1
|
Nath K, Wudhikarn K, Alarcon Tomas A, Perales MA. Safety evaluation of axicabtagene ciloleucel for relapsed or refractory large B-cell lymphoma. Expert Opin Drug Saf 2023; 22:5-15. [PMID: 36737060 PMCID: PMC9975047 DOI: 10.1080/14740338.2023.2177268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 02/02/2023] [Indexed: 02/05/2023]
Abstract
INTRODUCTION CD19-directed chimeric antigen receptor (CAR) T-cell therapy is a highly effective therapy for patients with relapsed/refractory large B-cell lymphoma (LBCL) and three CD19 CAR T-cell products (axicabtagene ciloleucel, tisagenlecleucel and lisocabtagene maraleucel) are currently approved for this indication. Despite the clinical benefit of CD19 directed CAR T-cell therapy, this treatment is associated with significant morbidity from treatment-emergent toxicities. AREAS COVERED This Review discusses the safety considerations of axicabtagene ciloleucel in patients with LBCL. This includes discussion of the frequently observed immune-mediated toxicities of cytokine release syndrome and immune effector cell-associated neurotoxicity syndrome. Additionally, we review CAR T-cell therapy related cytopenias, infection, organ dysfunction and the more recently described hemophagocytic lymphohistiocytosis. EXPERT OPINION A thorough understanding of the toxicities associated with CD19-directed CAR T-cell therapy will facilitate the optimal selection of patients for this therapy. Furthermore, knowledge of preventative measures of CAR T-cell related complications, and early recognition and appropriate intervention will lead to the safe administration of these therapies, and ultimately improved outcomes for our patients.
Collapse
Affiliation(s)
- Karthik Nath
- Cellular Therapy Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kitsada Wudhikarn
- Division of Hematology and Center of Excellence in Translational Hematology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Ana Alarcon Tomas
- Division of Hematology and Hemotherapy, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Miguel-Angel Perales
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
2
|
Kast J, Nozohouri S, Zhou D, Yago MR, Chen PW, Ahamadi M, Dutta S, Upreti VV. Recent advances and clinical pharmacology aspects of Chimeric Antigen Receptor (CAR) T-cellular therapy development. Clin Transl Sci 2022; 15:2057-2074. [PMID: 35677992 PMCID: PMC9468561 DOI: 10.1111/cts.13349] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 05/19/2022] [Accepted: 05/24/2022] [Indexed: 01/25/2023] Open
Abstract
Advances in immuno-oncology have provided a variety of novel therapeutics that harness the innate immune system to identify and destroy neoplastic cells. It is noteworthy that acceptable safety profiles accompany the development of these targeted therapies, which result in efficacious cancer treatment with higher survival rates and lower toxicities. Adoptive cellular therapy (ACT) has shown promising results in inducing sustainable remissions in patients suffering from refractory diseases. Two main types of ACT include engineered Chimeric Antigen Receptor (CAR) T cells and T cell receptor (TCR) T cells. The application of these immuno-therapies in the last few years has been successful and has demonstrated a safe and rapid treatment regimen for solid and non-solid tumors. The current review presents an insight into the clinical pharmacology aspects of immuno-therapies, especially CAR-T cells. Here, we summarize the current knowledge of TCR and CAR-T cell immunotherapy with particular focus on the structure of CAR-T cells, the effects and toxicities associated with these therapies in clinical trials, risk mitigation strategies, dose selection approaches, and cellular kinetics. Finally, the quantitative approaches and modeling techniques used in the development of CAR-T cell therapies are described.
