent synthesis of ergosteryl-3β-O-glycine in Ascomycota expands the diversity of steryl-amino acids. J Biol Chem 2022; 298:101657. [PMID: 35131263 PMCID: PMC8913301 DOI: 10.1016/j.jbc.2022.101657] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 01/13/2022] [Accepted: 01/16/2022] [Indexed: 12/11/2022] Open
|
19
|
Yu Z, Wu X, He J. Study on the antifungal activity and mechanism of tea saponin from Camellia oleifera cake. Eur Food Res Technol 2022. [DOI: 10.1007/s00217-021-03929-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
20
|
Biosensors for Fungal Detection. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2021. [DOI: 10.22207/jpam.15.4.02] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Due to the serious threat of invasive fungal infections, there is an emergent need for improved a sensitive and more accurate diagnostic tests for detection of systemic pathogenic fungi and plant health. Traditional fungal diagnosis can only be achieved at later growing phases. The complex and difficult immunodiagnostic is also widely employed. Enzyme-based immunoassays which lead to cross-interaction with different fungi still also obeyed. A polymerase chain reactions (PCRs)- based molecular diagnosis are does not enable precise identification of fungal pathogens, or the ability to test isolates for drug sensitivity. In the future, biosensing technologies and nanotechnological tools, will improve diagnosis of pathogenic fungi through a specific and sensitive pathogen detection. This report systematically reviews the most prominent biosensor trends for fungi detection.
Collapse
|
21
|
Bastos RW, Rossato L, Goldman GH, Santos DA. Fungicide effects on human fungal pathogens: Cross-resistance to medical drugs and beyond. PLoS Pathog 2021; 17:e1010073. [PMID: 34882756 PMCID: PMC8659312 DOI: 10.1371/journal.ppat.1010073] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Fungal infections are underestimated threats that affect over 1 billion people, and Candida spp., Cryptococcus spp., and Aspergillus spp. are the 3 most fatal fungi. The treatment of these infections is performed with a limited arsenal of antifungal drugs, and the class of the azoles is the most used. Although these drugs present low toxicity for the host, there is an emergence of therapeutic failure due to azole resistance. Drug resistance normally develops in patients undergoing azole long-term therapy, when the fungus in contact with the drug can adapt and survive. Conversely, several reports have been showing that resistant isolates are also recovered from patients with no prior history of azole therapy, suggesting that other routes might be driving antifungal resistance. Intriguingly, antifungal resistance also happens in the environment since resistant strains have been isolated from plant materials, soil, decomposing matter, and compost, where important human fungal pathogens live. As the resistant fungi can be isolated from the environment, in places where agrochemicals are extensively used in agriculture and wood industry, the hypothesis that fungicides could be driving and selecting resistance mechanism in nature, before the contact of the fungus with the host, has gained more attention. The effects of fungicide exposure on fungal resistance have been extensively studied in Aspergillus fumigatus and less investigated in other human fungal pathogens. Here, we discuss not only classic and recent studies showing that environmental azole exposure selects cross-resistance to medical azoles in A. fumigatus, but also how this phenomenon affects Candida and Cryptococcus, other 2 important human fungal pathogens found in the environment. We also examine data showing that fungicide exposure can select relevant changes in the morphophysiology and virulence of those pathogens, suggesting that its effect goes beyond the cross-resistance.
Collapse
Affiliation(s)
- Rafael W. Bastos
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto-SP, Brazil
| | - Luana Rossato
- Federal University of Grande Dourados, Dourados-MS, Brazil
| | - Gustavo H. Goldman
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto-SP, Brazil
| | - Daniel A. Santos
- Laboratory of Mycology, Federal University of Minas Gerais, Belo Horizonte-MG, Brazil
| |
Collapse
|
22
|
Fatahi Dehpahni M, Chehri K, Azadbakht M. Effect of Silver Nanoparticles and L-Carnitine Supplement on Mixed Vaginitis Caused by Candida albicans/ Staphylococcus aureus in Mouse Models: An Experimental Study. Curr Microbiol 2021; 78:3945-3956. [PMID: 34542662 DOI: 10.1007/s00284-021-02652-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 09/02/2021] [Indexed: 12/01/2022]
Abstract
The evolution of antimicrobial-resistant pathogens is a global health and development threat. Nanomedicine is rapidly becoming the main driving force behind ongoing changes in antimicrobial studies. Among nanoparticles, silver (AgNPs) have attracted attention due to their versatile properties. The study aimed to investigate the effects of AgNPs and L-carnitine (LC) on mixed Candida albicans and Staphylococcus aureus in the mice vaginitis model. Study of antimicrobial activity of AgNPs evaluated by Minimum Inhibitory Concentration (MIC) and Minimum Biocidal Concentration (MBC) assays. AgNPs inhibited biofilm formation of microbial strains, which was tested by using crystal violet staining. In the current study, we evaluated the effects of AgNPs and LC in NMRI mice infected intravaginally with C. albicans/ S. aureus for two weeks. The proportion of mice in each stage of the estrous cycle (proestrus, estrus, metestrus, and diestrus) was examined. Histological properties were assessed by hematoxylin/ eosin (H&E) staining of formalin-fixed, paraffin-embedded vaginal tissue sections. Based on the results, MICs of AgNPs against S. aureus, C. albicans, and their combination were 252.3, 124.8, and 501.8 ppm, and their minimum biofilm inhibitory concentration (MBIC) was 500, 250, and 1000 ppm, respectively. The estrous cycle in the treated group was similar to the control. Vaginal histology and cytology showed that LC can improve tissue damages caused by vaginitis and AgNPs. This study demonstrates the promising use of AgNPs as antimicrobial agents and the combination of AgNPs/ LC could be a great future alternative in the control of vaginitis.
Collapse
Affiliation(s)
| | - Khosrow Chehri
- Department of Biology, Faculty of Sciences, Razi University, Kermanshah, Iran.
| | - Mehri Azadbakht
- Department of Biology, Faculty of Sciences, Razi University, Kermanshah, Iran
| |
Collapse
|
23
|
Impact of antifungal stewardship interventions on the susceptibility of colonized Candida species in pediatric patients with malignancy. Sci Rep 2021; 11:14099. [PMID: 34238976 PMCID: PMC8266849 DOI: 10.1038/s41598-021-93421-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 06/18/2021] [Indexed: 12/28/2022] Open
Abstract
There is a worldwide concern regarding the antimicrobial resistance and the inappropriate use of antifungal agents, which had led to an ever-increasing antifungal resistance. This study aimed to identify the antifungal susceptibility of colonized Candida species isolated from pediatric patients with cancer and evaluate the clinical impact of antifungal stewardship (AFS) interventions on the antifungal susceptibility of colonized Candida species. Candida species colonization was evaluated among hospitalized children with cancer in a tertiary teaching hospital, Shiraz 2017–2018. Samples were collected from the mouth, nose, urine, and stool of the patients admitted to our center and cultured on sabouraud dextrose agar. The isolated yeasts identified by polymerase chain reaction–restriction fragment length polymorphisms (PCR–RFLP). DNA Extracted and PCR amplification was performed using the ITS1 and ITS4 primer pairs and Msp I enzyme. The broth microdilution method was used to determine the minimum inhibitory concentrations (MICs) for amphotericin B, caspofungin, and azoles. The prevalence of Candida albicans in the present study was significantly higher than other Candida species. Candida albicans species were completely susceptible to the azoles. The susceptibility rate of C. albicans to amphotericin B and caspofungin was 93.1% and 97.1%, respectively. The fluconazole MIC values of Candida albicans decreased significantly during the post-AFS period (P < 0.001; mean difference: 72.3; 95% CI of the difference: 47.36–98.62). We found that 52.5% (53/117) of the isolated C. albicans were azole-resistant before AFS implementation, while only 1.5% (2/102) of the isolates were resistant after implementation of the AFS program (P < 0.001). C. albicans fluconazole and caspofungin resistant rate also decreased significantly (P < 0.001) after implementation of the AFS program [26 (32.9%) versus 0 (0.0%) and 11 (10.9%) versus 1 (0.9%), respectively]. Besides, fluconazole use (p < 0.05) and fluconazole expenditure reduced significantly (about one thousand US$ per year) after the AFS program. Our results confirm the positive effect of optimized antifungal usage and bedside intervention on the susceptibility of Candida species after the implementation of the AFS program. C. albicans and C. glabrata exhibited a significant increase in susceptibility after the execution of the AFS program.
