1
|
Battaglia MR, Cannova J, Madero-Marroquin R, Patel AA. Treatment of Anemia in Lower-Risk Myelodysplastic Syndrome. Curr Treat Options Oncol 2024; 25:752-768. [PMID: 38814537 DOI: 10.1007/s11864-024-01217-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2024] [Indexed: 05/31/2024]
Abstract
OPINION STATEMENT A majority of patients with lower-risk myelodysplastic syndrome (MDS) will present with or develop anemia. Anemia in MDS is associated with decreased quality of life and may correlate with decreased progression-free survival and overall survival. In this state of the art review we summarize current risk stratification approaches to identify lower-risk MDS (LR-MDS), the natural history of the disease, and meaningful clinical endpoints. The treatment landscape of LR-MDS with anemia is also rapidly evolving; we review the role of supportive care, erythropoietin stimulating agents, lenalidomide, luspatercept, hypomethylating agents (HMAs), and immunosuppressive therapy (IST) in the management of LR-MDS with anemia. In patients with deletion 5q (del5q) syndrome lenalidomide has both efficacy and durability of response. For patients without del5q who need treatment, the management approach is impacted by serum erythropoietin (EPO) level, SF3B1 mutation status, and ring sideroblast status. Given the data from the Phase III COMMANDS trial, we utilize luspatercept in those with SF3B1 mutation or ring sideroblasts that have an EPO level < 500 U/L; in patients without an SF3B1 mutation or ring sideroblasts there is equipoise between luspatercept and use of an erythropoietin stimulating agent (ESA). For patients who have an EPO level ≥ 500 U/L or have been previously treated there is not a clear standard of care. For those without previous luspatercept exposure it can be considered particularly if there is an SF3B1 mutation or the presence of ring sideroblasts. Other options include HMAs or IST; the Phase III IMERGE trial supports the efficacy of the telomerase inhibitor imetelstat in this setting and this may become a standard option in the future as well.
Collapse
Affiliation(s)
| | - Joseph Cannova
- Section of Hematology-Oncology, Department of Medicine, University of Chicago, 5841 S Maryland Avenue MC 2115, Chicago, IL, 60637, USA
| | - Rafael Madero-Marroquin
- Section of Hematology-Oncology, Department of Medicine, University of Chicago, 5841 S Maryland Avenue MC 2115, Chicago, IL, 60637, USA
| | - Anand A Patel
- Section of Hematology-Oncology, Department of Medicine, University of Chicago, 5841 S Maryland Avenue MC 2115, Chicago, IL, 60637, USA.
| |
Collapse
|
2
|
Li Y, Cheng L, Peng Y, Wang L, Zhang W, Yin Y, Zhang J, Wu X. The role of genetic factors in pediatric myelodysplastic syndromes with different outcomes. BMC Pediatr 2024; 24:28. [PMID: 38191334 PMCID: PMC10773107 DOI: 10.1186/s12887-023-04492-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 12/18/2023] [Indexed: 01/10/2024] Open
Abstract
BACKGROUND Pediatric myelodysplastic syndromes (MDS) are rare disorders with an unrevealed pathogenesis. Our aim is to explore the role of genetic factors in the pathogenesis of MDS in children with different outcomes and to discover the correlation between genetic features and clinical outcomes as well as disease characteristics. METHODS We conducted an analysis of archived genetic data from 26 patients diagnosed with pediatric MDS at our institution between 2015 and 2021, examining the association between different genetic characteristics and clinical manifestations as well as prognosis. Additionally, We presented three cases with distinct genetic background and outcomes as examples to elaborate the role of genetic factors in pediatric MDS with different prognoses. RESULTS Genetic variations were detected in 13 out of the 26 patients, including 8 patients with co-occurrence of somatic and germline mutations (CSGMs) and 5 patients with somatic mutations alone. Our analysis revealed that advanced MDS (4/8, 50% vs. 1/5, 20% and 4/11, 36.4%), PD (3/8, 37.5% vs. 1/5, 20% and 1/11 9.1%), and TD (6/8, 75% vs. 2/5, 40% and 2/11, 18.2%) were more common in patients with CSGMs than those with somatic mutations alone or without any mutations. We also found out in our study that 8 patients with CSGMs had evidently different clinical outcomes, and we presented 3 of them as examples for elaboration. Case 1 with germline and somatic mutations of unknown significance had a relatively slow disease course and a good prognosis. Case 2 with compound heterozygous germline SBDS variants and somatic mutations like del20q had a stable disease course and a reversed outcome. Case 3 with a germline GATA2 variant and somatic mutations including - 7 had a rapidly progressive disease course and a worst prognosis. CONCLUSION Our findings indicate that genetic background of pediatric MDS is closely linked with disease characteristics as well as outcomes and that CSGMs may lead to disease progression. It should be emphasized that the interaction between certain germline variants and somatic mutations, such as SBDS and del20q, may result in hematopoietic stem cell adaptation (improved hematopoiesis) and reversed clinical outcomes, which can facilitate the development of targeted therapy.