Collapse
Affiliation(s)
- Johannes Kast
- Clinical Pharmacology, Modeling & Simulation, Amgen Inc., South San Francisco, California, USA
| | - Saeideh Nozohouri
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas, USA
| | - Di Zhou
- Clinical Pharmacology, Modeling & Simulation, Amgen Inc., South San Francisco, California, USA
| | - Marc R Yago
- Clinical Pharmacology, Modeling & Simulation, Amgen Inc., South San Francisco, California, USA
| | - Po-Wei Chen
- Clinical Pharmacology, Modeling & Simulation, Amgen Inc., Thousand Oaks, California, USA
| | - Malidi Ahamadi
- Clinical Pharmacology, Modeling & Simulation, Amgen Inc., Thousand Oaks, California, USA
| | - Sandeep Dutta
- Clinical Pharmacology, Modeling & Simulation, Amgen Inc., Thousand Oaks, California, USA
| | - Vijay V Upreti
- Clinical Pharmacology, Modeling & Simulation, Amgen Inc., South San Francisco, California, USA
| |
Collapse
|
3
|
Kang CH, Kim Y, Lee DY, Choi SU, Lee HK, Park CH. c-Met-Specific Chimeric Antigen Receptor T Cells Demonstrate Anti-Tumor Effect in c-Met Positive Gastric Cancer. Cancers (Basel) 2021; 13:cancers13225738. [PMID: 34830894 PMCID: PMC8616279 DOI: 10.3390/cancers13225738] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary c-Met is known to be overexpressed in gastric cancers. Here, we developed anti-c-Met CAR T cell and measured its anti-tumor efficacy in vitro and in vivo. Our anti c-Met CAR T cells have shown selective killing of c-Met overexpressed gastric cancer cells. Based on our results, we suggest that anti-c-Met CAR T cell therapy could be effective for gastric cancer patients. Abstract Chimeric antigen receptor (CAR) technology has been highlighted in recent years as a new therapeutic approach for cancer treatment. Although the impressive efficacy of CAR-based T cell adoptive immunotherapy has been observed in hematologic cancers, limited effect has been reported on solid tumors. Approximately 20% of gastric cancer (GC) patients exhibit a high expression of c-Met. We have generated an anti c-Met CAR construct that is composed of a single-chain variable fragment (scFv) of c-Met antibody and signaling domains consisting of CD28 and CD3ζ. To test the CAR construct, we used two cell lines: the Jurkat and KHYG-1 cell lines. These are convenient cell lines, compared to primary T cells, to culture and to test CAR constructs. We transduced CAR constructs into Jurkat cells by electroporation. c-Met CAR Jurkat cells secreted interleukin-2 (IL-2) only when incubated with c-Met positive GC cells. To confirm the lytic function of CAR, the CAR construct was transduced into KHYG-1, a NK/T cell line, using lentiviral particles. c-Met CAR KHYG-1 showed cytotoxic effect on c-Met positive GC cells, while c-Met negative GC cell lines were not eradicated by c-Met CAR KHYG-1. Based on these data, we created c-Met CAR T cells from primary T cells, which showed high IL-2 and IFN-γ secretion when incubated with the c-Met positive cancer cell line. In an in vivo xenograft assay with NSG bearing MKN-45, a c-Met positive GC cell line, c-Met CAR T cells effectively inhibited the tumor growth of MKN-45. Our results show that the c-Met CAR T cell therapy can be effective on GC.
Collapse
Affiliation(s)
- Chung Hyo Kang
- Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Korea; (C.H.K.); (Y.K.); (D.Y.L.); (S.U.C.); (H.K.L.)
| | - Yeongrin Kim
- Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Korea; (C.H.K.); (Y.K.); (D.Y.L.); (S.U.C.); (H.K.L.)
- Medicinal Chemistry and Pharmacology, Korea University of Science and Technology, Daejeon 34113, Korea
| | - Da Yeon Lee
- Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Korea; (C.H.K.); (Y.K.); (D.Y.L.); (S.U.C.); (H.K.L.)
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea
| | - Sang Un Choi
- Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Korea; (C.H.K.); (Y.K.); (D.Y.L.); (S.U.C.); (H.K.L.)
| | - Heung Kyoung Lee
- Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Korea; (C.H.K.); (Y.K.); (D.Y.L.); (S.U.C.); (H.K.L.)
| | - Chi Hoon Park
- Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Korea; (C.H.K.); (Y.K.); (D.Y.L.); (S.U.C.); (H.K.L.)