Collapse
|
24
|
Drug Repurposing in Medical Mycology: Identification of Compounds as Potential Antifungals to Overcome the Emergence of Multidrug-Resistant Fungi. Pharmaceuticals (Basel) 2021; 14:ph14050488. [PMID: 34065420 PMCID: PMC8161392 DOI: 10.3390/ph14050488] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/13/2021] [Accepted: 05/18/2021] [Indexed: 02/07/2023] Open
Abstract
Immunodepression, whether due to HIV infection or organ transplantation, has increased human vulnerability to fungal infections. These conditions have created an optimal environment for the emergence of opportunistic infections, which is concomitant to the increase in antifungal resistance. The use of conventional antifungal drugs as azoles and polyenes can lead to clinical failure, particularly in immunocompromised individuals. Difficulties related to treating fungal infections combined with the time required to develop new drugs, require urgent consideration of other therapeutic alternatives. Drug repurposing is one of the most promising and rapid solutions that the scientific and medical community can turn to, with low costs and safety advantages. To treat life-threatening resistant fungal infections, drug repurposing has led to the consideration of well-known and potential molecules as a last-line therapy. The aim of this review is to provide a summary of current antifungal compounds and their main resistance mechanisms, following by an overview of the antifungal activity of non-traditional antimicrobial drugs. We provide their eventual mechanisms of action and the synergistic combinations that improve the activity of current antifungal treatments. Finally, we discuss drug repurposing for the main emerging multidrug resistant (MDR) fungus, including the Candida auris, Aspergillus or Cryptococcus species.
Collapse
|
25
|
Hussein HM, Ghafoor DD, Omer KM. Room temperature and surfactant free synthesis of zinc peroxide (ZnO2) nanoparticles in methanol with highly efficient antimicrobials. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
26
|
Garvey M. Bacteriophages and the One Health Approach to Combat Multidrug Resistance: Is This the Way? Antibiotics (Basel) 2020; 9:antibiotics9070414. [PMID: 32708627 PMCID: PMC7400126 DOI: 10.3390/antibiotics9070414] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/09/2020] [Accepted: 07/15/2020] [Indexed: 12/15/2022] Open
Abstract
Antimicrobial resistance necessitates action to reduce and eliminate infectious disease, ensure animal and human health, and combat emerging diseases. Species such as Acinetobacter baumanniii, vancomycin resistant Enterococcus, methicillin resistance Staphylococcus aureus, and Pseudomonas aeruginosa, as well as other WHO priority pathogens, are becoming extremely difficult to treat. In 2017, the EU adopted the “One Health” approach to combat antibiotic resistance in animal and human medicine and to prevent the transmission of zoonotic disease. As the current therapeutic agents become increasingly inadequate, there is a dire need to establish novel methods of treatment under this One Health Framework. Bacteriophages (phages), viruses infecting bacterial species, demonstrate clear antimicrobial activity against an array of resistant species, with high levels of specificity and potency. Bacteriophages play key roles in bacterial evolution and are essential components of all ecosystems, including the human microbiome. Factors such are their specificity, potency, biocompatibility, and bactericidal activity make them desirable options as therapeutics. Issues remain, however, relating to their large-scale production, formulation, stability, and bacterial resistance, limiting their implementation globally. Phages used in therapy must be virulent, purified, and well characterized before administration. Clinical studies are warranted to assess the in vivo pharmacokinetics and pharmacodynamic characteristics of phages to fully establish their therapeutic potential.
Collapse
Affiliation(s)
- Mary Garvey
- Department of Life Science, Sligo Institute of Technology, Sligo, Ireland
| |
Collapse
|
27
|
Felice MR, Giuffrè L, El Aamri L, Hafidi M, Criseo G, Romeo O, Scordino F. Looking for New Antifungal Drugs from Flavonoids: Impact of the Genetic Diversity of Candida albicans on the in-vitro Response. Curr Med Chem 2019; 26:5108-5123. [PMID: 29278204 DOI: 10.2174/0929867325666171226102700] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 09/15/2017] [Accepted: 11/06/2017] [Indexed: 01/11/2023]
Abstract
BACKGROUND In an era in which antimicrobial resistance is increasing at an alarming pace, it is very important to find new antimicrobial agents effective against pathogenic microrganisms resistant to traditional treatments. Among the notable breakthroughs in the past years of research in natural-drug discovery, there is the identification and testing of flavonoids, a group of plant-derived substances capable of promoting many beneficial effects on humans. These compounds show different biological activities such as inhibition of neuroinflammation and tumor growth as well as antimicrobial activity against many microbial pathogens. METHODS We undertook a review of protocols and standard strains used in studies reporting the inhibitory effects of flavonoids against Candida albicans by focusing our attention on genetic characterization of the strains examined. Moreover, using the C. albicans MLST-database, we performed a phylogenetic analysis showing the genetic variation occurring in this species. RESULTS Today, we have enough information to estimate genetic diversity within microbial species and recent data revealed that most of fungal pathogens show complex population structures in which not a single isolate can be designated as representative of the entire taxon. This is especially true for the highly divergent fungal pathogen C. albicans, in which the assumption that one or few "standard strains" can represent the whole species is overly unrealistic and should be laid to rest. CONCLUSION The goal of this article is to shed light on the extent of genetic variation in C. albicans and how this phenomenon can largely influence the activity of flavonoids against this species.
