1
|
Bibas M, Sarosiek S, Castillo JJ. Waldenström Macroglobulinemia - A State-of-the-Art Review: Part 1: Epidemiology, Pathogenesis, Clinicopathologic Characteristics, Differential Diagnosis, Risk Stratification, and Clinical Problems. Mediterr J Hematol Infect Dis 2024; 16:e2024061. [PMID: 38984103 PMCID: PMC11232678 DOI: 10.4084/mjhid.2024.061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 06/19/2024] [Indexed: 07/11/2024] Open
Abstract
Waldenström macroglobulinemia (WM) is an infrequent variant of lymphoma, classified as a B-cell malignancy identified by the presence of IgM paraprotein, infiltration of clonal, small lymphoplasmacytic B cells in the bone marrow, and the MYD88 L265P mutation, which is observed in over 90% of cases. The direct invasion of the malignant cells into tissues like lymph nodes and spleen, along with the immune response related to IgM, can also lead to various health complications, such as cytopenias, hyperviscosity, peripheral neuropathy, amyloidosis, and Bing-Neel syndrome. Chemoimmunotherapy has historically been considered the preferred treatment for WM, wherein the combination of rituximab and nucleoside analogs, alkylating drugs, or proteasome inhibitors has exhibited notable efficacy in inhibiting tumor growth. Recent studies have provided evidence that Bruton Tyrosine Kinase inhibitors (BTKI), either used independently or in conjunction with other drugs, have been shown to be effective and safe in the treatment of WM. The disease is considered to be non-curable, with a median life expectancy of 10 to 12 years.
Collapse
Affiliation(s)
- Michele Bibas
- Department of Clinical Research, Hematology. National Institute for Infectious Diseases "Lazzaro Spallanzani" IRCSS Rome Italy
| | - Shayna Sarosiek
- Bing Center for Waldenström's Macroglobulinemia, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Jorge J Castillo
- Bing Center for Waldenström's Macroglobulinemia, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| |
Collapse
|
2
|
Liu M, Kang W, Hu Z, Wang C, Zhang Y. Targeting MyD88: Therapeutic mechanisms and potential applications of the specific inhibitor ST2825. Inflamm Res 2023; 72:2023-2036. [PMID: 37814128 DOI: 10.1007/s00011-023-01801-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/21/2023] [Accepted: 09/24/2023] [Indexed: 10/11/2023] Open
Abstract
BACKGROUND Myeloid differentiation factor-88 (MyD88) is a crucial adapter protein that coordinates the innate immune response and establishes an adaptive immune response. The interaction of the Toll/Interleukin-1 receptor (IL-1R) superfamily with MyD88 triggers the activation of various signalling pathways such as nuclear factor-κB (NF-κB) and activator protein-1 (AP-1), promoting the production of a variety of immune and inflammatory mediators and potentially driving the development of a variety of diseases. OBJECTIVE This article will explore the therapeutic potential and mechanism of the MyD88-specific inhibitor ST2825 and describe its use in the treatment of several diseases. We envision future research and clinical applications of ST2825 to provide new ideas for the development of anti-inflammatory drugs and disease-specific drugs to open new horizons for the prevention and treatment of related inflammatory diseases. MATERIALS AND METHODS This review analysed relevant literature in PubMed and other databases. All relevant studies on MyD88 inhibitors and ST2825 that were published in the last 20 years were used as screening criteria. These studies looked at the development and improvement of MyD88 inhibitors and ST2825. RESULTS Recent evidence using the small-molecule inhibitor of ST2825 has suggested that blocking MyD88 activity can be used to treat diseases such as neuroinflammation, inflammatory diseases such as acute liver/kidney injury, or autoimmune diseases such as systemic lupus erythematosus and can affect transplantation immunity. In addition, ST2825 has potential therapeutic value in B-cell lymphoma with the MyD88 L265P mutation. CONCLUSION Targeting MyD88 is a novel therapeutic strategy, and scientific research is presently focused on the development of MyD88 inhibitors. The peptidomimetic compound ST2825 is a widely studied small-molecule inhibitor of MyD88. Thus, ST2825 may be a potential therapeutic small-molecule agent for modulating host immune regulation in inflammatory diseases and inflammatory therapy.