- Medicinal Chemistry and Pharmacology, Korea University of Science and Technology, Daejeon 34113, Korea
- Correspondence: ; Tel.: +82-42-860-7416; Fax: +82-42-861-4246
| |
Collapse
|
4
|
Wang L, Hong R, Zhou L, Ni F, Zhang M, Zhao H, Wu W, Wang Y, Ding S, Chang AH, Hu Y, Huang H. New-Onset Severe Cytopenia After CAR-T Cell Therapy: Analysis of 76 Patients With Relapsed or Refractory Acute Lymphoblastic Leukemia. Front Oncol 2021; 11:702644. [PMID: 34277448 PMCID: PMC8278328 DOI: 10.3389/fonc.2021.702644] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/08/2021] [Indexed: 01/27/2023] Open
Abstract
Although chimeric antigen receptor T (CAR-T) cell therapy has proven to be effective in treating relapsed or refractory B-cell hematological malignancies, severe hematological toxicities remain an intractable issue. This retrospective study assessed the characteristics and risk factors of new-onset severe cytopenia following CAR-T cell infusion in 76 patients with r/r acute lymphoblastic leukemia. The rates of new-onset severe cytopenia were high, including severe neutropenia (SN) (39/56, 70%), severe anemia (SA) (35/66, 53%), and severe thrombocytopenia (ST) (31/64, 48%). Comparatively, cohorts with higher cytokine release syndrome (CRS) grades had higher incidence of severe cytopenia with prolonged duration. Multivariable analyses showed that elevated maximum (max) lg D-dimer and delayed peak time of CRS are independent risk factors for SN recovery; increased max lg IL-10 and delayed CRS recovery are risk factors for SA; high max lg ferritin is a risk factor for ST; and longer period to CRS onset or CRS recovery and higher grade of CRS are risk factors for prolonged hematological toxicities. These observations led to the conclusion that profiles of CRS, including its duration, severity and serum markers are correlated to the incidence and recovery of new-onset severe cytopenia, prompting clinical intervention for post-CAR-T severe cytopenia.
Collapse
Affiliation(s)
- Linqin Wang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
| | - Ruimin Hong
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
| | - Linghui Zhou
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
| | - Fang Ni
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
| | - Mingming Zhang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
| | - Houli Zhao
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
| | - Wenjun Wu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
| | - Yiyun Wang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
| | - Shuyi Ding
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Alex H. Chang
- Clinical Translational Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yongxian Hu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
| | - He Huang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
| |
Collapse
|
5
|
Zhu F, Wei G, Zhang M, Zhao H, Wu W, Yang L, Hu Y, Huang H. Factors Associated with Costs in Chimeric Antigen Receptor T-Cell Therapy for Patients with Relapsed/Refractory B-Cell Malignancies. Cell Transplant 2021; 29:963689720919434. [PMID: 32314613 PMCID: PMC7444226 DOI: 10.1177/0963689720919434] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Background: Chimeric antigen receptor T cells (CAR-Ts) constitute a novel therapeutic strategy for relapsed/refractory B-cell malignancies. CAR-T therapy has been extensively applied in the clinical setting; however, few systematic studies have evaluated the cost of CAR-T treatment. This study was conducted to evaluate the total cost and cost structure of CAR-T therapy and identify potential risk factors leading to increased costs. Methods: We identified the associated risk factors in 89 patients in a phase 1/2 study. The cohort included patients with acute lymphoblastic leukemia (ALL, n = 55) and non-Hodgkin’s lymphoma (NHL, n = 34). Results: Overall, the treatment of the ALL cohort was costlier than that of the NHL cohort (P < 0.001). Furthermore, in the ALL cohort, it was costlier to treat patients with a high tumor burden (P < 0.001), high cytokine release syndrome (CRS) grade (P < 0.001), and complications of infection after CAR-T cell infusion (CTI) in the whole cohort (P = 0.013) than patients with a low tumor burden, with low CRS grade, and without infection, respectively. CRS grade and length of stay (P ≤ 0.005) were independent risk factors associated with the total cost in both the ALL and NHL cohorts during CAR-T therapy. A high tumor burden, duration of fever, and treatment with tocilizumab were independent risk factors associated with the total cost in the ALL cohort (P < 0.05). Conclusions: CAR-T treatment should be extended to patients with a low tumor burden or patients in a state of complete remission, and a corticosteroid approach, as opposed to tocilizumab, may reduce costs.