Collapse
Affiliation(s)
- Maria Rosa Felice
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Letterio Giuffrè
- Department of Veterinary Sciences, Division of Animal Production, University of Messina, Messina, Italy
| | - Lamya El Aamri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy.,Department of Biology, Moulay Ismail University, Faculty of Sciences, Zitoune Meknes, Morocco
| | - Majida Hafidi
- Department of Biology, Moulay Ismail University, Faculty of Sciences, Zitoune Meknes, Morocco
| | - Giuseppe Criseo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Orazio Romeo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy.,Scientific Institute for Research, Hospitalization and Health Care (IRCCS) - Centro Neurolesi "Bonino-Pulejo", Messina, Italy
| | - Fabio Scordino
- Scientific Institute for Research, Hospitalization and Health Care (IRCCS) - Centro Neurolesi "Bonino-Pulejo", Messina, Italy
| |
Collapse
|
28
|
Hamzavi SS, Amanati A, Badiee P, Kadivar MR, Jafarian H, Ghasemi F, Haghpanah S, Dehghani M, Norouzian Baghani A. Changing face of Candida colonization pattern in pediatric patients with hematological malignancy during repeated hospitalizations, results of a prospective observational study (2016-2017) in shiraz, Iran. BMC Infect Dis 2019; 19:759. [PMID: 31470800 PMCID: PMC6717378 DOI: 10.1186/s12879-019-4372-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 08/12/2019] [Indexed: 01/13/2023] Open
Abstract
Background Surveillance of current changes in the epidemiology of Invasive Fungal Diseases (IFDs) as an important component of the antifungal stewardship programs (ASP), requires careful regular monitoring, especially in high-risk settings such as oncology centers. This study aimed to examine Candida colonization status and corresponding current changes in children with malignancy during repeated admissions and also investigate the possible epidemiological shifts after the implementation of ASP. Methods In this prospective observational study, all eligible patients younger than 18 years were recruited during 2016–2017 at Amir Medical Oncology Center (AMOC) in Shiraz, Iran. Totally, 136 patients were enrolled and 482 samples were collected from different sites (oral/nasal discharges, urine and stool). Weekly regular sampling was carried out during hospitalization. Candida colonization status and epidemiological changes were monitored during repeated admissions. Samples were cultivated on Sabouraud Dextrose agar medium and identified by Polymerase Chain Reaction -Restriction Fragment Length Polymorphism (PCR-RFLP). Results Estimated Candida colonization incidence was 59.9% (82/136) in our patients. Candida colonization was found to be higher in oral cavity and rectum than that in nasal cavity. Among those long-term follow ups and repetitive hospitalizations, a significant number of patients exhibited changes in their colonization patterns (37.7%). Candida colonization did not reveal any significant relationship with age, sex, oncologic diseases and degree of neutropenia. C. albicans (72.0%) was found as the most common Candida species in colonized patients, followed by C. krusei, C. kefyr, C. glabrata and C. parapsilosis. Conclusion Given the high incidence of Candida infections in children with cancers, close monitoring of epidemiologic changes is essential for judicious management, based on local surveillance data and improvement of overall quality of care in high risk patients.
Collapse
Affiliation(s)
- Seyedeh Sedigheh Hamzavi
- Professor Alborzi Clinical Microbiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Amanati
- Professor Alborzi Clinical Microbiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran. .,Head of Infection Control Unit, Amir Medical Oncology Hospital, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Parisa Badiee
- Professor Alborzi Clinical Microbiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Rahim Kadivar
- Professor Alborzi Clinical Microbiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hadis Jafarian
- Professor Alborzi Clinical Microbiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Ghasemi
- Professor Alborzi Clinical Microbiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sezaneh Haghpanah
- Hematology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mansooreh Dehghani
- Department of Environmental Health Engineering, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abbas Norouzian Baghani
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
29
|
Li WJ, Liu JY, Shi C, Zhao Y, Meng LN, Wu F, Xiang MJ. FLO8 deletion leads to azole resistance by upregulating CDR1 and CDR2 in Candida albicans. Res Microbiol 2019; 170:272-279. [PMID: 31449848 DOI: 10.1016/j.resmic.2019.08.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 03/17/2019] [Accepted: 08/20/2019] [Indexed: 01/07/2023]
Abstract
Candida albicans has the ability to switch reversibly between budding yeast, filamentous, pseudohypha, and hyphal forms, a process in which the transcription factor Flo8 plays an important role. This ability is important for the virulence and pathogenicity of C. albicans. To determine whether Flo8 plays a role in the regulation of drug sensitivity, we constructed a FLO8 null mutant flo8/flo8 from the parental strain SN152 and a Flo8-overexpressing strain, flo8/flo8::FLO8. The susceptibility of the isolates to antifungal agents was then evaluated using the agar dilution and broth microdilution methods. Expression of drug resistance-related genes by the isolates was investigated by real-time PCR. The flo8/flo8 mutation isolates exhibited increased resistance to fluconazole, voriconazole, and itraconazole compared with the wild-type and drug sensitivity was restored by FLO8 overexpression (flo8/flo8∷FLO8). Of seven drug resistance-related genes, the FLO8 null mutation resulted in increased CDR1 and CDR2 expression (1.60-fold and 5.27-fold, respectively) compared with SN152, while FLO8 overexpression resulted in decreased CDR1 expression (0.63-fold). These results suggest that Flo8 is involved in the susceptibility of C. albicans to antifungal azoles, with FLO8 deletion leading to constitutive overexpression of CDR1 and CDR2 and resistance to antifungal azoles.
Collapse
Affiliation(s)
- Wen-Jing Li
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Second Road, Shanghai 200025, China; Department of Laboratory Medicine, Ruijin Hospital Luwan Branch, Shanghai Jiao Tong University School of Medicine, 149 Chongqing South Road, Shanghai 200020, China
| | - Jin-Yan Liu
- Department of Laboratory Medicine, Ruijin Hospital Luwan Branch, Shanghai Jiao Tong University School of Medicine, 149 Chongqing South Road, Shanghai 200020, China
| | - Ce Shi
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Second Road, Shanghai 200025, China
| | - Yue Zhao
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Second Road, Shanghai 200025, China; Department of Laboratory Medicine, Ruijin Hospital Luwan Branch, Shanghai Jiao Tong University School of Medicine, 149 Chongqing South Road, Shanghai 200020, China
| | - Ling-Ning Meng
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Second Road, Shanghai 200025, China; Department of Laboratory Medicine, Ruijin Hospital Luwan Branch, Shanghai Jiao Tong University School of Medicine, 149 Chongqing South Road, Shanghai 200020, China
| | - Fang Wu
- Department of Geriatric, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ming-Jie Xiang
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Second Road, Shanghai 200025, China; Department of Laboratory Medicine, Ruijin Hospital Luwan Branch, Shanghai Jiao Tong University School of Medicine, 149 Chongqing South Road, Shanghai 200020, China.
| |
Collapse
|
30
|
Anidulafungin Susceptibility Testing of Candida glabrata Isolates from Blood Cultures by the MALDI Biotyper Antibiotic (Antifungal) Susceptibility Test Rapid Assay. Antimicrob Agents Chemother 2019; 63:AAC.00554-19. [PMID: 31285227 DOI: 10.1128/aac.00554-19] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 06/28/2019] [Indexed: 12/16/2022] Open
Abstract
Echinocandins are the recommended first-line antifungals for treatment of invasive candidiasis. The increasing number of Candida glabrata strains resistant against echinocandins is an emerging health care concern. The rapid detection of resistant C. glabrata isolates is an urgent requirement for clinical laboratories. In this study, we developed the MALDI Biotyper antibiotic (antifungal) susceptibility test rapid assay (MBT ASTRA) for the rapid detection of anidulafungin-resistant C. glabrata isolates directly from positive blood cultures. Of 100 C. glabrata strains, MBT ASTRA classified 69 as susceptible and 29 as resistant. Microdilution assays performed according to the Clinical and Laboratory Standards Institute (CLSI) guidelines, used as a standard reference, identified 65 susceptible, 9 intermediate, and 26 resistant isolates. Sequencing of hot spot 1 and hot spot 2 regions of the FKS1 and FKS2 genes classified 86 susceptible and 14 resistant isolates. The MBT ASTRA had sensitivity and specificity of 80% and 95%, respectively, compared to the microdilution method. Positive and negative agreement of MBT ASTRA was calculated at 100% and 80%, respectively, compared with the molecular sequencing approach. Together, these results revealed a high accuracy of MBT ASTRA compared to microdilution according to the CLSI and PCR analysis, resulting in a categorical agreement of 90% and 83%, respectively. The validity of MBT ASTRA was 98%. Importantly, MBT ASTRA provided antifungal susceptibility testing (AFST) within 6 h that was both accurate and reliable compared to the other two approaches, which require at least 24 h or are costly. Therefore, this method has the potential to facilitate clinical AFST rapidly at low sample costs for clinical labs already equipped with matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS).