Collapse
Affiliation(s)
- Meiqi Liu
- Hengyang Medical School, Cancer Research Institute, University of South China, Chang Sheng Xi Avenue 28, Hengyang City, Hunan, 421001, People's Republic of China
| | - Wenyan Kang
- Hengyang Medical School, Cancer Research Institute, University of South China, Chang Sheng Xi Avenue 28, Hengyang City, Hunan, 421001, People's Republic of China
| | - Zhizhong Hu
- Hengyang Medical School, Cancer Research Institute, University of South China, Chang Sheng Xi Avenue 28, Hengyang City, Hunan, 421001, People's Republic of China
| | - Chengkun Wang
- Hengyang Medical School, Cancer Research Institute, University of South China, Chang Sheng Xi Avenue 28, Hengyang City, Hunan, 421001, People's Republic of China.
| | - Yang Zhang
- Hengyang Medical School, Cancer Research Institute, University of South China, Chang Sheng Xi Avenue 28, Hengyang City, Hunan, 421001, People's Republic of China.
| |
Collapse
|
3
|
Minderman M, Lantermans H, van der Zwaan C, Hoogendijk AJ, van den Biggelaar M, Kersten MJ, Spaargaren M, Pals ST. The oncogenic human B-cell lymphoma MYD88 L265P mutation genocopies activation by phosphorylation at the Toll/interleukin-1 receptor (TIR) domain. Blood Cancer J 2023; 13:125. [PMID: 37591861 PMCID: PMC10435502 DOI: 10.1038/s41408-023-00896-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 07/23/2023] [Accepted: 08/01/2023] [Indexed: 08/19/2023] Open
Abstract
MYD88 is the key signaling adaptor-protein for Toll-like and interleukin-1 receptors. A somatic L265P mutation within the Toll/interleukin-1 receptor (TIR) domain of MYD88 is found in 90% of Waldenström macroglobulinemia cases and in a significant subset of diffuse large B-cell lymphomas. MYD88-L265P strongly promotes NF-κB pathway activation, JAK-STAT signaling and lymphoma cell survival. Previous studies have identified other residues of the TIR-domain crucially involved in NF-κB activation, including serine 257 (S257), indicating a potentially important physiological role in the regulation of MYD88 activation. Here, we demonstrate that MYD88 S257 is phosphorylated in B-cell lymphoma cells and that this phosphorylation is required for optimal TLR-induced NF-κB activation. Furthermore, we demonstrate that a phosphomimetic MYD88-S257D mutant promotes MYD88 aggregation, IRAK1 phosphorylation, NF-κB activation and cell growth to a similar extent as the oncogenic L265P mutant. Lastly, we show that expression of MYD88-S257D can rescue cell growth upon silencing of endogenous MYD88-L265P expression in lymphoma cells addicted to oncogenic MYD88 signaling. Our data suggest that the L265P mutation promotes TIR domain homodimerization and NF-κB activation by copying the effect of MY88 phosphorylation at S257, thus providing novel insights into the molecular mechanism underlying the oncogenic activity of MYD88-L265P in B-cell malignancies.
Collapse
Affiliation(s)
- Marthe Minderman
- Department of Pathology, Cancer Center Amsterdam, Amsterdam UMC, Location University of Amsterdam, Amsterdam, The Netherlands
- Lymphoma and Myeloma Center Amsterdam - LYMMCARE, Amsterdam, The Netherlands
| | - Hildo Lantermans
- Department of Pathology, Cancer Center Amsterdam, Amsterdam UMC, Location University of Amsterdam, Amsterdam, The Netherlands
- Lymphoma and Myeloma Center Amsterdam - LYMMCARE, Amsterdam, The Netherlands
| | - Carmen van der Zwaan
- Department of Molecular Hematology, Sanquin Research, Amsterdam, The Netherlands
| | - Arie J Hoogendijk
- Department of Molecular Hematology, Sanquin Research, Amsterdam, The Netherlands
| | | | - Marie José Kersten
- Lymphoma and Myeloma Center Amsterdam - LYMMCARE, Amsterdam, The Netherlands
- Department of Hematology, Cancer Center Amsterdam, Amsterdam UMC, Location University of Amsterdam, Amsterdam, The Netherlands
| | - Marcel Spaargaren
- Department of Pathology, Cancer Center Amsterdam, Amsterdam UMC, Location University of Amsterdam, Amsterdam, The Netherlands
- Lymphoma and Myeloma Center Amsterdam - LYMMCARE, Amsterdam, The Netherlands
| | - Steven T Pals
- Department of Pathology, Cancer Center Amsterdam, Amsterdam UMC, Location University of Amsterdam, Amsterdam, The Netherlands.
