1
|
Wu S, Jiang S, Wu S, Lin Y, Zheng J, Yu Z, Liu Z, Hong X, Xu X. Identification of a novel Bw allele with c.810C > G missense variation in a Cambodian-origin family. Transfusion 2025; 65:E21-E22. [PMID: 40102191 DOI: 10.1111/trf.18214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 02/05/2025] [Accepted: 03/06/2025] [Indexed: 03/20/2025]
Affiliation(s)
- Shaoyun Wu
- Testing Laboratory, Quzhou Central Blood Station, Quzhou, China
| | - Sujun Jiang
- Testing Laboratory, Quzhou Central Blood Station, Quzhou, China
| | - Shiquan Wu
- Testing Laboratory, Quzhou Central Blood Station, Quzhou, China
| | - Yafen Lin
- Testing Laboratory, Kaihua County Clinical Laboratory Testing Center, Kaihua, China
| | - Jianxun Zheng
- Testing Laboratory, Quzhou Central Blood Station, Quzhou, China
| | - Zhanjuan Yu
- Testing Laboratory, Quzhou Central Blood Station, Quzhou, China
| | - Zhenzhen Liu
- Testing Laboratory, Quzhou Central Blood Station, Quzhou, China
| | - Xiaozhen Hong
- Institute of Transfusion Medicine, Blood Center of Zhejiang Province, Hangzhou, China
| | - Xianguo Xu
- Institute of Transfusion Medicine, Blood Center of Zhejiang Province, Hangzhou, China
| |
Collapse
|
2
|
Thorpe R, Jensen K, Masser B, Raivola V, Kakkos A, von Wielligh K, Wong J. Donor and non-donor perspectives on receiving information from routine genomic testing of donor blood. Transfusion 2023; 63:331-338. [PMID: 36478364 PMCID: PMC10107456 DOI: 10.1111/trf.17215] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/14/2022] [Accepted: 11/14/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND Genomic testing is already used by blood collection agencies (BCAs) to identify rare blood types and ensure the best possible matching of blood. With ongoing technological developments, broader applications, such as the identification of genetic markers relevant to blood donor health, will become feasible. However, the perspectives of blood donors (and potential blood donors) on routine genomic testing of donor blood are under-researched. STUDY DESIGN AND METHODS Eight online Focus Groups were conducted: four with donors and four with non-donors. Participants were presented with three hypothetical scenarios about the current and possible future applications of genomic testing: Performing rare blood type testing; identifying donors with genetic markers associated with iron metabolism; and identifying donors with genetic markers associated with bowel cancer. RESULTS Testing to identify rare blood types was perceived to be an appropriate application for the BCA to undertake, while identifying markers associated with iron metabolism and cancer genetic markers were only partially supported. Participants raised concerns about the boundaries of acceptable testing and the implications of testing for privacy, data security, and health insurance. Perspectives of donors and non-donors on all scenarios were similar. DISCUSSION The principles of who benefits from genomic testing and the perceived role of BCAs were key in shaping participants' perspectives. Participants generally agreed that testing should be directly related to blood donation or be of benefit to the recipient or donor. Findings indicate that consent and communication are key to the acceptability of current and expanded genomic testing.