Collapse
|
31
|
Yousfi H, Ranque S, Rolain JM, Bittar F. In vitro polymyxin activity against clinical multidrug-resistant fungi. Antimicrob Resist Infect Control 2019; 8:66. [PMID: 31044071 PMCID: PMC6480676 DOI: 10.1186/s13756-019-0521-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 04/10/2019] [Indexed: 11/10/2022] Open
Abstract
Background Although antifungals are available and usually used against fungal infections, multidrug-resistant (MDR) fungal pathogens are a growing problem for public health. Moreover, fungal infections have become more prevalent nowadays due to the increasing number of people living with immunodeficiency. Thus, previously rarely-isolated and/or unidentified fungal species including MDR yeast and moulds have emerged around the world. Recent works indicate that polymyxin antibiotics (polymyxin B and colistin) have potential antifungal proprieties. Therefore, investigating the in vitro activity of these molecules against clinical multidrug-resistant yeast and moulds could be very useful. Methods In this study, a total of 11 MDR yeast and filamentous fungal strains commonly reported in clinical settings were tested against polymyxin antibiotics. These include strains belonging to the Candida, Cryptococcus and Rhodotorula yeast genera, along with others belonging to the Aspergillus, Fusarium, Scedosporium, Lichtheimia and Rhizopus mould genera. The fungicidal or fungistatic action of colistin against clinical yeast strains was determined by the time-kill study. Further, a checkerboard assay for its combination with antifungal agents, usually used in clinical practices (amphotericin B, itraconazole, voriconazole), was carried out against multi-drug resistant fungal strains. Results Polymyxin B and colistin exhibited an antifungal activity against all MDR fungal strains tested with MICs ranging from 16 to 128 μg/ml, except for the Aspergillus species. In addition, colistin has a fungicidal action against yeast species, with minimum fungicidal concentrations ranging from 2 to 4 times MICs. It induces damage to the MDR Candida albicans membrane. A synergistic activity of colistin-amphotericin B and colistin-itraconazole associations against Candida albicans and Lichtheimia corymbifera strains, respectively, and colistin-fluconazole association against Rhodotorula mucilaginosa, was demonstrated using a checkerboard microdilution assay. Conclusion colistin could be proposed, in clinical practice, in association with other antifungals, to treat life-threatening fungal infections caused by MDR yeasts or moulds.
Collapse
Affiliation(s)
- Hanane Yousfi
- Aix Marseille Univ, IRD, APHM, MEPHI, IHU Méditerranée Infection, 19-21 boulevard Jean Moulin, 13005 Marseille, France
| | - Stéphane Ranque
- Aix Marseille Univ, IRD, APHM, SSA, VITROME, IHU-Méditerranée Infection, 19-21 boulevard Jean Moulin, 13005 Marseille, France
| | - Jean-Marc Rolain
- Aix Marseille Univ, IRD, APHM, MEPHI, IHU Méditerranée Infection, 19-21 boulevard Jean Moulin, 13005 Marseille, France
| | - Fadi Bittar
- Aix Marseille Univ, IRD, APHM, MEPHI, IHU Méditerranée Infection, 19-21 boulevard Jean Moulin, 13005 Marseille, France
| |
Collapse
|
32
|
Kulkarni M, Stolp ZD, Hardwick JM. Targeting intrinsic cell death pathways to control fungal pathogens. Biochem Pharmacol 2019; 162:71-78. [PMID: 30660496 DOI: 10.1016/j.bcp.2019.01.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 01/11/2019] [Indexed: 02/07/2023]
Abstract
Fungal pathogens pose an increasing threat to public health. Limited clinical drug regimens and emerging drug-resistant isolates challenge infection control. The global burden of human fungal pathogens is estimated at 1 billion infections and 1.5 million deaths annually. In addition, plant fungal pathogens increasingly threaten global food resources. Novel strategies are needed to combat emerging fungal diseases and pan-resistant fungi. An untapped mechanistically novel approach is to pharmacologically activate the intrinsic cell death pathways encoded by pathogenic fungi. This strategy is analogous to new anti-cancer therapeutics now entering the clinic. Here we summarize the best understood examples of cell death mechanisms encoded by pathogenic fungi, contrast these to mammalian cell death pathways, and highlight the gaps in knowledge towards identifying potential death effectors as druggable targets.
Collapse
Affiliation(s)
- Madhura Kulkarni
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, USA
| | - Zachary D Stolp
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, USA
| | - J Marie Hardwick
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, USA; Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, USA.
| |
Collapse
|
33
|
Černáková L, Light C, Salehi B, Rogel-Castillo C, Victoriano M, Martorell M, Sharifi-Rad J, Martins N, Rodrigues CF. Novel Therapies for Biofilm-Based Candida spp. Infections. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1214:93-123. [DOI: 10.1007/5584_2019_400] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
34
|
Abstract
Persister cells are a small subpopulation within fungal biofilms that are highly resistant to high concentrations of antifungals and therefore most likely contribute to the resistance and recalcitrance of biofilm infections. Moreover, this subpopulation is defined as a nongrowing, phenotypic variant of wild-type cells that can survive high doses of antifungals. There are high degrees of heterogeneity and plasticity associated with biofilm formation, resulting in a strong variation in the amount of persister cells. The fraction of these cells in fungal biofilms also appear to be dependent on the type of substrate. The cells can be observed immediately after their adhesion to that substrate, which makes up the initial step of biofilm formation. Thus far, persister cells have primarily been studied in Candida spp. These fungi are the fourth most common cause of nosocomial systemic infections in the United States, with C. albicans being the most prevalent species. Remarkably, persisters exhibit characteristics of a dormant state similar to what is observed in cells deprived of glucose. This dormant state, together with attachment to a substrate, appears to provide the cells with characteristics that help them overcome the challenges with fungicidal drugs such as amphotericin B (AmB). AmB is known to induce apoptosis, and persister cells are able to cope with the increase in reactive oxygen species (ROS) by activating stress response pathways and the accumulation of high amounts of glycogen and trehalose-two known stress-protecting molecules. In this review, we discuss the molecular pathways that are involved in persister cell formation in fungal species and highlight that the eradication of persister cells could lead to a strong reduction of treatment failure in a clinical setting.
Collapse
Affiliation(s)
- Jurgen Wuyts
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium
- KU Leuven Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, Leuven, Belgium
| | - Patrick Van Dijck
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium
- KU Leuven Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, Leuven, Belgium
- * E-mail:
| | - Michelle Holtappels
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium
- KU Leuven Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, Leuven, Belgium
| |
Collapse
|
35
|
Beardsley J, Halliday CL, Chen SCA, Sorrell TC. Responding to the emergence of antifungal drug resistance: perspectives from the bench and the bedside. Future Microbiol 2018; 13:1175-1191. [PMID: 30113223 PMCID: PMC6190174 DOI: 10.2217/fmb-2018-0059] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 05/01/2018] [Indexed: 12/15/2022] Open
Abstract
The incidence of serious fungal infections is increasing rapidly, and yet the rate of new drugs becoming available to treat them is slow. The limited therapeutic armamentarium is a challenge for clinicians, because the available drugs are often toxic, expensive, difficult to administer, ineffective or a combination of all four. Given this setting, the emergence of resistance is especially concerning, and a review of the topic is timely. Here we discuss antifungal drug resistance in Candida spp. and Aspergillus spp. with reference to the most commonly used first-line antifungal agents - azoles and echinocandins. We review the resistance mechanisms of the leading pathogens, how resistance can be identified in the diagnostic lab and the clinical implications of resistance once detected.
