1
|
Sharma A, Kumar A, Rawat K, Vij S, Sandhu A, Gautam V, Saha PK, Saha L. Novel TMPRSS6 variants and their impact on iron-refractory iron deficiency anaemia in pregnancy: A North Indian genotype phenotype study. Br J Haematol 2024; 205:686-698. [PMID: 38977031 DOI: 10.1111/bjh.19616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 06/15/2024] [Indexed: 07/10/2024]
Abstract
Iron-refractory iron deficiency anaemia (IRIDA) is a rare autosomal recessive disorder, distinguished by hypochromic microcytic anaemia, low transferrin levels and inappropriately elevated hepcidin (HEPC) levels. It is caused by mutations in TMPRSS6 gene. Systematic screening of 500 pregnant women with iron deficiency anaemia having moderate to severe microcytosis with no other causes of anaemia were enrolled to rule out oral iron refractoriness. It identified a final cohort of 10 (2.15% prevalence) individuals with IRIDA phenotype. Haematological and biochemical analysis revealed significant differences between iron responders and iron non-responders, with iron non-responders showing lower haemoglobin, red blood cell count, serum iron and serum ferritin levels, along with elevated HEPC (9.47 ± 2.75 ng/mL, p = 0.0009) and erythropoietin (4.58 ± 4.07 µ/mL, p = 0.0196) levels. Genetic sequencing of the TMPRSS6 gene in this final cohort identified 10 novel variants, including seven missense and three frame-shift mutations, with four missense variants showing high functional impact defining the IRIDA phenotype. Structural analysis revealed significant damage caused by two variants (p.L83R and p.S235R). This study provides valuable insights into IRIDA among pregnant women in the Indian subcontinent, unveiling its underlying causes of unresponsiveness, genetic mechanisms and prevalence. Furthermore, research collaboration is essential to validate these findings and develop effective treatments.
Collapse
Affiliation(s)
- Antika Sharma
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Anil Kumar
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Kajal Rawat
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Soumya Vij
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Arushi Sandhu
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Vipasha Gautam
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Pradip Kumar Saha
- Department of Obstetrics and Gynecology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Lekha Saha
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| |
Collapse
|
2
|
Sharma A, Kumar A, Saha PK, Saha L. The role of TMPRSS6 gene polymorphism in iron resistance iron deficiency anaemia (IRIDA): a systematic review. Ann Hematol 2024; 103:1085-1102. [PMID: 38072851 DOI: 10.1007/s00277-023-05576-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 11/30/2023] [Indexed: 03/16/2024]
Abstract
Iron resistance iron deficiency anaemia is a rare autosomal recessive disorder characterized by hypochromic microcytic anaemia, low transferrin saturation and inappropriately high hepcidin levels. The aetiology of this condition is rooted in genetic variations within the transmembrane serine protease 6 (TMPRSS6) genes, responsible for encoding matriptase-2, a pivotal negative regulator of hepcidin. We conducted a systematic search across four electronic databases, yielding 538 articles in total out of which 25 were finally included and were preceded further, aiming to prognosticate prevalent single nucleotide polymorphisms (SNPs) and detrimental genetic alterations. This review aims to elucidate the effects of various SNPs and pathogenic mutations on both haematological and biochemical parameters, as well as their potential interethnic correlation. Employing bioinformatics tools, we subjected over 100 SNPs to scrutiny, discerning their potential functional ramifications. We found rs1373272804, rs1430692214 and rs855791 variants to be most frequent and were having a significant impact on haematological and biochemical profile. We found that individuals of European ancestry were more prone to have these variants compared to other ethnic groups. In conclusion, this review not only sheds light on the association of TMPRSS6 polymorphism in iron resistance iron deficiency anaemia (IRIDA), but also highlights the critical need for further investigations involving larger sample size and more diverse ethnic groups around the globe. These future studies will be vital for gaining a stronger and more reliable understanding of how these genetic differences are linked to the development of IRIDA.