Collapse
Affiliation(s)
- Rachel Thorpe
- Clinical Services and Research, Australia Red Cross Lifeblood, West Melbourne, Victoria, Australia.,Melbourne School of Population and Global Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Kyle Jensen
- Research and Development, Australia Red Cross Lifeblood, Kelvin Grove, Queensland, Australia
| | - Barbara Masser
- Research and Development, Australia Red Cross Lifeblood, Kelvin Grove, Queensland, Australia.,School of Psychology, The University of Queensland, Brisbane, Queensland, Australia.,Department of Public Health and Primary Care, University of Cambridge, National Institute for Health and Care Research Blood and Transplant Research Unit in Donor Health and Behaviour, Cambridge, UK
| | - Vera Raivola
- Faculty of Social Sciences and Business Studies, University of Eastern Finland, Kuopio, Finland.,Finnish Red Cross Blood Service, Helsinki, Finland
| | - Athina Kakkos
- Clinical Services and Research, Australia Red Cross Lifeblood, West Melbourne, Victoria, Australia
| | - Kobie von Wielligh
- Clinical Services and Research, Australia Red Cross Lifeblood, West Melbourne, Victoria, Australia
| | - Jonathan Wong
- Clinical Services and Research, Australia Red Cross Lifeblood, West Melbourne, Victoria, Australia
| |
Collapse
|
3
|
Using Whole Genome Sequencing to Characterize Clinically Significant Blood Groups Among Healthy Older Australians. Blood Adv 2022; 6:4593-4604. [PMID: 35420653 PMCID: PMC9636324 DOI: 10.1182/bloodadvances.2022007505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 03/29/2022] [Indexed: 12/02/2022] Open
Abstract
There have been no comprehensive studies of a full range of blood group polymorphisms within the Australian population. This problem is compounded by the absence of any databases carrying genomic information on chronically transfused patients and low frequency blood group antigens in Australia. Here, we use RBCeq, a web server–based blood group genotyping software, to identify unique blood group variants among Australians and compare the variation detected vs global data. Whole-genome sequencing data were analyzed for 2796 healthy older Australians from the Medical Genome Reference Bank and compared with data from 1000 Genomes phase 3 (1KGP3) databases comprising 661 African, 347 American, 503 European, 504 East Asian, and 489 South Asian participants. There were 661 rare variants detected in this Australian sample population, including 9 variants that had clinical associations. Notably, we identified 80 variants that were computationally predicted to be novel and deleterious. No clinically significant rare or novel variants were found associated with the genetically complex ABO blood group system. For the Rh blood group system, 2 novel and 15 rare variants were found. Our detailed blood group profiling results provide a starting point for the creation of an Australian blood group variant database.
Collapse
|
4
|
Next-generation sequencing of 35 RHD variants in 16 253 serologically D- pregnant women in the Finnish population. Blood Adv 2021; 4:4994-5001. [PMID: 33057632 DOI: 10.1182/bloodadvances.2020001569] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 08/11/2020] [Indexed: 12/17/2022] Open
Abstract
Fetal RHD screening for targeted routine antenatal anti-D prophylaxis has been implemented in many countries, including Finland, since the 2010s. Comprehensive knowledge of the RHD polymorphism in the population is essential for the performance and safety of the anti-D prophylaxis program. During the first 3 years of the national screening program in Finland, over 16 000 samples from RhD- women were screened for fetal RHD; among them, 79 samples (0.5%) containing a maternal variant allele were detected. Of the detected maternal variants, 35 cases remained inconclusive using the traditional genotyping methods and required further analysis by next-generation sequencing (NGS) of the whole RHD gene to uncover the variant allele. In addition to the 13 RHD variants that have been previously reported in different populations, 8 novel variants were also detected, indicating that there is more variation of RHD in the RhD- Finnish population than has been previously known. Three of the novel alleles were identified in multiple samples; thus, they are likely specific to the original Finnish population. National screening has thus provided new information about the diversity of RHD variants in the Finnish population. The results show that NGS is a powerful method for genotyping the highly polymorphic RHD gene compared with traditional methods that rely on the detection of specific nucleotides by polymerase chain reaction amplification.