Collapse
Affiliation(s)
- Feng Zhu
- Department of Hematology, Zhoushan Hospital, China.,Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Both the authors contributed equally to this work
| | - Guoqing Wei
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China.,Institute of Hematology, Zhejiang University, Hangzhou, China.,Both the authors contributed equally to this work
| | - Mingming Zhang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China.,Institute of Hematology, Zhejiang University, Hangzhou, China
| | - Houli Zhao
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China.,Institute of Hematology, Zhejiang University, Hangzhou, China
| | - Wenjun Wu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China.,Institute of Hematology, Zhejiang University, Hangzhou, China
| | - Luxin Yang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China.,Institute of Hematology, Zhejiang University, Hangzhou, China
| | - Yongxian Hu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China.,Institute of Hematology, Zhejiang University, Hangzhou, China
| | - He Huang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China.,Institute of Hematology, Zhejiang University, Hangzhou, China
| |
Collapse
|
6
|
Zhu F, Wei G, Liu Y, Zhou H, Wu W, Yang L, Huang H, Hu Y. Incidence and Risk Factors Associated with Infection after Chimeric Antigen Receptor T Cell Therapy for Relapsed/Refractory B-cell Malignancies. Cell Transplant 2021; 30:9636897211025503. [PMID: 34144648 PMCID: PMC8216343 DOI: 10.1177/09636897211025503] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Chimeric antigen receptor T cells (CAR-Ts) constitute a novel therapeutic strategy for relapsed/refractory B-cell malignancies. With the extensive application of CAR-T therapy in clinical settings, CAR-T-associated toxicities have become increasingly apparent. However, information regarding the associated infections is limited. We aimed to evaluate the incidence of infection during CAR-T therapy and identify the potential risk factors. Especially, we evaluated infections and the associated risk factors in 92 patients. The cohort included patients with acute lymphoblastic leukemia (n = 58) and non-Hodgkin lymphoma (n = 34). Fifteen cases of infection (predominantly bacterial) were observed within 28 days of CAR-T therapy, with an infection density of 0.5 infections for every 100 days-at-risk. Neutropenia before CAR-T therapy (P = .005) and prior infection (P = .046) were independent risk factors associated with infection within 28 days after CAR-T therapy; corticosteroid treatment during cytokine release syndrome (P = .013) was an independent risk factor during days 29-180 after CAR-T infusions. Moreover, the 2-year survival duration was significantly shorter in patients with infections than in those without (126 vs 409 days; P = .006). Our results suggested that effective anti-infection therapies may improve prognosis of patients who have a high infection risk. The risk of bacterial infections during the early stages of CAR-T therapy and the subsequent risk of viral infections thereafter should be considered to provide the appropriate treatment and improve patient prognosis.
Collapse
Affiliation(s)
- Feng Zhu
- Department of Hematology, 74783Zhoushan Hospital, Zhoushan, China
| | - Guoqing Wei
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China.,Institute of Hematology, Zhejiang University, Hangzhou, China
| | - Yandan Liu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China.,Institute of Hematology, Zhejiang University, Hangzhou, China
| | - Houli Zhou
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China.,Institute of Hematology, Zhejiang University, Hangzhou, China
| | - Wenjun Wu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China.,Institute of Hematology, Zhejiang University, Hangzhou, China
| | - Luxin Yang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China.,Institute of Hematology, Zhejiang University, Hangzhou, China
| | - He Huang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China.,Institute of Hematology, Zhejiang University, Hangzhou, China
| | - Yongxian Hu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China.,Institute of Hematology, Zhejiang University, Hangzhou, China
| |
Collapse
|
7
|
Strategies for having a more effective and less toxic CAR T-cell therapy for acute lymphoblastic leukemia. Med Oncol 2020; 37:100. [PMID: 33047234 PMCID: PMC7549730 DOI: 10.1007/s12032-020-01416-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 08/30/2020] [Indexed: 12/13/2022]
Abstract
In the recent years, using genetically modified T cells has been known as a rapid developing therapeutic approach due to the heartwarming results of clinical trials with patients suffering from relapsed or refractory (R/R) hematologic malignancies such as R/R Acute Lymphoblastic Leukemia (R/R ALL). One of these renowned approaches is Chimeric antigen receptors (CARs). CARs are synthetic receptors with the ability to be expressed on the surface of T lymphocytes and are specifically designed to target a tumor-associated antigen (TAA) of interest. CAR-expressing T cells have the capability of proliferating and maintaining their immunological functionality in the recipient body but like any other therapeutic approach, the safety, effectiveness, and specificity enhancement of CAR T cells still lingers in the ambiguity arena. Genetic manipulation methods, expansion protocols, infusion dosage, and conditioning regimens are all among crucial factors which can affect the efficacy of CAR T cell-based cancer therapy. In this article, we discuss the studies that have focused on various aspects that affect the efficacy and persistence of CAR T-cell therapy for ALL treatment and provide a widespread overview regarding the practical approaches capable of elevating the effectiveness and lessening the relative toxicities attributed to it.