Collapse
Affiliation(s)
- Antika Sharma
- Department of Pharmacology, Post Graduate Institute of Medical Education & Research (PGIMER), 4Th Floor, Research Block B, Chandigarh, India, 160012
| | - Anil Kumar
- Department of Pharmacology, Post Graduate Institute of Medical Education & Research (PGIMER), 4Th Floor, Research Block B, Chandigarh, India, 160012
| | - Pradip Kumar Saha
- Department of Obstetrics and Gynaecology, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh, India, 160012
| | - Lekha Saha
- Department of Pharmacology, Post Graduate Institute of Medical Education & Research (PGIMER), 4Th Floor, Research Block B, Chandigarh, India, 160012.
| |
Collapse
|
5
|
Kong X, Dong X, Yang S, Qian J, Yang J, Jiang Q, Li X, Wang B, Yan D, Lu S, Zhu L, Li G, Li M, Yi S, Deng M, Sun L, Zhou X, Mao H, Gou X. Natural selection on TMPRSS6 associated with the blunted erythropoiesis and improved blood viscosity in Tibetan pigs. Comp Biochem Physiol B Biochem Mol Biol 2019; 233:11-22. [PMID: 30885835 DOI: 10.1016/j.cbpb.2019.03.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 03/08/2019] [Accepted: 03/08/2019] [Indexed: 02/04/2023]
Abstract
Tibetan pigs, indigenous to Tibetan plateau, are well adapted to hypoxia. So far, there have been not any definitively described genes and functional sites responsible for hypoxia adaptation for the Tibetan pig. The whole genome-wide association studies in human suggested that genetic variations in TMPRSS6 was associated with hemoglobin concentration (HGB) and red cell counts (RBC). Here we conducted resequencing of the nearly entire genomic region (40.1 kb) of the candidate gene TMPRSS6 in 40 domestic pigs and 40 wild boars along continuous altitudes and identified 708 SNPs, in addition to an indel (CGTG/----) in the intron 10. We conduct the CGTG indel in 838 domestic pigs, both the CGTG deletion frequency and the pairwise r2 linkage disequilibrium showed an increase with elevated altitudes, suggesting that TMPRSS6 has been under Darwinian positive selection. As the conserved core sequence of hypoxia-response elements (HREs), the deletion of CGTG in Tibetan pigs decreased the expression levels of TMPRSS6 mRNA and protein in the liver revealed by real-time quantitative PCR and western blot, respectively. We compared domestic pigs and Tibetan pigs living continuous altitudes, found that the blood-related traits with the increase of altitude, however, the HGB did not increase with the elevation in Tibetan pigs. Genotype association analysis results dissected a genetic effect on reducing HGB by 13.25 g/L in Gongbo'gyamda Tibetan pigs, decreasing mean corpuscular volume (MCV) by 4.79 fl in Diqing Tibetan pigs. In conclusion, the CGTG deletion of TMPRSS6 resulted in lower HGB and smaller MCV, which could reflect a blunting erythropoiesis and improving blood viscosity as well as erythrocyte deformability. It remains to be determined whether a blunting of erythropoiesis for TMPRSS6 or others genetic effects are the physiological adaptations among Tibetan pigs.
Collapse
Affiliation(s)
- Xiaoyan Kong
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Xinxing Dong
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Shuli Yang
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Jinhua Qian
- Department of Animal Science, Yuxi Agriculture Vocational-Technical College, Yuxi, Yunnan, China
| | - Jianfa Yang
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Qiang Jiang
- Dairy Cattle Research Center, Shandong Academy of Agricultural Science, Jinan, Shandong, China
| | - Xingrun Li
- Department of Animal Science, Dali Vocational and Technical College of Agriculture and Forestry, Dali, Yunnan, China
| | - Bo Wang
- Research Experimental Center, Yunnan University of Traditional Chinese Medicine, Kunming, Yunnan, China
| | - Dawei Yan
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Shaoxiong Lu
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Li Zhu
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Gen Li
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Minjuan Li
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Shengnan Yi
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Mingyue Deng
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Liyuan Sun
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Xiaoxia Zhou
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Huaming Mao
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China.
| | - Xiao Gou
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China.