Collapse
|
5
|
Montemayor C, Simone A, Long J, Montemayor O, Delvadia B, Rivera R, Lewis KL, Shahsavari S, Gandla D, Dura K, Krishnan US, Wendzel NC, Elavia N, Grissom S, Karagianni P, Bueno M, Loy D, Cacanindin R, McLaughlin S, Tynuv M, Brunker PAR, Roback J, Adams S, Smith H, Biesecker L, Klein HG. An open-source python library for detection of known and novel Kell, Duffy and Kidd variants from exome sequencing. Vox Sang 2021; 116:451-463. [PMID: 33567470 DOI: 10.1111/vox.13035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 10/30/2020] [Accepted: 11/02/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND OBJECTIVES Next generation sequencing (NGS) has promising applications in transfusion medicine. Exome sequencing (ES) is increasingly used in the clinical setting, and blood group interpretation is an additional value that could be extracted from existing data sets. We provide the first release of an open-source software tailored for this purpose and describe its validation with three blood group systems. MATERIALS AND METHODS The DTM-Tools algorithm was designed and used to analyse 1018 ES NGS files from the ClinSeq® cohort. Predictions were correlated with serology for 5 antigens in a subset of 108 blood samples. Discrepancies were investigated with alternative phenotyping and genotyping methods, including a long-read NGS platform. RESULTS Of 116 genomic variants queried, those corresponding to 18 known KEL, FY and JK alleles were identified in this cohort. 596 additional exonic variants were identified KEL, ACKR1 and SLC14A1, including 58 predicted frameshifts. Software predictions were validated by serology in 108 participants; one case in the FY blood group and three cases in the JK blood group were discrepant. Investigation revealed that these discrepancies resulted from (1) clerical error, (2) serologic failure to detect weak antigenic expression and (3) a frameshift variant absent in blood group databases. CONCLUSION DTM-Tools can be employed for rapid Kell, Duffy and Kidd blood group antigen prediction from existing ES data sets; for discrepancies detected in the validation data set, software predictions proved accurate. DTM-Tools is open-source and in continuous development.
Collapse
Affiliation(s)
- Celina Montemayor
- Department of Transfusion Medicine, NIH Clinical Center, Bethesda, MD, USA
| | - Alexandra Simone
- Department of Transfusion Medicine, NIH Clinical Center, Bethesda, MD, USA
| | - James Long
- Department of Pathology, Walter Reed NMMC, Bethesda, MD, USA
| | - Oscar Montemayor
- Department of Transfusion Medicine, NIH Clinical Center, Bethesda, MD, USA
| | - Bhavesh Delvadia
- Blood Bank, Emory Medical Laboratories, Emory University Hospital, Atlanta, GA, USA
| | - Robert Rivera
- Department of Anatomic Pathology, Navy Medical Center, San Diego, CA, USA
| | - Katie L Lewis
- Medical Genomics and Metabolic Genetics Branch, NHGRI, Bethesda, MD, USA
| | - Shahin Shahsavari
- Department of Transfusion Medicine, NIH Clinical Center, Bethesda, MD, USA
| | - Divya Gandla
- Department of Transfusion Medicine, NIH Clinical Center, Bethesda, MD, USA
| | - Katherine Dura
- Department of Transfusion Medicine, NIH Clinical Center, Bethesda, MD, USA
| | - Uma S Krishnan
- Department of Transfusion Medicine, NIH Clinical Center, Bethesda, MD, USA
| | - Nena C Wendzel
- Department of Pathology, Walter Reed NMMC, Bethesda, MD, USA
| | - Nasha Elavia
- Department of Transfusion Medicine, NIH Clinical Center, Bethesda, MD, USA
| | - Spencer Grissom
- Department of Transfusion Medicine, NIH Clinical Center, Bethesda, MD, USA
| | - Panagiota Karagianni
- Department of Pathophysiology, National and Kapodistrian University of Athens, Athens, Greece
| | - Marina Bueno
- Department of Transfusion Medicine, NIH Clinical Center, Bethesda, MD, USA