Collapse
|
8
|
RUNX1 mutations in blast-phase chronic myeloid leukemia associate with distinct phenotypes, transcriptional profiles, and drug responses. Leukemia 2020; 35:1087-1099. [PMID: 32782381 PMCID: PMC8024199 DOI: 10.1038/s41375-020-01011-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 07/26/2020] [Accepted: 07/29/2020] [Indexed: 02/07/2023]
Abstract
Blast-phase chronic myeloid leukemia (BP-CML) is associated with additional chromosomal aberrations, RUNX1 mutations being one of the most common. Tyrosine kinase inhibitor therapy has only limited efficacy in BP-CML, and characterization of more defined molecular subtypes is warranted in order to design better treatment modalities for this poor prognosis patient group. Using whole-exome and RNA sequencing we demonstrate that PHF6 and BCORL1 mutations, IKZF1 deletions, and AID/RAG-mediated rearrangements are enriched in RUNX1mut BP-CML leading to typical mutational signature. On transcriptional level interferon and TNF signaling were deregulated in primary RUNX1mut CML cells and stem cell and B-lymphoid factors upregulated giving a rise to distinct phenotype. This was accompanied with the sensitivity of RUNX1mut blasts to CD19-CAR T cells in ex vivo assays. High-throughput drug sensitivity and resistance testing revealed leukemia cells from RUNX1mut patients to be highly responsive for mTOR-, BCL2-, and VEGFR inhibitors and glucocorticoids. These findings were further investigated and confirmed in CRISPR/Cas9-edited homozygous RUNX1−/− and heterozygous RUNX1−/mut BCR-ABL positive cell lines. Overall, our study provides insights into the pathogenic role of RUNX1 mutations and highlights personalized targeted therapy and CAR T-cell immunotherapy as potentially promising strategies for treating RUNX1mut BP-CML patients.
Collapse
|
9
|
Khalife R, Montroy J, Grigor EJM, Fergusson DA, Atkins H, Seftel M, Presseau J, Thavorn K, Holt RA, Hay K, Lalu MM, Kekre N. Building Canadian capacity for CAR-T cells in relapsed/refractory acute lymphoblastic leukaemia: a retrospective cohort study. Br J Haematol 2020; 191:e14-e19. [PMID: 32688454 DOI: 10.1111/bjh.16940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 06/11/2020] [Indexed: 11/30/2022]
Affiliation(s)
- Roy Khalife
- Department of Medicine, The Ottawa Hospital, Ottawa, Ontario, Canada.,Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Joshua Montroy
- Clinical Epidemiology Program, Ottawa Hospital Research Institiute, Ottawa, Ontario, Canada
| | - Emma J M Grigor
- Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Dean A Fergusson
- Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada.,Blood and Marrow Transplant Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,School of Epidemiology and Pubic Health, University of Ottawa, Ottawa, Ontario, Canada
| | - Harold Atkins
- Blood and Marrow Transplant Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Cancer Therapeutic Program, Ottawa Hospital Research Institute, Ontario, Ottawa, Canada
| | - Matthew Seftel
- Department of Internal Medicine, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Justin Presseau
- Clinical Epidemiology Program, Ottawa Hospital Research Institiute, Ottawa, Ontario, Canada.,School of Epidemiology and Pubic Health, University of Ottawa, Ottawa, Ontario, Canada
| | - Kednapa Thavorn
- Clinical Epidemiology Program, Ottawa Hospital Research Institiute, Ottawa, Ontario, Canada.,School of Epidemiology and Pubic Health, University of Ottawa, Ottawa, Ontario, Canada
| | - Robert A Holt
- Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Kevin Hay
- Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Manoj M Lalu
- Clinical Epidemiology Program, Ottawa Hospital Research Institiute, Ottawa, Ontario, Canada.,Department of Anesthesiology and Pain Medicine, The Ottawa Hospital, Ontario, Ottawa, Canada
| | - Natasha Kekre
- Clinical Epidemiology Program, Ottawa Hospital Research Institiute, Ottawa, Ontario, Canada.,Blood and Marrow Transplant Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| |
Collapse
|
10
|
Abstract
Chronic lymphocytic leukaemia (CLL) has long been thought to be an immunosuppressive disease and abnormalities in T-cell subset distribution and function have been observed in many studies. However, the role of T cells (if any) in disease progression remains unclear and has not been directly studied. This has changed with the advent of new therapies, such as chimeric antigen receptor-T cells, which actively use retargeted patient-derived T cells as "living drugs" for CLL. However complete responses are relatively low (~26%) and recent studies have suggested the differentiation status of patient T cells before therapy may influence efficacy. Non-chemotherapeutic drugs, such as idelalisib and ibrutinib, also have an impact on T cell populations in CLL patients. This review will highlight what is known about T cells in CLL during disease progression and after treatment, and discuss the prospects of using T cells as predictive biomarkers for immune status and response to therapy.