- Lymphoma and Myeloma Center Amsterdam - LYMMCARE, Amsterdam, The Netherlands.
| |
Collapse
|
4
|
Alcoceba M, García-Álvarez M, Medina A, Maldonado R, González-Calle V, Chillón MC, Sarasquete ME, González M, García-Sanz R, Jiménez C. MYD88 Mutations: Transforming the Landscape of IgM Monoclonal Gammopathies. Int J Mol Sci 2022; 23:5570. [PMID: 35628381 PMCID: PMC9141891 DOI: 10.3390/ijms23105570] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 02/05/2023] Open
Abstract
The MYD88 gene has a physiological role in the innate immune system. Somatic mutations in MYD88, including the most common L265P, have been associated with the development of certain types of lymphoma. MYD88L265P is present in more than 90% of patients with Waldenström's macroglobulinemia (WM) and IgM monoclonal gammopathy of undetermined significance (IgM-MGUS). The absence of MYD88 mutations in WM patients has been associated with a higher risk of transformation into aggressive lymphoma, resistance to certain therapies (BTK inhibitors), and shorter overall survival. The MyD88 signaling pathway has also been used as a target for specific therapies. In this review, we summarize the clinical applications of MYD88 testing in the diagnosis, prognosis, follow-up, and treatment of patients. Although MYD88L265P is not specific to WM, few tumors present a single causative mutation in a recurrent position. The role of the oncogene in the pathogenesis of WM is still unclear, especially considering that the mutation can be found in normal B cells of patients, as recently reported. This may have important implications for early lymphoma detection in healthy elderly individuals and for the treatment response assessment based on a MYD88L265P analysis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Ramón García-Sanz
- Hematology Department, University Hospital of Salamanca (HUS/IBSAL), CIBERONC and Cancer Research Institute of Salamanca-IBMCC (USAL-CSIC), 37007 Salamanca, Spain; (M.A.); (M.G.-Á.); (A.M.); (R.M.); (V.G.-C.); (M.C.C.); (M.E.S.); (M.G.); (C.J.)
| | | |
Collapse
|
5
|
Yu X, Li W, Deng Q, Liu H, Wang X, Hu H, Cao Y, Xu-Monette ZY, Li L, Zhang M, Lu Z, Young KH, Li Y. MYD88 L265P elicits mutation-specific ubiquitination to drive NF-κB activation and lymphomagenesis. Blood 2021; 137:1615-1627. [PMID: 33025009 PMCID: PMC7995293 DOI: 10.1182/blood.2020004918] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 09/10/2020] [Indexed: 01/03/2023] Open
Abstract
Myeloid differentiation primary response protein 88 (MYD88) is a critical universal adapter that transduces signaling from Toll-like and interleukin receptors to downstream nuclear factor-κB (NF-κB). MYD88L265P (leucine changed to proline at position 265) is a gain-of-function mutation that occurs frequently in B-cell malignancies such as Waldenstrom macroglobulinemia. In this study, E3 ligase RING finger protein family 138 (RNF138) catalyzed K63-linked nonproteolytic polyubiquitination of MYD88L265P, resulting in enhanced recruitment of interleukin-1 receptor-associated kinases and elevated NF-κB activation. However, RNF138 had little effect on wild-type MYD88 (MYD88WT). With either RNF138 knockdown or mutation on MYD88 ubiquitination sites, MYD88L265P did not constitutively activate NF-κB. A20, a negative regulator of NF-κB signaling, mediated K48-linked polyubiquitination of RNF138 for proteasomal degradation. Depletion of A20 further augmented MYD88L265P-mediated NF-κB activation and lymphoma growth. Furthermore, A20 expression correlated negatively with RNF138 expression and NF-κB activation in lymphomas with MYD88L265P and in those without. Strikingly, RNF138 expression correlated positively with NF-κB activation in lymphomas with MYD88L265P, but not in those without it. Our study revealed a novel mutation-specific biochemical reaction that drives B-cell oncogenesis, providing a therapeutic opportunity for targeting oncogenic MYD88L265P, while sparing MYD88WT, which is critical to innate immunity.