| | - Debrean Loy
- Department of Transfusion Medicine, NIH Clinical Center, Bethesda, MD, USA
| | - Rizaldi Cacanindin
- Department of Transfusion Medicine, NIH Clinical Center, Bethesda, MD, USA
| | - Steven McLaughlin
- Department of Transfusion Medicine, NIH Clinical Center, Bethesda, MD, USA
| | - Maxim Tynuv
- Department of Transfusion Medicine, NIH Clinical Center, Bethesda, MD, USA
| | - Patricia A R Brunker
- Division of Transfusion Medicine, Department of Pathology, The Johns Hopkins Hospital, Baltimore, MD, USA
| | - John Roback
- Center for Transfusion and Cellular Therapies, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Sharon Adams
- Department of Transfusion Medicine, NIH Clinical Center, Bethesda, MD, USA
| | | | - Leslie Biesecker
- Medical Genomics and Metabolic Genetics Branch, NHGRI, Bethesda, MD, USA
| | - Harvey G Klein
- Department of Transfusion Medicine, NIH Clinical Center, Bethesda, MD, USA
| |
Collapse
|
6
|
Rieneck K, Egeberg Hother C, Clausen FB, Jakobsen MA, Bergholt T, Hellmuth E, Grønbeck L, Dziegiel MH. Next Generation Sequencing-Based Fetal ABO Blood Group Prediction by Analysis of Cell-Free DNA from Maternal Plasma. Transfus Med Hemother 2020; 47:45-53. [PMID: 32110193 DOI: 10.1159/000505464] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 12/14/2019] [Indexed: 12/22/2022] Open
Abstract
Introduction ABO blood group incompatibility between a pregnant woman and her fetus as a cause of morbidity or mortality of the fetus or newborn remains an important, albeit rare, risk. When a pregnant woman has a high level of anti-A or anti-B IgG antibodies, the child may be at risk for hemolytic disease of the fetus and newborn (HDFN). Performing a direct prenatal determination of the fetal ABO blood group can provide valuable clinical information. Objective Here, we report a next generation sequencing (NGS)-based assay for predicting the prenatal ABO blood group. Materials and Methods A total of 26 plasma samples from 26 pregnant women were tested from gestational weeks 12 to 35. Of these samples, 20 were clinical samples and 6 were test samples. Extracted cell-free DNA was PCR-amplified using 2 primer sets followed by NGS. NGS data were analyzed by 2 different methods, FASTQ analysis and a grep search, to ensure robust results. The fetal ABO prediction was compared with the known serological infant ABO type, which was available for 19 samples. Results There was concordance for 19 of 19 predictable samples where the phenotype information was available and when the analysis was done by the 2 methods. For immunized pregnant women (n = 20), the risk of HDFN was predicted for 12 fetuses, and no risk was predicted for 7 fetuses; one result of the clinical samples was indeterminable. Cloning and sequencing revealed a novel variant harboring the same single nucleotide variations as ABO*O.01.24 with an additional c.220C>T substitution. An additional indeterminable result was found among the 6 test samples and was caused by maternal heterozygosity. The 2 indeterminable samples demonstrated limitations to the assay due to hybrid ABO genes or maternal heterozygosity. Conclusions We pioneered an NGS-based fetal ABO prediction assay based on a cell-free DNA analysis from maternal plasma and demonstrated its application in a small number of samples. Based on the calculations of variant frequencies and ABO*O.01/ABO*O.02 heterozygote frequency, we estimate that we can assign a reliable fetal ABO type in approximately 95% of the forthcoming clinical samples of type O pregnant women. Despite the vast genetic variations underlying the ABO blood groups, many variants are rare, and prenatal ABO prediction is possible and adds valuable early information for the prevention of ABO HDFN.