Collapse
Affiliation(s)
- Justin Beardsley
- Marie Bashir Institute for Infectious Diseases & Biosecurity, University of Sydney & Westmead Institute for Medical Research, Westmead, NSW, Australia
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Catriona L Halliday
- The Center for Infectious Diseases & Microbiology Laboratory Services, ICPMR Pathology West, New South Wales Health Pathology, Westmead, NSW, Australia
| | - Sharon C-A Chen
- Marie Bashir Institute for Infectious Diseases & Biosecurity, University of Sydney & Westmead Institute for Medical Research, Westmead, NSW, Australia
- The Center for Infectious Diseases & Microbiology Laboratory Services, ICPMR Pathology West, New South Wales Health Pathology, Westmead, NSW, Australia
| | - Tania C Sorrell
- Marie Bashir Institute for Infectious Diseases & Biosecurity, University of Sydney & Westmead Institute for Medical Research, Westmead, NSW, Australia
| |
Collapse
|
36
|
In vitro activity of antifungal combinations against planktonic and sessile cells of Candida albicans isolated from medical devices in an intensive care department. J Mycol Med 2018; 28:414-418. [PMID: 30032993 DOI: 10.1016/j.mycmed.2018.06.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 06/22/2018] [Accepted: 06/28/2018] [Indexed: 11/20/2022]
Abstract
BACKGROUND Invasive fungal infections are an emerging health problem worldwide. They are responsible for a significant rate of morbidity and mortality. Infections caused by Candida albicans involve proliferation of biofilms on biotic or abiotic surface. These adherent communities exhibit characteristics distinct from planktonic cells such as the ability to tolerate high concentrations of antifungal. OBJECTIVE The object of our study was focused on the determination of the susceptibility to amphotericin B, caspofungin, voriconazole and two antifungal combinations (amphotericin B/caspofungin and amphotericin B/voriconazole) of both planktonic and sessile cells of C. albicans, which were isolated from catheters. MATERIAL AND METHODS The susceptibility of C. albicans to antifungals was determined using the broth microdilution method according to Clinical Laboratory Standards Institute CLSI (2008). A Checkerboard assay was employed to evaluate the efficacy of drugs combinations. Biofilm susceptibility was determined using a metabolic [2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide] (XTT) reduction assay. RESULTS The minimal inhibitory concentrations of individual antifungal drugs determined against C. albicans biofilms (SMICs) were significantly higher (P<0.05) than planktonic ones (MICs). They went from 2 to 64μg/mL for amphotericin B, from 1 to 64μg/mL for caspofungin and from 2 to 128μg/mL for voriconazole. The combination of amphotericin B to caspofungin or to voriconazole decreased significantly the MIC values for planctonic (P<0.0001) and sessile cells (P=0.0016). Based on Fractional Inhibitory Concentration Index (FICI), no antagonistic interaction was observed. CONCLUSION The obtained results showed that the combination of amphotericin B with either caspofungin or voriconazole can be used as a new strategy for management of systemic mycoses associated to medical devices.
Collapse
|
37
|
|
38
|
Cold atmospheric pressure plasma jet for the treatment of Aspergillus keratitis. CLINICAL PLASMA MEDICINE 2018. [DOI: 10.1016/j.cpme.2017.12.075] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
39
|
Nguyen TNY, Matangkasombut O, Ritprajak P. Differential dendritic cell responses to cell wall mannan of Candida albicans, Candida parapsilosis, and Candida dubliniensis . J Oral Sci 2018; 60:557-566. [DOI: 10.2334/josnusd.17-0426] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Thu N. Y. Nguyen
- Graduate program in Oral Biology, Faculty of Dentistry, Chulalongkorn University
- Research Unit on Oral Microbiology and Immunology and Department of Microbiology, Faculty of Dentistry, Chulalongkorn University
| | - Oranart Matangkasombut
- Research Unit on Oral Microbiology and Immunology and Department of Microbiology, Faculty of Dentistry, Chulalongkorn University
- Laboratory of Biotechnology, Chulabhorn Research Institute
| | - Patcharee Ritprajak
- Research Unit on Oral Microbiology and Immunology and Department of Microbiology, Faculty of Dentistry, Chulalongkorn University
- Oral Biology Research Center, Faculty of Dentistry, Chulalongkorn University
| |
Collapse
|
40
|
Alizadeh M, Kolecka A, Boekhout T, Zarrinfar H, Ghanbari Nahzag MA, Badiee P, Rezaei-Matehkolaei A, Fata A, Dolatabadi S, Najafzadeh MJ. Identification of Candida species isolated from vulvovaginitis using matrix assisted laser desorption ionization-time of flight mass spectrometry. Curr Med Mycol 2017; 3:21-25. [PMID: 29707675 PMCID: PMC5917097 DOI: 10.29252/cmm.3.4.21] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Background and Purpose: Vulvovaginal candidiasis (VVC) is a common problem in women. The purpose of this study was to identify Candida isolates by matrix assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) from women with vulvovaginitis that were referred to Ghaem Hospital, Mashhad, Iran. Materials and Methods: This study was conducted on 65 clinical samples isolated from women that were referred to Ghaem Hospital. All specimens were identified using phenotyping techniques, such as microscopy and culture on Sabouraud dextrose agar and corn meal agar. In addition, all isolates were processed for MALDI-TOF MS identification. Results: Out of the 65 analyzed isolates, 61 (94%) samples were recognized by MALDI-TOF MS. However, the remaining four isolates (6%) had no reliable identification. According to the results, C. albicans (58.5%) was the most frequently isolated species, followed by C. tropicalis (16.9%), C. glabrata (7.7%), C. parapsilosis (7.7%), and guilliermondii (3.1%). Conclusion: As the findings indicated, MALDI TOF MS was successful in the identification of clinical Candida species. C. albicans was identified as the most common Candida species isolated from the women with VVC. Moreover, C. tropicalis was the most common species among the non-albicans Candida species.
Collapse
Affiliation(s)
- Majid Alizadeh
- Department of Parasitology and Mycology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Anna Kolecka
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| | - Teun Boekhout
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands.,Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, The Netherlands
| | - Hossein Zarrinfar
- Allergy Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohamad A Ghanbari Nahzag
- Department of Parasitology and Mycology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Parisa Badiee
- Alborzi Clinical Microbiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Rezaei-Matehkolaei
- Department of Medical Mycology, School of Medicine, Health Research Institute, Infectious and Tropical Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Abdolmajid Fata
- Department of Parasitology and Mycology, Research Center for Cutaneous Leishmaniasis, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Somayeh Dolatabadi
- Faculty of Engineering, Sabzevar University of New Technologies, Sabzevar, Iran
| | - Mohammad J Najafzadeh
- Department of Parasitology and Mycology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Cancer Molecular Pathology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
41
|
Abstract
Safe and efficacious vaccines are arguably the most successful medical interventions of all time. Yet the ongoing discovery of new pathogens, along with emergence of antibiotic-resistant pathogens and a burgeoning population at risk of such infections, imposes unprecedented public health challenges. To meet these challenges, innovative strategies to discover and develop new or improved anti-infective vaccines are necessary. These approaches must intersect the most meaningful insights into protective immunity and advanced technologies with capabilities to deliver immunogens for optimal immune protection. This goal is considered through several recent advances in host-pathogen relationships, conceptual strides in vaccinology, and emerging technologies. Given a clear and growing risk of pandemic disease should the threat of infection go unmet, developing vaccines that optimize protective immunity against high-priority and antibiotic-resistant pathogens represents an urgent and unifying imperative.