Collapse
Affiliation(s)
- Xinfang Yu
- Department of Medicine, Baylor College of Medicine, Houston, TX
| | - Wei Li
- Department of Medicine, Baylor College of Medicine, Houston, TX
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Qipan Deng
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Haidan Liu
- Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xu Wang
- Department of Medicine, Baylor College of Medicine, Houston, TX
| | - Hui Hu
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
- Department of Medical Laboratory, Central Hospital of Wuhan, Wuhan, China
| | - Ya Cao
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, China
| | - Zijun Y Xu-Monette
- Division of Hematopathology, Department of Pathology, Duke University Medical Center, Durham, NC
| | - Ling Li
- Department of Oncology, the First Affiliated Hospital, Zhengzhou University, Zhenzhou, China; and
- Lymphoma Diagnosis and Treatment Center of Henan Province, Zhengzhou, China
| | - Mingzhi Zhang
- Department of Oncology, the First Affiliated Hospital, Zhengzhou University, Zhenzhou, China; and
- Lymphoma Diagnosis and Treatment Center of Henan Province, Zhengzhou, China
| | - Zhongxin Lu
- Department of Medical Laboratory, Central Hospital of Wuhan, Wuhan, China
| | - Ken H Young
- Division of Hematopathology, Department of Pathology, Duke University Medical Center, Durham, NC
| | - Yong Li
- Department of Medicine, Baylor College of Medicine, Houston, TX
| |
Collapse
|
6
|
de Groen RAL, Schrader AMR, Kersten MJ, Pals ST, Vermaat JSP. MYD88 in the driver's seat of B-cell lymphomagenesis: from molecular mechanisms to clinical implications. Haematologica 2019; 104:2337-2348. [PMID: 31699794 PMCID: PMC6959184 DOI: 10.3324/haematol.2019.227272] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 09/19/2019] [Indexed: 12/11/2022] Open
Abstract
More than 50 subtypes of B-cell non-Hodgkin lymphoma (B-NHL) are recognized in the most recent World Health Organization classification of 2016. The current treatment paradigm, however, is largely based on 'one-size-fits-all' immune-chemotherapy. Unfortunately, this therapeutic strategy is inadequate for a significant number of patients. As such, there is an indisputable need for novel, preferably targeted, therapies based on a biologically driven classification and risk stratification. Sequencing studies identified mutations in the MYD88 gene as an important oncogenic driver in B-cell lymphomas. MYD88 mutations constitutively activate NF-κB and its associated signaling pathways, thereby promoting B-cell proliferation and survival. High frequencies of the hotspot MYD88(L265P) mutation are observed in extranodal diffuse large B-cell lymphoma and Waldenström macroglobulinemia, thereby demonstrating this mutation's potential as a disease marker. In addition, the presence of mutant MYD88 predicts survival outcome in B-NHL subtypes and it provides a therapeutic target. Early clinical trials targeting MYD88 have shown encouraging results in relapsed/refractory B-NHL. Patients with these disorders can benefit from analysis for the MYD88 hotspot mutation in liquid biopsies, as a minimally invasive method to demonstrate treatment response or resistance. Given these clear clinical implications and the crucial role of MYD88 in lymphomagenesis, we expect that analysis of this gene will increasingly be used in routine clinical practice, not only as a diagnostic classifier, but also as a prognostic and therapeutic biomarker directing precision medicine. This review focuses on the pivotal mechanistic role of mutated MYD88 and its clinical implications in B-NHL.