| |
Collapse
|
6
|
Lv T, Zhang W, Xu A, Li Y, Zhou D, Zhang B, Li X, Zhao X, Wang Y, Wang X, Duan W, Wang Q, Xu H, Zheng J, Zhao R, Zhu L, Dong Y, Lu L, Chen Y, Long J, Zheng S, Wang W, You H, Jia J, Ou X, Huang J. Non- HFE mutations in haemochromatosis in China: combination of heterozygous mutations involving HJV signal peptide variants. J Med Genet 2018; 55:650-660. [PMID: 30166352 DOI: 10.1136/jmedgenet-2018-105348] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 06/22/2018] [Accepted: 07/08/2018] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Hereditary haemochromatosis (HH) caused by a homozygous p.C282Y mutation in haemochromatosis (HFE) gene has been well documented. However, less is known about the causative non-HFE mutation. We aimed to assess mutation patterns of haemochromatosis-related genes in Chinese patients with primary iron overload. METHODS Patients were preanalysed for mutations in the classic HH-related genes: HFE, HJV, HAMP, TFR2 and SLC40A1. Whole exome sequencing was conducted for cases with variants in HJV signal peptide region. Representative variants were analysed for biological function. RESULTS None of the cases analysed harboured the HFE p.C282Y; however, 21 of 22 primary iron-overload cases harboured at least one non-synonymous variant in the non-HFE genes. Specifically, p.E3D or p.Q6H variants in the HJV signal peptide region were identified in nine cases (40.9%). In two of three probands with the HJV p.E3D, exome sequencing identified accompanying variants in BMP/SMAD pathway genes, including TMPRSS6 p.T331M and BMP4 p.R269Q, and interestingly, SUGP2 p.R639Q was identified in all the three cases. Pedigree analysis showed a similar pattern of combination of heterozygous mutations in cases with HJV p.E3D or p.Q6H, with SUGP2 p.R639Q or HJV p.C321X being common mutation. In vitro siRNA interference of SUGP2 showed a novel role of downregulating the BMP/SMAD pathway. Site-directed mutagenesis of HJV p.Q6H/p.C321X in cell lines resulted in loss of membrane localisation of mutant HJV, and downregulation of p-SMAD1/5 and HAMP. CONCLUSION Compound heterozygous mutations of HJV or combined heterozygous mutations of BMP/SMAD pathway genes, marked by HJV variants in the signal peptide region, may represent a novel aetiological factor for HH.
Collapse
Affiliation(s)
- Tingxia Lv
- Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis, Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Experimental Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Clinical Research Center for Rare Liver Disease, Capital Medical University, Beijing, China
- Liver Research Center, National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Wei Zhang
- Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis, Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Clinical Research Center for Rare Liver Disease, Capital Medical University, Beijing, China
- Liver Research Center, National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Anjian Xu
- Experimental Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Clinical Research Center for Rare Liver Disease, Capital Medical University, Beijing, China
- Liver Research Center, National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Yanmeng Li
- Experimental Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Clinical Research Center for Rare Liver Disease, Capital Medical University, Beijing, China
- Liver Research Center, National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Donghu Zhou
- Experimental Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Clinical Research Center for Rare Liver Disease, Capital Medical University, Beijing, China
- Liver Research Center, National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Bei Zhang
- Experimental Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Clinical Research Center for Rare Liver Disease, Capital Medical University, Beijing, China
- Liver Research Center, National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Xiaojin Li
- Experimental Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Clinical Research Center for Rare Liver Disease, Capital Medical University, Beijing, China
- Liver Research Center, National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Xinyan Zhao
- Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis, Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Clinical Research Center for Rare Liver Disease, Capital Medical University, Beijing, China
- Liver Research Center, National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Yu Wang
- Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis, Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Clinical Research Center for Rare Liver Disease, Capital Medical University, Beijing, China
- Liver Research Center, National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Xiaoming Wang
- Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis, Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Clinical Research Center for Rare Liver Disease, Capital Medical University, Beijing, China
- Liver Research Center, National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Weijia Duan
- Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis, Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Clinical Research Center for Rare Liver Disease, Capital Medical University, Beijing, China
- Liver Research Center, National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Qianyi Wang
- Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis, Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Clinical Research Center for Rare Liver Disease, Capital Medical University, Beijing, China
- Liver Research Center, National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Hexiang Xu
- Department of Infectious Diseases, The Third Affiliated Hospital of Anhui Medical University, The First People's Hospital of Hefei, Hefei, China
| | - JiShun Zheng
- Department of Infectious Diseases, The Third Affiliated Hospital of Anhui Medical University, The First People's Hospital of Hefei, Hefei, China
| | - Rongrong Zhao
- Department of Infectious Diseases, The First Hospital of Lanzhou University, Lanzhou, China
| | - Longdong Zhu
- Department of Infectious Diseases, The First Hospital of Lanzhou University, Lanzhou, China
| | - Yuwei Dong
- Department of Gastroenterology, School of Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Lungen Lu
- Department of Gastroenterology, School of Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yongpeng Chen
- Department of Infectious Diseases, Institute of Hepatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jiang Long
- Department of Oncology Minimally Invasive Interventional Radiology, Beijing You-An Hospital, Capital Medical University, Shanghai, China
| | - Sujun Zheng
- Artificial Liver Center, Beijing You-An Hospital, Capital Medical University, Beijing, China
| | - Wei Wang
- Department of Clinical Laboratory, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Hong You
- Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis, Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Clinical Research Center for Rare Liver Disease, Capital Medical University, Beijing, China
- Liver Research Center, National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Jidong Jia
- Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis, Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Clinical Research Center for Rare Liver Disease, Capital Medical University, Beijing, China
- Liver Research Center, National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Xiaojuan Ou
- Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis, Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Clinical Research Center for Rare Liver Disease, Capital Medical University, Beijing, China
- Liver Research Center, National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Jian Huang
- Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis, Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Experimental Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Clinical Research Center for Rare Liver Disease, Capital Medical University, Beijing, China
- Liver Research Center, National Clinical Research Center for Digestive Diseases, Beijing, China
| |
Collapse
|
9
|
Pinto J, Nobre de Jesus G, Palma Anselmo M, Gonçalves L, Brás D, Madeira Lopes J, Meneses J, Victorino R, Faustino P. Iron Refractory Iron Deficiency Anemia in Dizygotic Twins Due to a Novel TMPRSS6 Gene Mutation in Addition to Polymorphisms Associated With High Susceptibility to Develop Ferropenic Anemia. J Investig Med High Impact Case Rep 2017; 5:2324709617701776. [PMID: 28491880 PMCID: PMC5405884 DOI: 10.1177/2324709617701776] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 01/15/2017] [Accepted: 01/17/2017] [Indexed: 11/17/2022] Open
Abstract
Iron refractory iron deficiency anemia (IRIDA) is an autosomal recessive ferropenic anemia. Its hypochromic microcytic pattern is associated with low transferrin saturation, normal-high ferritin, and inappropriately high hepcidin level. This entity is caused by mutants of the TMPRSS6 gene that encodes the protein matriptase II, which influences hepcidin expression, an iron metabolism counterregulatory protein. We report two 29-year-old dizygotic female twins with ferropenic, hypochromic microcytic anemia with 20 years of evolution, refractory to oral iron therapy. After exclusion of gastrointestinal etiologies, IRIDA diagnosis was suspected and a novel mutation in the TMPRSS6 gene was identified. It was found in intron 11 (c.1396+4 A>T) and seems to affect the gene expression. In addition, 3 polymorphisms already associated with a higher risk of developing iron deficiency anemia were also found (D521D, V736A, and Y739Y). Our case reports an undescribed mutation causing IRIDA and supports the hypothesis that this clinical syndrome may be more common than previously thought and its genetics more heterogeneous than initially described.
Collapse
Affiliation(s)
| | | | | | - Lúcia Gonçalves
- Instituto Nacional de Saúde Dr. Ricardo Jorge, Lisboa, Portugal
| | - Daniela Brás
- Instituto Nacional de Saúde Dr. Ricardo Jorge, Lisboa, Portugal
| | | | | | | | - Paula Faustino
- Universidade de Lisboa, Lisboa, Portugal.,Instituto Nacional de Saúde Dr. Ricardo Jorge, Lisboa, Portugal
| |
Collapse
|