Collapse
Affiliation(s)
- Klaus Rieneck
- Department of Clinical Immunology, Section 2034, Rigshospitalet, Copenhagen, Denmark
| | | | | | | | - Thomas Bergholt
- Department of Obstetrics, Rigshospitalet, Copenhagen, Denmark
| | | | - Lene Grønbeck
- Department of Obstetrics, Rigshospitalet, Copenhagen, Denmark
| | | |
Collapse
|
7
|
Fichou Y, Berlivet I, Richard G, Tournamille C, Castilho L, Férec C. Defining Blood Group Gene Reference Alleles by Long-Read Sequencing: Proof of Concept in the ACKR1 Gene Encoding the Duffy Antigens. Transfus Med Hemother 2019; 47:23-32. [PMID: 32110191 DOI: 10.1159/000504584] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 11/01/2019] [Indexed: 01/31/2023] Open
Abstract
Background In the novel era of blood group genomics, (re-)defining reference gene/allele sequences of blood group genes has become an important goal to achieve, both for diagnostic and research purposes. As novel potent sequencing technologies are available, we thought to investigate the variability encountered in the three most common alleles of ACKR1, the gene encoding the clinically relevant Duffy antigens, at the haplotype level by a long-read sequencing approach. Materials and Methods After long-range PCR amplification spanning the whole ACKR1 gene locus (∼2.5 kilobases), amplicons generated from 81 samples with known genotypes were sequenced in a single read by using the Pacific Biosciences (PacBio) single molecule, real-time (SMRT) sequencing technology. Results High-quality sequencing reads were obtained for the 162 alleles (accuracy >0.999). Twenty-two nucleotide variations reported in databases were identified, defining 19 haplotypes: four, eight, and seven haplotypes in 46 ACKR1*01, 63 ACKR1*02, and 53 ACKR1*02N.01 alleles, respectively. Discussion Overall, we have defined a subset of reference alleles by third-generation (long-read) sequencing. This technology, which provides a "longitudinal" overview of the loci of interest (several thousand base pairs) and is complementary to the second-generation (short-read) next-generation sequencing technology, is of critical interest for resolving novel, rare, and null alleles.
Collapse
Affiliation(s)
- Yann Fichou
- EFS, Inserm, Univ Brest, UMR 1078, GGB, Brest, France.,Laboratoire d'Excellence GR-Ex, Paris, France
| | | | | | - Christophe Tournamille
- Laboratoire d'Excellence GR-Ex, Paris, France.,IMRB-Inserm U955 Equipe 2 Transfusion et Maladies du Globule Rouge, EFS Ile-de-France, Créteil, France
| | | | - Claude Férec
- EFS, Inserm, Univ Brest, UMR 1078, GGB, Brest, France.,Laboratoire de Génétique Moléculaire et d'Histocompatibilité, CHU Morvan, Brest, France
| |
Collapse
|
8
|
Montemayor C, Brunker PAR, Keller MA. Banking with precision: transfusion medicine as a potential universal application in clinical genomics. Curr Opin Hematol 2019; 26:480-487. [PMID: 31490317 PMCID: PMC7302862 DOI: 10.1097/moh.0000000000000536] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
PURPOSE OF REVIEW To summarize the most recent scientific progress in transfusion medicine genomics and discuss its role within the broad genomic precision medicine model, with a focus on the unique computational and bioinformatic aspects of this emergent field. RECENT FINDINGS Recent publications continue to validate the feasibility of using next-generation sequencing (NGS) for blood group prediction with three distinct approaches: exome sequencing, whole genome sequencing, and PCR-based targeted NGS methods. The reported correlation of NGS with serologic and alternative genotyping methods ranges from 92 to 99%. NGS has demonstrated improved detection of weak antigens, structural changes, copy number variations, novel genomic variants, and microchimerism. Addition of a transfusion medicine interpretation to any clinically sequenced genome is proposed as a strategy to enhance the cost-effectiveness of precision genomic medicine. Interpretation of NGS in the blood group antigen context requires not only advanced immunohematology knowledge, but also specialized software and hardware resources, and a bioinformatics-trained workforce. SUMMARY Blood transfusions are a common inpatient procedure, making blood group genomics a promising facet of precision medicine research. Further efforts are needed to embrace transfusion bioinformatic challenges and evaluate its clinical utility.
Collapse
Affiliation(s)
- Celina Montemayor
- Department of Transfusion Medicine, National Institutes of Health Clinical Center, Bethesda, MD
| | - Patricia A. R. Brunker
- Division of Transfusion Medicine, Department of Pathology, The Johns Hopkins Hospital, Baltimore, MD
- American Red Cross, Greater Chesapeake and Potomac Region, Baltimore, MD
| | | |
Collapse
|