Collapse
Affiliation(s)
| | | | - Marie José Kersten
- Department of Hematology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam.,Lymphoma and Myeloma Center Amsterdam-LYMMCARE, Amsterdam.,Cancer Center Amsterdam, Amsterdam
| | - Steven T Pals
- Department of Hematology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam.,Cancer Center Amsterdam, Amsterdam.,Department of Pathology, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | | |
Collapse
|
7
|
Disrupting myddosome assembly in diffuse large B‑cell lymphoma cells using the MYD88 dimerization inhibitor ST2825. Oncol Rep 2019; 42:1755-1766. [PMID: 31432184 PMCID: PMC6775815 DOI: 10.3892/or.2019.7282] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 07/12/2019] [Indexed: 12/26/2022] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL), the most common type of non-Hodgkins lymphoma, is classified into germinal center and activated B cell (ABC) subtypes. The myeloid differentiation primary response gene 88 (MYD88) L265P mutation is the most prevalent oncogenic mutation among patients with ABC DLBCL, the subtype that has the more inferior outcome. MYD88 oligomerization driven by the L265P mutant augments myddosome assembly and triggers the activation of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling, highlighting MYD88 oligomerization as a potential therapeutic target for this malignancy. The synthetic peptidomimetic compound ST2825, which has previously been used as an anti-inflammatory agent, has been reported to inhibit MYD88 dimerization. In the present study, the anticancer effects of ST2825 were investigated using L265P-expressing ABC DLBCL cell lines. Using confocal microscopy and high-molecular-weight fraction experiments, it was revealed that L265P-associated myddosome assembly was disrupted by ST2825. The results also revealed that disrupting myddosome assembly promoted the death of ABC DLBCL cells harboring the L265P mutation, as well as downregulating survival signals, including the inhibition of NF-κB and the suppression of IL-10 and interferon-β production. Further co-immunoprecipitation studies demonstrated that MYD88 bound to BTK in L265P-DLBCL cells, and that this binding was abrogated following ST2825 treatment. Furthermore, the combination of myddosome-assembly disruption and BTK or BCL-2 signaling inhibition led to synergistic ABC DLBCL cell death, and more robust inhibition of NF-κB activity or increased apoptosis, respectively. The results of the present study provide evidence that the synthetic peptidomimetic compound ST2825, which targets myddosome assembly, may serve as a pharmacological inhibitor. ST2825 has the potential for clinical use in patients with L265P DLBCL, and other B-cell neoplasms driven by activated MYD88 signaling.
Collapse
|
8
|
Targeting IRAK4 disrupts inflammatory pathways and delays tumor development in chronic lymphocytic leukemia. Leukemia 2019; 34:100-114. [PMID: 31197259 PMCID: PMC8075947 DOI: 10.1038/s41375-019-0507-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 03/04/2019] [Accepted: 04/26/2019] [Indexed: 12/20/2022]
Abstract
Interleukin-1 receptor-associated kinase 4 (IRAK4) plays a critical role in Toll-like receptor (TLR) signal transduction and innate immune responses. Recruitment and subsequent activation of IRAK4 upon TLR stimulation is mediated by the myeloid differentiation primary response 88 (MYD88) adaptor protein. Around 3% of chronic lymphocytic leukemia (CLL) patients have activating mutations of MYD88, a driver mutation in this disease. Here, we studied the effects of TLR activation and the pharmacological inhibition of IRAK4 with ND2158, an IRAK4 competitive inhibitor, as a therapeutic approach in CLL. Our in vitro studies demonstrated that ND2158 preferentially killed CLL cells in a dose-dependent manner. We further observed a decrease in NF-κB and STAT3 signaling, cytokine secretion, proliferation and migration of primary CLL cells from MYD88-mutated and -unmutated cases. In the Eµ-TCL1 adoptive transfer mouse model of CLL, ND2158 delayed tumor progression and modulated the activity of myeloid and T cells. Our findings show the importance of TLR signaling in CLL development and suggest IRAK4 as a therapeutic target for this disease.