Collapse
Affiliation(s)
- Michael R Yeaman
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California 90024.,Division of Molecular Medicine, Department of Medicine, Harbor-UCLA Medical Center, Torrance, California 90509; .,Division of Infectious Diseases, Department of Medicine, Harbor-UCLA Medical Center, Torrance, California 90509.,Los Angeles Biomedical Research Institute, Torrance, California 90502
| | | |
Collapse
|
42
|
Esmailzadeh A, Zarrinfar H, Fata A, Sen T. High prevalence of candiduria due to non-albicans Candida species among diabetic patients: A matter of concern? J Clin Lab Anal 2017; 32:e22343. [PMID: 29076587 DOI: 10.1002/jcla.22343] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 09/27/2017] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Among the fungal pathogens, Candida species are the most common cause of urinary tract infection (UTI). Some predisposing factors such as diabetes mellitus, urinary retention, urinary stasis, renal transplantation, and hospitalization can increase the risk of candiduria. The aim of this cross-sectional study was to evaluate candiduria among type 2 diabetic patients and identification of the Candida isolates. METHOD Four hundred clean-catch midstream urine specimens were obtained from patients with type 2 diabetes mellitus. The specimens were centrifuged and the sediments were examined by direct examination and cultured on Sabouraud dextrose agar. The plates were incubated for 2-3 days at 35°C. The Candida colonies were counted and purified using CHROMagar Candida. The isolates were identified by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) system. RESULTS Of the 400 urine specimens, 40 (10%) had positive cultures for Candida species with a colony count of ≥1 × 103 colony forming units (CFU)/mL. The frequencies of the Candida species were as follows: C. albicans (n = 19, 47.5%), C. glabrata (n = 15, 37.5%), C. kefyer (n = 4, 10%) and C. krusei (n = 2, 5%). Seventy-three (88%) of the patients with candiduria had hemoglobin A1c (HbA1c) levels above 7%. CONCLUSION The rate of candiduria was relatively high in type 2 diabetic patients and they were also suffering from a lack of proper blood glucose control. Although the frequency of non-albicans Candida species had not significantly higher than C. albicans, however, they obtained more from those with symptomatic candiduria.
Collapse
Affiliation(s)
- Alireza Esmailzadeh
- Department of Parasitology and Mycology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Zarrinfar
- Allergy research center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - AbdolMajid Fata
- Department of Parasitology and Mycology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Cutaneous Leishmaniasis Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Tanuka Sen
- School of Life and Environmental Sciences, Faculty of Science Engineering and Built Environment, Deakin University, Burwood, Australia
| |
Collapse
|
43
|
Postigo A, Funes M, Petenatti E, Bottai H, Pacciaroni A, Sortino M. Antifungal photosensitive activity of Porophyllum obscurum (Spreng.) DC.: Correlation of the chemical composition of the hexane extract with the bioactivity. Photodiagnosis Photodyn Ther 2017; 20:263-272. [PMID: 29111389 DOI: 10.1016/j.pdpdt.2017.10.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 10/20/2017] [Accepted: 10/26/2017] [Indexed: 11/17/2022]
Abstract
We report Porophyllum obscurum as a source of new photosensitizers with potential use in Photodynamic Therapy as an alternative for oropharyngeal candidiasis treatment. The antifungal photosensitive activity of different extracts from P. obscurum was evaluated by using microdilution and bioautographic assays. The Minimum Fungicidal Concentration for hexanic extract under UV-A irradiation was 0.98μg/mL, but it was inactive in experiments without irradiation. The bioassay-guided fractionation of this extract led to the isolation of four thiophenes responsible for the photosensitive activity: 2,2':5'2″terthiophene, 5-(3-buten-1-ynyl)-2,2'-bithiophene, 5-(4-acetoxy-1-butenyl)-2,2'- bithiophene and 5-(4-hydroxy-1-butenyl)-2,2'- bithiophene, with Minimum Fungicidal Concentrations ranging 0.24-7.81μg/mL under UV-A irradiation. The activity of the hexanic extract was evaluated against 25 clinical strains of Candida spp. isolates as etiological agents of oropharyngeal candidiasis. No differences in susceptibility were observed in strains resistant and susceptible to conventional antifungal drugs. Qualitative and quantitative chemical analyses of seven samples of P. obscurum collected in four different phenological stages were carried out showing that full flowering stage possesses the highest thiophenes content. These data also allowed us to establish a correlation between the thiophene composition of the different extracts and their antifungal photosensitive activity, according to a second order polynomial model with the equation: y=11.2603-0.6831*x+0.0108*x2. The thiophenes isolated were the responsible of antifungal photosensitive activity and can be used for the future standardization of the extract. Results showed that P. obscurum hexanic extract could be potentially developed as an Herbal Medicinal Product to be applied as a photosensitizer in Photodynamic Therapy.
Collapse
Affiliation(s)
- Agustina Postigo
- Farmacognosia, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| | - Matías Funes
- INTEQUI-CONICET, Área Química Orgánica, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Almirante Brown 1455, 5700 San Luis, Argentina
| | - Elisa Petenatti
- Herbario y Farmacognosia, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Chacabuco y Pedernera, 5700 San Luis, Argentina
| | - Hebe Bottai
- Área Estadística y Procesamiento de Datos, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| | - Adriana Pacciaroni
- Instituto Multidisciplinario de Biología Vegetal (CONICET), Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, 5016 Cordoba, Argentina
| | - Maximiliano Sortino
- Farmacognosia, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina; Centro de Referencia de Micología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina.
| |
Collapse
|
44
|
Inhibitory effect of probiotic lactobacilli supernatants on single and mixed non-albicans Candida species biofilm. Arch Oral Biol 2017; 85:40-45. [PMID: 29031236 DOI: 10.1016/j.archoralbio.2017.10.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 10/02/2017] [Accepted: 10/03/2017] [Indexed: 10/18/2022]
Abstract
OBJECTIVES Oral candidiasis is one of the most common human fungal infections. While most cases of the Candida species isolated from the oral cavity are Candida albicans, a large number of candidiasis is attributed to non-albicans Candida species. In this study, we aim to evaluate the in vitro inhibition of supernatants of Lactobacillus gasseri and Lactobacillus rhamnosus on the single and mixed species biofilm of non-albicans Candida species, including Candida tropicalis, Candida krusei and Candida parapsilosis. DESIGN Cell-free supernatants of Lactobacillus gasseri and Lactobacillus rhamnosus were prepared. Single and mixed non-albicans Candida species biofilm were formed in the 96-well microplate and on the surfaces of medical grade silicone. Biomass and cell viability were tested with crystal violet and cell counting kit-8. In order to examine the ability of the supernatant to disrupt pre-formed biofilm, supernatant was added to 24h-old biofilms. Biofilm architecture on silicone was investigated by scanning electron microscopy and confocal laser scanning microscopy was used to examine live/dead organisms within biofilm. RESULTS Single and mixed species biofilms and cell viability of non-albicans Candida biofilms were inhibited by probiotic lactobacilli supernatants. Matrue biofilm formation was disrupted by lactobacilli supernatants added at 24h after biofilm initiation. Examination with confocal laser scanning microscopy and scanning electron microscopy confirmed that lactobacilli supernatants inhibited the mixed biofilms and damaged the cells. CONCLUSIONS Our data elucidate the inhibitory activity of probiotic lactobacilli on non-albicans Candida biofilm, so as to support their utility as an adjunctive therapeutic mode against oral candida infections.