Collapse
MESH Headings
- Adenine/analogs & derivatives
- B-Lymphocytes/immunology
- B-Lymphocytes/pathology
- Humans
- Immunotherapy, Adoptive
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Leukemia, Lymphocytic, Chronic, B-Cell/therapy
- Piperidines
- Purines/therapeutic use
- Pyrazoles/therapeutic use
- Pyrimidines/therapeutic use
- Quinazolinones/therapeutic use
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/pathology
Collapse
Affiliation(s)
- Stephen Man
- Section of Haematology, Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff, UK
| | - Peter Henley
- Section of Haematology, Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff, UK
| |
Collapse
|
11
|
Blaeschke F, Stenger D, Kaeuferle T, Willier S, Lotfi R, Kaiser AD, Assenmacher M, Döring M, Feucht J, Feuchtinger T. Induction of a central memory and stem cell memory phenotype in functionally active CD4 + and CD8 + CAR T cells produced in an automated good manufacturing practice system for the treatment of CD19 + acute lymphoblastic leukemia. Cancer Immunol Immunother 2018; 67:1053-1066. [PMID: 29605883 PMCID: PMC11028239 DOI: 10.1007/s00262-018-2155-7] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 03/24/2018] [Indexed: 11/24/2022]
Abstract
Relapsed/refractory B-precursor acute lymphoblastic leukemia (pre-B ALL) remains a major therapeutic challenge. Chimeric antigen receptor (CAR) T cells are promising treatment options. Central memory T cells (Tcm) and stem cell-like memory T cells (Tscm) are known to promote sustained proliferation and persistence after T-cell therapy, constituting essential preconditions for treatment efficacy. Therefore, we set up a protocol for anti-CD19 CAR T-cell generation aiming at high Tcm/Tscm numbers. 100 ml peripheral blood from pediatric pre-B ALL patients was processed including CD4+/CD8+-separation, T-cell activation with modified anti-CD3/-CD28 reagents and transduction with a 4-1BB-based second generation CAR lentiviral vector. The process was performed on a closed, automated device requiring additional manual/open steps under clean room conditions. The clinical situation of these critically ill and refractory patients with leukemia leads to inconsistent cellular compositions at start of the procedure including high blast counts and low T-cell numbers with exhausted phenotype. Nevertheless, a robust T-cell product was achieved (mean CD4+ = 50%, CD8+ = 39%, transduction = 27%, Tcm = 50%, Tscm = 46%). Strong proliferative potential (up to > 100-fold), specific cytotoxicity and low expression of co-inhibitory molecules were documented. CAR T cells significantly released TH1 cytokines IFN-γ, TNF-α and IL-2 upon target-recognition. In conclusion, partly automated GMP-generation of CAR T cells from critically small blood samples was feasible with a new stimulation protocol that leads to high functionality and expansion potential, balanced CD4/CD8 ratios and a conversion to a Tcm/Tscm phenotype.