Collapse
Affiliation(s)
- Ying Li
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Li Cheng
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yun Peng
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Lin Wang
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wenzhi Zhang
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yuhong Yin
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jing Zhang
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiaoyan Wu
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
3
|
Bouchla A, Papageorgiou SG, Symeonidis A, Sakellari I, Zikos P, Thomopoulos TP, Hatzimichael E, Galanopoulos A, Vyniou NA, Kotsianidis I, Pappa V. Evaluation of complete response to azacitidine according to the revised International Working Group 2023 response criteria for higher risk MDS. Does it make a difference in patients' outcome? Leukemia 2023; 37:2517-2519. [PMID: 37816955 PMCID: PMC10681887 DOI: 10.1038/s41375-023-02051-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/12/2023] [Accepted: 09/21/2023] [Indexed: 10/12/2023]
Affiliation(s)
- Anthi Bouchla
- Second Propaedeutic Department of Internal Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Sotirios G Papageorgiou
- Second Propaedeutic Department of Internal Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Argyris Symeonidis
- Department of Internal Medicine, University Hospital of Patras, Rio, Greece
| | - Ioanna Sakellari
- Department of Hematology and Stem cell Transplantation, Georgios Papanicolaou General Hospital, Thessaloniki, Greece
| | - Panagiotis Zikos
- Department of Hematology, Aghios Andreas General Hospital, Patras, Greece
| | - Thomas P Thomopoulos
- Second Propaedeutic Department of Internal Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | | | | | | | - Ioannis Kotsianidis
- Department of Hematology, Democritus University of Thrace Medical School, Alexandroupolis, Greece
| | - Vasiliki Pappa
- Second Propaedeutic Department of Internal Medicine, National and Kapodistrian University of Athens, Athens, Greece.
| |
Collapse
|
4
|
Brunner AM, Platzbecker U, DeZern AE, Zeidan AM. Are We Ready For "Triplet" Therapy in Higher-Risk MDS? Clin Hematol Int 2023; 5:88301. [PMID: 37933301 PMCID: PMC10625655 DOI: 10.46989/001c.88301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 08/26/2023] [Indexed: 11/08/2023] Open
Abstract
Higher-risk Myelodysplastic Syndromes/Neoplasms (MDS) represent an ongoing therapeutic challenge, with few effective therapies, many of which may have limited use in this older patient population often with considerations around comorbidities. Outside of transplant, azacitidine and decitabine remain the only disease-modifying therapies, and are palliative in nature. Recent interest has grown in extending combination chemotherapies used to treat acute myeloid leukemia (AML) to patients with MDS, including novel combination chemotherapy "doublets" and "triplets." In this review, we discuss considerations around combination chemotherapy in MDS, specifically as relates to study design, appropriate endpoints, supportive considerations, and how to integrate these into the current treatment paradigm. New therapies in MDS are desperately needed but also require considerations particular to this unique patient population.
Collapse
Affiliation(s)
- Andrew M Brunner
- Leukemia Program, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | | | - Amy E DeZern
- Sidney Kimmel Comprehensive Cancer Centre at John Hopkins, Baltimore, MD, USA
| | - Amer M Zeidan
- Section of Hematology, Department of Internal Medicine, Yale University School of Medicine and Yale Cancer Center, New Haven, CT, USA
| |
Collapse
|
5
|
Pleyer L, Vaisband M, Drost M, Pfeilstöcker M, Stauder R, Heibl S, Sill H, Girschikofsky M, Stampfl-Mattersberger M, Pichler A, Hartmann B, Petzer A, Schreder M, Schmitt CA, Vallet S, Melchardt T, Zebisch A, Pichler P, Zaborsky N, Machherndl-Spandl S, Wolf D, Keil F, Hasenauer J, Larcher-Senn J, Greil R. Cox proportional hazards deep neural network identifies peripheral blood complete remission to be at least equivalent to morphologic complete remission in predicting outcomes of patients treated with azacitidine-A prospective cohort study by the AGMT. Am J Hematol 2023; 98:1685-1698. [PMID: 37548390 DOI: 10.1002/ajh.27046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/07/2023] [Accepted: 07/16/2023] [Indexed: 08/08/2023]
Abstract
The current gold standard of response assessment in patients with myelodysplastic syndromes (MDS), chronic myelomonocytic leukemia (CMML), and acute myeloid leukemia (AML) is morphologic complete remission (CR) and CR with incomplete count recovery (CRi), both of which require an invasive BM evaluation. Outside of clinical trials, BM evaluations are only performed in ~50% of patients during follow-up, pinpointing a clinical need for response endpoints that do not necessitate BM assessments. We define and validate a new response type termed "peripheral blood complete remission" (PB-CR) that can be determined from the differential blood count and clinical parameters without necessitating a BM assessment. We compared the predictive value of PB-CR with morphologic CR/CRi in 1441 non-selected, consecutive patients diagnosed with MDS (n = 522; 36.2%), CMML (n = 132; 9.2%), or AML (n = 787; 54.6%), included within the Austrian Myeloid Registry (aMYELOIDr; NCT04438889). Time-to-event analyses were adjusted for 17 covariates remaining in the final Cox proportional hazards (CPH) model. DeepSurv, a CPH neural network model, and permutation-based feature importance were used to validate results. 1441 patients were included. Adjusted median overall survival for patients achieving PB-CR was 22.8 months (95%CI 18.9-26.2) versus 10.4 months (95%CI 9.7-11.2) for those who did not; HR = 0.366 (95%CI 0.303-0.441; p < .0001). Among patients achieving CR, those additionally achieving PB-CR had a median adjusted OS of 32.6 months (95%CI 26.2-49.2) versus 21.7 months (95%CI 16.9-27.7; HR = 0.400 [95%CI 0.190-0.844; p = .0161]) for those who did not. Our deep neural network analysis-based findings from a large, prospective cohort study indicate that BM evaluations solely for the purpose of identifying CR/CRi can be omitted.