Collapse
|
45
|
Ekowati Y, van Diepeningen AD, Ferrero G, Kennedy MD, de Roda Husman AM, Schets FM. Clinically relevant fungi in water and on surfaces in an indoor swimming pool facility. Int J Hyg Environ Health 2017; 220:1152-1160. [DOI: 10.1016/j.ijheh.2017.07.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 07/07/2017] [Accepted: 07/07/2017] [Indexed: 11/16/2022]
|
46
|
Zeng B, Li J, Wang Y, Chen P, Wang X, Cui J, Liu L, Hu X, Cao Q, Xiao Y, Dong J, Sun Y, Zhou Y. In vitro and in vivo effects of suloctidil on growth and biofilm formation of the opportunistic fungus Candida albicans. Oncotarget 2017; 8:69972-69982. [PMID: 29050256 PMCID: PMC5642531 DOI: 10.18632/oncotarget.19542] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 06/19/2017] [Indexed: 11/25/2022] Open
Abstract
As the most frequent fungal pathogen in humans, Candida albicans can develop serious drug resistance because its biofilms are resistant to most antifungal agents; this leads to an urgent need to develop novel antifungals. Here, we evaluated the efficacy of an antithrombotic drug, suloctidil, against C. albicans biofilms in vitro and in vivo. We found that suloctidil is effective to inhibit C. albicans biofilm, with a minimum inhibitory concentration (MIC80) of 4 μg/mL, a biofilm inhibiting concentration (BIC80) of 16 μg/mL and a biofilm eradicating concentration (BEC80) of 64 μg/mL. Furthermore, the concentration-dependent characteristics of suloctidil were shown by its time-kill curves. Scanning electron microscopy images clearly revealed the morphological effects of suloctidil on biofilm. Yeast-to-hyphal form switching is a key virulence factor of C. albicans; therefore, we performed hyphal growth tests and observed that suloctidil inhibited yeast-to-hyphal form switching. This result was consistent with the down-regulation of hypha-specific gene (HWP1, ALS3, and ECE1) expression levels after suloctidil treatment. In vivo, 256 μg/mL of suloctidil significantly reduced fungal counts (P<0.01) compared to that in groups without treatment; the treatment group induced a slight histological reaction, especially when the treatment lasted for 5 days (P<0.01). Taken together, our data suggest that suloctidil is a potential antifungal agent.
Collapse
Affiliation(s)
- Beini Zeng
- Department of Pathogenic Biology and Key Laboratory for Experimental Teratology of Chinese Ministry of Education, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, People's Republic of China
| | - Jiachen Li
- Department of Pathogenic Biology and Key Laboratory for Experimental Teratology of Chinese Ministry of Education, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, People's Republic of China
| | - Yajie Wang
- Department of Pathogenic Biology and Key Laboratory for Experimental Teratology of Chinese Ministry of Education, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, People's Republic of China
| | - Pengxiang Chen
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, People's Republic of China
| | - Xiaohong Wang
- Department of Pathogenic Biology and Key Laboratory for Experimental Teratology of Chinese Ministry of Education, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, People's Republic of China
| | - Jianfeng Cui
- Department of Urology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, People's Republic of China
| | - Lidong Liu
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, People's Republic of China
| | - Xiaoyan Hu
- Department of Pathogenic Biology and Key Laboratory for Experimental Teratology of Chinese Ministry of Education, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, People's Republic of China
| | - Qian Cao
- Department of Pathogenic Biology and Key Laboratory for Experimental Teratology of Chinese Ministry of Education, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, People's Republic of China
| | - Ying Xiao
- Department of Pathogenic Biology and Key Laboratory for Experimental Teratology of Chinese Ministry of Education, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, People's Republic of China
| | - Junlu Dong
- Department of Neurobiology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, People's Republic of China
| | - Yundong Sun
- Department of Pathogenic Biology and Key Laboratory for Experimental Teratology of Chinese Ministry of Education, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, People's Republic of China
| | - Yabin Zhou
- Department of Pathogenic Biology and Key Laboratory for Experimental Teratology of Chinese Ministry of Education, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, People's Republic of China
| |
Collapse
|
47
|
Camplesi M, Silva HM, Arantes AM, Costa CR, Ataides FS, Silva TC, Reis MDPCD, Silva MDRR. Invasive fungal infection in patients with hematologic disorders in a Brazilian tertiary care hospital. Rev Soc Bras Med Trop 2017; 50:80-85. [PMID: 28327806 DOI: 10.1590/0037-8682-0191-2016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 02/07/2017] [Indexed: 11/22/2022] Open
Abstract
INTRODUCTION: Invasive fungal infections (IFIs) are an important complication in immunocompromised individuals, particularly neutropenic patients with hematological malignancies. In this study, we aimed to verify the epidemiology and diagnosis of IFIs in patients with hematologic problems at a tertiary hospital in Goiânia-GO, Brazil. METHODS: Data from 117 patients, involving 19 cases of IFIs, were collected. The collected data included diagnosis methods, demographics, clinical characteristics, and in vitro susceptibility to different antifungal agents. Among the 19 cases, 12 were classified as proven IFI and 7 as probable invasive aspergillosis with detection of galactomannan in blood and presence of lung infiltrates in radiographic images. Logistic regression analysis showed that the proven and probable IFIs were associated with increased risk of death. Statistical analysis demonstrated that age, sex, and underlying disease were not independently associated with risk of death in IFI patients. RESULTS: Most bloodstream isolates of Candida spp. exhibited low minimum inhibitory concentrations (MICs) to all antifungal agents tested. Voriconazole and amphotericin had the lowest MICs for Aspergillus spp. and Fusarium spp., but Fusarium spp. showed the least susceptibility to all antifungals tested. Amphotericin B, fluconazole, and itraconazole were found to be inactive in vitro against Acremonium kiliense; but this fungus was sensitive to voriconazole. CONCLUSIONS: Considering the high number of IFI cases, with crude mortality rate of 6%, we could conclude that IFIs remain a common infection in patients with hematological malignancies and underdiagnosed ante mortem. Thus, IFIs should be monitored closely.