Collapse
Affiliation(s)
- Franziska Blaeschke
- Department of Pediatric Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Dr. von Hauner University Children's Hospital, Ludwig Maximilian University Munich, Lindwurmstrasse 4, 80337, Munich, Germany
| | - Dana Stenger
- Department of Pediatric Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Dr. von Hauner University Children's Hospital, Ludwig Maximilian University Munich, Lindwurmstrasse 4, 80337, Munich, Germany
| | - Theresa Kaeuferle
- Department of Pediatric Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Dr. von Hauner University Children's Hospital, Ludwig Maximilian University Munich, Lindwurmstrasse 4, 80337, Munich, Germany
| | - Semjon Willier
- Department of Pediatric Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Dr. von Hauner University Children's Hospital, Ludwig Maximilian University Munich, Lindwurmstrasse 4, 80337, Munich, Germany
| | - Ramin Lotfi
- Institute for Transfusion Medicine, University Hospital Ulm, Ulm, Germany
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Services Baden-Württemberg-Hessen, Ulm, Germany
| | | | | | - Michaela Döring
- Department of Pediatric Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Dr. von Hauner University Children's Hospital, Ludwig Maximilian University Munich, Lindwurmstrasse 4, 80337, Munich, Germany
- Department I - General Pediatrics, Hematology/Oncology, University Hospital Tübingen, Children's Hospital, Tübingen, Germany
| | - Judith Feucht
- Department I - General Pediatrics, Hematology/Oncology, University Hospital Tübingen, Children's Hospital, Tübingen, Germany
- Memorial Sloan Kettering Cancer Center, Center for Cell Engineering, New York, USA
| | - Tobias Feuchtinger
- Department of Pediatric Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Dr. von Hauner University Children's Hospital, Ludwig Maximilian University Munich, Lindwurmstrasse 4, 80337, Munich, Germany.
| |
Collapse
|
12
|
Hu Y, Li X, An Y, Duan J, Yang XD. Selection of a novel CD19 aptamer for targeted delivery of doxorubicin to lymphoma cells. Oncotarget 2018; 9:26605-26615. [PMID: 29928472 PMCID: PMC6003574 DOI: 10.18632/oncotarget.24902] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 02/26/2018] [Indexed: 12/29/2022] Open
Abstract
CD19 is overexpressed in most human B cell malignancies and considered an important tumor marker for diagnosis and treatment. Aptamers are oligonucleotides that may potentially serve as tumor-homing ligand for targeted cancer therapy with excellent affinity and specificity. In this study, we selected a novel CD19 aptamer (LC1) that was a 59-nucleotide single strand DNA. The aptamer could bind to recombinant CD19 protein with a Kd of 85.4 nM, and had minimal cross reactivity to bovine serum albumin (BSA) or ovalbumin (OVA). Moreover, the aptamer was found capable of binding with the CD19-positive lymphoma cells (Ramos and Raji), but not the CD19-negative cell lines (Jurkat and NB4). An aptamer-doxorubicin complex (Apt-Dox) was also formulated, and selectively delivered doxorubicin to CD19-positive lymphoma cells in vitro. The results indicate that aptamer LC1 can recognize CD19-positive tumor cells and may potentially function as a CD19-targeting ligand.
Collapse
Affiliation(s)
- Yan Hu
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Xiaoou Li
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Yacong An
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Jinhong Duan
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Xian-Da Yang
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| |
Collapse
|
13
|
Perales MA, Kebriaei P, Kean LS, Sadelain M. Reprint of: Building a Safer and Faster CAR: Seatbelts, Airbags, and CRISPR. Biol Blood Marrow Transplant 2018; 24:S15-S19. [PMID: 29425516 DOI: 10.1016/j.bbmt.2017.12.789] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 10/09/2017] [Indexed: 01/14/2023]
Abstract
Therapeutic T cell engineering has recently garnered widespread interest because of the success of CD19 chimeric antigen receptor (CAR) therapy. CARs are synthetic receptors for antigen that redirect the specificity and reprogram the function of the T cells in which they are genetically introduced. CARs targeting CD19, a cell surface molecule found in most leukemias and lymphomas, have yielded high remission rates in patients with chemorefractory, relapsed disease, including acute lymphoblastic leukemia, chronic lymphocytic leukemia, and non-Hodgkin lymphoma. The toxicities of this treatment include B cell aplasia, cytokine release syndrome (CRS), and neurotoxicity. Although reversible in most instances, these toxicities may require specific medical interventions, including transfer to intensive care to treat severe CRS. Guidelines for managing these toxicities are emerging. The recent report of a nonhuman primate model for CRS is poised to help advance the management of this syndrome. Finally, new engineering modalities, based on the use of targeted nucleases like CRISPR, may further enhance the efficacy and safety of CAR T cells.