Collapse
|
9
|
Baron M, Simon L, Poulain S, Leblond V. How Recent Advances in Biology of Waldenström's Macroglobulinemia May Affect Therapy Strategy. Curr Oncol Rep 2019; 21:27. [PMID: 30806816 DOI: 10.1007/s11912-019-0768-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE OF REVIEW Waldenström macroglobulinemia (WM) is a rare lymphoproliferative disorder. Up to now, therapeutic choice was not influenced by the biological characteristics of the disease. Here, we will review how recent advances in biology in WM may affect therapy strategy. RECENT FINDINGS Recently, WM has been described as a new oncogenic model. MyD88 mutation has been described as a key driver mutation and has functional consequences which could be targeted. Other mutations, such as CXCR4 or TP53, have been reported. These mutations are associated with different clinical presentation, prognosis, and treatment response. Mutational status may influence therapeutic choice in some patients but additional data are required. New targeted therapies are on development.
Collapse
Affiliation(s)
- Marine Baron
- Department of Hematology, Pitié-Salpétrière Hospital APHP, Sorbonne Université, Boulevard de l'hôpital, 75013, Paris, France.
| | - Laurence Simon
- Department of Hematology, Centre-Hospitalier Sud-Francilien, Corbeil-Essonnes, France
| | - Stéphanie Poulain
- Department of Cellular Hematology, CHU de Lille, Lille, France.,INSERM UMRX 1172, IRCL, Lille, France
| | - Véronique Leblond
- Department of Hematology, Pitié-Salpétrière Hospital APHP, Sorbonne Université, Boulevard de l'hôpital, 75013, Paris, France
| |
Collapse
|
10
|
Treon SP, Xu L, Liu X, Hunter ZR, Yang G, Castillo JJ. Genomic Landscape of Waldenström Macroglobulinemia. Hematol Oncol Clin North Am 2018; 32:745-752. [DOI: 10.1016/j.hoc.2018.05.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Yu X, Li W, Deng Q, Li L, Hsi ED, Young KH, Zhang M, Li Y. MYD88 L265P Mutation in Lymphoid Malignancies. Cancer Res 2018; 78:2457-2462. [PMID: 29703722 DOI: 10.1158/0008-5472.can-18-0215] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 02/13/2018] [Accepted: 03/06/2018] [Indexed: 11/16/2022]
Abstract
Next-generation sequencing has revealed cancer genomic landscapes, in which over 100 driver genes that, when altered by intragenic mutations, can promote oncogenesis. MYD88 is a driver gene found in hematologic B-cell malignancies. A missense mutation (L265P) changing leucine at position 265 to proline in MYD88 is found in ∼90% of Waldenström macroglobulinemia (WM) cases and in significant portions of activated B-cell diffuse large B-cell lymphomas and IgM monoclonal gammopathy of undetermined significance. Few cancers such as WM have a single amino acid substitution in one gene like MYD88 L265P that occurs in ∼90% of cases, making WM paradigmatic for study of a single causative mutation in oncogenesis. In this review, we summarize the frequency and cancer spectrum of MYD88 L265P and its downstream effects in lymphoid cancers. Malignant B cells with MYD88 L265P are likely transformed from IgM-producing B cells either in response to T-cell-independent antigens or in response to protein antigens before class switching. We also discuss therapeutic strategies that include targeting Bruton tyrosine kinase and other kinases, interfering with the assembly of MYD88 and its interacting partners, and MYD88 L265P-specific peptide-based immunotherapy. Cancer Res; 78(10); 2457-62. ©2018 AACR.