Collapse
Affiliation(s)
- Milton Camplesi
- Departamento de Biomedicina, Universidade Paulista, Goiânia, GO, Brasil
| | - Hildene Meneses Silva
- Departamento de Microbiologia, Imunologia, Parasitologia e Patologia, Instituto de Patologia Tropical, Universidade Federal de Goiás, Goiânia, GO, Brasil
| | | | - Carolina Rodrigues Costa
- Departamento de Microbiologia, Imunologia, Parasitologia e Patologia, Instituto de Patologia Tropical, Universidade Federal de Goiás, Goiânia, GO, Brasil
| | - Fábio Silvestre Ataides
- Departamento de Microbiologia, Imunologia, Parasitologia e Patologia, Instituto de Patologia Tropical, Universidade Federal de Goiás, Goiânia, GO, Brasil
| | - Thaisa Cristina Silva
- Departamento de Microbiologia, Imunologia, Parasitologia e Patologia, Instituto de Patologia Tropical, Universidade Federal de Goiás, Goiânia, GO, Brasil
| | - Maysa de Paula Costa Dos Reis
- Departamento de Microbiologia, Imunologia, Parasitologia e Patologia, Instituto de Patologia Tropical, Universidade Federal de Goiás, Goiânia, GO, Brasil
| | - Maria do Rosário Rodrigues Silva
- Departamento de Microbiologia, Imunologia, Parasitologia e Patologia, Instituto de Patologia Tropical, Universidade Federal de Goiás, Goiânia, GO, Brasil
| |
Collapse
|
48
|
Abstract
Aspergillus species are ubiquitous fungal saprophytes found in diverse ecological niches worldwide. Among them, Aspergillus fumigatus is the most prevalent and is largely responsible for the increased incidence of invasive aspergillosis with high mortality rates in some immunocompromised hosts. Azoles are the first-line drugs in treating diseases caused by Aspergillus spp. However, increasing reports in A. fumigatus azole resistance, both in the clinical setting and in the environment, are threatening the effectiveness of clinical and agricultural azole drugs. The azole target is the 14-α sterol demethylase encoded by cyp51A gene and the main mechanisms of resistance involve the integration of tandem repeats in its promoter and/or single point mutations in this gene. In A. fumigatus, azole resistance can emerge in two different scenarios: a medical route in which azole resistance is generated during long periods of azole treatment in the clinical setting and a route of resistance derived from environmental origin due to extended use of demethylation inhibitors in agriculture. The understanding of A. fumigatus azole resistance development and its evolution is needed in order to prevent or minimize its impact. In this article, we review the current situation of azole resistance epidemiology and the predominant molecular mechanisms described based on the resistance acquisition routes. In addition, the clinical implications of A. fumigatus azole resistance and future research are discussed.
Collapse
|
49
|
Rodrigues CF, Gonçalves B, Rodrigues ME, Silva S, Azeredo J, Henriques M. The Effectiveness of Voriconazole in Therapy of Candida glabrata's Biofilms Oral Infections and Its Influence on the Matrix Composition and Gene Expression. Mycopathologia 2017; 182:653-664. [PMID: 28439794 DOI: 10.1007/s11046-017-0135-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 04/16/2017] [Indexed: 11/25/2022]
Abstract
Candida glabrata is one of most prevalent yeast in fungal infections, especially in immunocompromised patients. Its azole resistance results in a low therapeutic response, particularly when associated with biofilms. The main goal of this work was to study the effectiveness of voriconazole (Vcz) against C. glabrata biofilms oral pathologies, as esophageal or oropharyngeal candidiasis. Antifungal susceptibilities were determined in pre-formed 24-h-biofilms and ERG genes expression was determined by qRT-PCR. Protein quantification was performed using BCA® Kit, carbohydrate was estimated according to the Dubois assay and β-1,3 glucans concentration were determined using Glucatell® kit. Finally, ergosterol, Vcz, and fluconazole (Flu) concentrations within the biofilm matrices were determined by RP-HPLC. Results showed that C. glabrata biofilms were more susceptible to Vcz than to Flu and that ERG genes expression evidenced an overexpression of the three ERG genes in the presence of both azoles. The matrix content presented a remarked decrease in proteins and an increase in carbohydrates, namely β-1,3 glucans. Ergosterol was successfully detected and quantified in the biofilm matrices, with no differences in all the considered conditions. Vcz demonstrated better diffusion through the biofilms and better cell penetration capacities, than Flu, indicating that the structure of the drug molecule fully influences its dissemination through the biofilm matrices. This work showed that Vcz is notably more effective than Flu for the treatment of resistant C. glabrata oral biofilms, which demonstrates a clinical relevance in its future use for the treatment of oropharyngeal/esophageal candidiasis caused by this species.
Collapse
Affiliation(s)
- Célia F Rodrigues
- CEB, Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, 4710-057, Braga, Portugal.
| | - Bruna Gonçalves
- CEB, Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, 4710-057, Braga, Portugal
| | - Maria Elisa Rodrigues
- CEB, Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, 4710-057, Braga, Portugal
| | - Sónia Silva
- CEB, Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, 4710-057, Braga, Portugal
| | - Joana Azeredo
- CEB, Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, 4710-057, Braga, Portugal
| | - Mariana Henriques
- CEB, Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, 4710-057, Braga, Portugal
| |
Collapse
|
50
|
Sweileh WM, Sawalha AF, Al-Jabi S, Zyoud SH. Bibliometric analysis of literature on antifungal triazole resistance: 1980 - 2015. Germs 2017; 7:19-27. [PMID: 28331838 PMCID: PMC5348213 DOI: 10.18683/germs.2017.1104] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 02/04/2017] [Accepted: 02/06/2016] [Indexed: 02/05/2023]
Abstract
BACKGROUND Triazole antifungal agents play an important role in the treatment of a wide range of fungal infections. Little is known about antifungal triazole drug resistance when compared to antibiotic resistance. Therefore, this study was carried out to give a bibliometric overview of literature on triazole antifungal drug resistance. METHODS Keywords related to triazole drug class and resistance were used in a search query in the Scopus search engine. The time span was set from 1980 to 2015. Data pertaining to growth of publications, the most active countries and institutions, the most cited articles, and mapping of molecular mechanisms of resistance were analyzed. RESULTS A total of 1648 journal articles were retrieved with an average of 20.46 citations per article. Annual growth of triazole resistance showed an increasing pattern during the study period. The United States of America (n=446; 27.06%) ranked first in productivity followed by the United Kingdom (UK) (n=176; 10.68%), and China (n=133; 8.07%). Radboud University Nijmegen Medical Centre (n=69, 4.19%) in the Netherlands ranked first in productivity, while the journal Antimicrobial Agents and Chemotherapy ranked first (n=255; 15.47%) in publishing articles on triazole resistance. Mapping mechanisms of resistance showed that efflux pump and mutations in target enzyme are major mechanisms described in resistance to triazoles. CONCLUSION There was a growth of publications on triazole resistance in the past two decades with the bulk of publications on triazole resistance in Candida species. The data presented here will serve as baseline information for future comparative purposes.
Collapse
Affiliation(s)
- Waleed M. Sweileh
- PhD, Professor, Department of Physiology, Pharmacology and Toxicology, College of Medicine and Health Sciences, An-Najah National University, P.O. Box 7, Nablus, Palestine
| | - Ansam F. Sawalha
- PhD, Professor, Department of Physiology, Pharmacology and Toxicology, College of Medicine and Health Sciences, An-Najah National University, P.O. Box 7, Nablus, Palestine
- Corresponding Author: Ansam F. Sawalha, PhD, Professor, Department of Physiology, Pharmacology and Toxicology, College of Medicine and Health Sciences, An-Najah National University, P.O. Box 7, Nablus, Palestine.
| | - Samah Al-Jabi
- PhD, Department of Clinical and Community Pharmacy, College of Medicine and Health Sciences, An-Najah National University, P.O. Box 7, Nablus, Palestine
| | - Sa’ed H. Zyoud
- PhD, Department of Clinical and Community Pharmacy, College of Medicine and Health Sciences, An-Najah National University, P.O. Box 7, Nablus, Palestine
| |
Collapse
|