Collapse
Affiliation(s)
- Miguel-Angel Perales
- Department of Medicine, Adult Bone Marrow Transplant Service, Memorial Sloan Kettering Cancer Center, New York, New York; Department of Medicine, Weill Cornell Medical College, New York, New York.
| | - Partow Kebriaei
- Department of Stem Cell Transplantation and Cellular Therapy, MD Anderson Cancer Center, Houston, Texas
| | - Leslie S Kean
- The Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Center, Seattle, Washington; The Fred Hutchinson Cancer Research Center, Seattle, Washington; Department of Pediatrics, University of Washington, Seattle, Washington
| | - Michel Sadelain
- Center for Cell Engineering and Immunology Program, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
14
|
Perales MA, Kebriaei P, Kean LS, Sadelain M. Building a Safer and Faster CAR: Seatbelts, Airbags, and CRISPR. Biol Blood Marrow Transplant 2018; 24:27-31. [PMID: 29032264 PMCID: PMC5901894 DOI: 10.1016/j.bbmt.2017.10.017] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 10/09/2017] [Indexed: 12/01/2022]
Abstract
Therapeutic T cell engineering has recently garnered widespread interest because of the success of CD19 chimeric antigen receptor (CAR) therapy. CARs are synthetic receptors for antigen that redirect the specificity and reprogram the function of the T cells in which they are genetically introduced. CARs targeting CD19, a cell surface molecule found in most leukemias and lymphomas, have yielded high remission rates in patients with chemorefractory, relapsed disease, including acute lymphoblastic leukemia, chronic lymphocytic leukemia, and non-Hodgkin lymphoma. The toxicities of this treatment include B cell aplasia, cytokine release syndrome (CRS), and neurotoxicity. Although reversible in most instances, these toxicities may require specific medical interventions, including transfer to intensive care to treat severe CRS. Guidelines for managing these toxicities are emerging. The recent report of a nonhuman primate model for CRS is poised to help advance the management of this syndrome. Finally, new engineering modalities, based on the use of targeted nucleases like CRISPR, may further enhance the efficacy and safety of CAR T cells.
Collapse
Affiliation(s)
- Miguel-Angel Perales
- Department of Medicine, Adult Bone Marrow Transplant Service, Memorial Sloan Kettering Cancer Center, New York, New York; Department of Medicine, Weill Cornell Medical College, New York, New York.
| | - Partow Kebriaei
- Department of Stem Cell Transplantation and Cellular Therapy, MD Anderson Cancer Center, Houston, Texas
| | - Leslie S Kean
- The Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Center, Seattle, Washington; The Fred Hutchinson Cancer Research Center, Seattle, Washington; Department of Pediatrics, University of Washington, Seattle, Washington
| | - Michel Sadelain
- Center for Cell Engineering and Immunology Program, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
15
|
Mesenchymal Stem Cells in Myeloid Malignancies: A Focus on Immune Escaping and Therapeutic Implications. Stem Cells Int 2017; 2017:6720594. [PMID: 28947904 PMCID: PMC5602646 DOI: 10.1155/2017/6720594] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 06/06/2017] [Accepted: 07/20/2017] [Indexed: 01/07/2023] Open
Abstract
The importance of the bone marrow microenvironment forming the so-called niche in physiologic hemopoiesis is largely known, and recent evidences support the presence of stromal alterations from the molecular to the cytoarchitectural level in hematologic malignancies. Various alterations in cell adhesion, metabolism, cytokine signaling, autophagy, and methylation patterns of tumor-derived mesenchymal stem cells have been demonstrated, contributing to the genesis of a leukemic permissive niche. This niche allows both the ineffective haematopoiesis typical of myelodysplastic syndromes and the differentiation arrest, proliferation advantage, and clone selection which is the hallmark of acute myeloid leukemia. Furthermore, the immune system, both adaptive and innate, encompassing mesenchymal-derived cells, has been shown to take part to the leukemic niche. Here, we critically review the state of art about mesenchymal stem cell role in myelodysplastic syndromes and acute myeloid leukemia, focusing on immune escaping mechanisms as a target for available and future anticancer therapies.
Collapse
|