Collapse
Affiliation(s)
- Xinfang Yu
- Department of Oncology, the First Affiliated Hospital of Zhengzhou University, Lymphoma Diagnosis and Treatment Center of Henan Province, Zhengzhou, Henan Province, China
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Wei Li
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Qipan Deng
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Ling Li
- Department of Oncology, the First Affiliated Hospital of Zhengzhou University, Lymphoma Diagnosis and Treatment Center of Henan Province, Zhengzhou, Henan Province, China
| | - Eric D Hsi
- Department of Pathology and Laboratory Medicine, Cleveland Clinic, Cleveland, Ohio
| | - Ken H Young
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Mingzhi Zhang
- Department of Oncology, the First Affiliated Hospital of Zhengzhou University, Lymphoma Diagnosis and Treatment Center of Henan Province, Zhengzhou, Henan Province, China.
| | - Yong Li
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio.
| |
Collapse
|
12
|
Castillo JJ, Hunter ZR, Yang G, Argyropoulos K, Palomba ML, Treon SP. Future therapeutic options for patients with Waldenström macroglobulinemia. Best Pract Res Clin Haematol 2016; 29:206-215. [PMID: 27825467 DOI: 10.1016/j.beha.2016.08.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 08/29/2016] [Indexed: 11/29/2022]
Abstract
Waldenström macroglobulinemia (WM) is a rare lymphoma characterized by the accumulation of IgM-producing lymphoplasmacytic cells. Although WM patients can experience prolonged remissions, the disease invariably recurs. Therefore, novel treatments associated with higher success rates and lower toxicity profiles are needed. The discovery of recurrent mutations in the MYD88 and CXCR4 genes has unraveled potential therapeutic targets in WM patients. As a result of these findings and based on the design and execution of a prospective clinical trial, the FDA granted approval to ibrutinib, an oral Bruton tyrosine kinase (BTK) inhibitor, to treat patients with symptomatic WM. The present review focuses on potential therapies that could change the landscape of treatment of patients with WM, specifically focusing on inhibitors or antagonists or the proteasome, BTK, CD38, BCL2 and the CXCR4 and MYD88 genes themselves. Novel agents with novel mechanisms of action should be evaluated in the context of carefully designed clinical trials.
Collapse
Affiliation(s)
- Jorge J Castillo
- Bing Center for Waldenström Macroglobulinemia, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
| | - Zachary R Hunter
- Bing Center for Waldenström Macroglobulinemia, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Guang Yang
- Bing Center for Waldenström Macroglobulinemia, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Kimon Argyropoulos
- Division of Hematology and Oncology, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - M Lia Palomba
- Division of Hematology and Oncology, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Steven P Treon
- Bing Center for Waldenström Macroglobulinemia, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
13
|
Paulus A, Ailawadhi S, Chanan-Khan A. Novel therapeutic targets in Waldenstrom macroglobulinemia. Best Pract Res Clin Haematol 2016; 29:216-228. [PMID: 27825468 DOI: 10.1016/j.beha.2016.08.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Accepted: 08/30/2016] [Indexed: 01/04/2023]
Abstract
Understanding of molecular mechanisms that drive Waldenstrom macroglobulinemia (WM) cell survival are rapidly evolving. This review briefly highlights emerging "WM-relevant" targets; for which therapeutic strategies are currently being investigated in preclinical and clinical studies. With the discovery of MYD88L265P signaling and remarkable activity of ibrutinib in WM, other targets within the B-cell receptor pathway are now being focused on for therapeutic intervention. Additional targets which play a role in WM cell survival include TLR7, 8 and 9, proteasome-associated deubiquitinating enzymes (USP14 and UCHL5), XPO1/CRM1 and AURKA. New drugs for established targets are also discussed. Lastly, we spotlight 3 highly innovative WM-specific therapies: MYD88 peptide inhibitors, MYD88L265P-directed immune activation and CD19-directed chimeric antigen receptor T-cell therapy, which are in various stages of development. Indeed, treatment of WM is poised to undergo a paradigm shift in the coming years towards highly disease-driven and more personalized therapeutic modalities with curative intent.
Collapse
Affiliation(s)
- Aneel Paulus
- Mayo Clinic Jacksonville, Department of Cancer Biology and Division of Hematology and Oncology, United States.
| | - Sikander Ailawadhi
- Mayo Clinic Jacksonville, Division of Hematology and Oncology, United States.
| | - Asher Chanan-Khan
- Mayo Clinic Jacksonville, Division of Hematology and Oncology, United States.
| |
Collapse
|