Collapse
Affiliation(s)
- Lisa Pleyer
- Austrian Group of Medical Tumor Therapy (AGMT) Study Group, Vienna, Austria
- Salzburg Cancer Research Institute (SCRI) Center for Clinical Cancer and Immunology Trials (CCCIT), Salzburg, Austria
- Cancer Cluster Salzburg (CCS), Salzburg, Austria
- 3rd Medical Department with Hematology, Medical Oncology, Hemostaseology, Rheumatology and Infectiology, Oncologic Center, Paracelsus Medical University, Salzburg, Austria
| | - Marc Vaisband
- Salzburg Cancer Research Institute (SCRI) Center for Clinical Cancer and Immunology Trials (CCCIT), Salzburg, Austria
- Cancer Cluster Salzburg (CCS), Salzburg, Austria
- 3rd Medical Department with Hematology, Medical Oncology, Hemostaseology, Rheumatology and Infectiology, Oncologic Center, Paracelsus Medical University, Salzburg, Austria
- Life & Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Manuel Drost
- Assign Data Management and Biostatistics GmbH, Innsbruck, Austria
| | - Michael Pfeilstöcker
- Austrian Group of Medical Tumor Therapy (AGMT) Study Group, Vienna, Austria
- 3rd Medical Department for Hematology and Oncology, Hanusch Hospital, Vienna, Austria
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University Vienna, Vienna, Austria
| | - Reinhard Stauder
- Austrian Group of Medical Tumor Therapy (AGMT) Study Group, Vienna, Austria
- Department of Hematology and Oncology, Comprehensive Cancer Center Innsbruck (CCCI), Medical University of Innsbruck (MUI), Innsbruck, Austria
| | - Sonja Heibl
- Austrian Group of Medical Tumor Therapy (AGMT) Study Group, Vienna, Austria
- 4th Medical Department of Internal Medicine, Hematology, Internistic Oncology and Palliative Medicine, Klinikum Wels-Grieskirchen GmbH, Wels, Austria
| | - Heinz Sill
- Austrian Group of Medical Tumor Therapy (AGMT) Study Group, Vienna, Austria
- Division of Hematology, Medical University of Graz, Graz, Austria
| | - Michael Girschikofsky
- Austrian Group of Medical Tumor Therapy (AGMT) Study Group, Vienna, Austria
- 1st Medical Department, Hematology with Stem Cell Transplantation, Hemostaseology and Medical Oncology, Ordensklinikum Linz GmbH Elisabethinen, Linz, Austria
| | - Margarete Stampfl-Mattersberger
- Austrian Group of Medical Tumor Therapy (AGMT) Study Group, Vienna, Austria
- Department of Internal Medicine 2, Wiener Gesundheitsverbund, Klinik Donaustadt, Vienna, Austria
| | - Angelika Pichler
- Austrian Group of Medical Tumor Therapy (AGMT) Study Group, Vienna, Austria
- Department of Internal Medicine, Hematology and Internal Oncology, LKH Hochsteiermark, Leoben, Austria
| | - Bernd Hartmann
- Austrian Group of Medical Tumor Therapy (AGMT) Study Group, Vienna, Austria
- Department of Internal Medicine 2, Landeskrankenhaus Feldkirch, Feldkirch, Austria
| | - Andreas Petzer
- Austrian Group of Medical Tumor Therapy (AGMT) Study Group, Vienna, Austria
- Internal Medicine I: Medical Oncology and Hematology, Ordensklinikum Linz GmbH, Barmherzige Schwestern, Linz, Austria
| | - Martin Schreder
- Austrian Group of Medical Tumor Therapy (AGMT) Study Group, Vienna, Austria
- 1st Department of Internal Medicine, Center for Oncology and Hematology, Wiener Gesundheitsverbund, Klinik Ottakring, Vienna, Austria
| | - Clemens A Schmitt
- Austrian Group of Medical Tumor Therapy (AGMT) Study Group, Vienna, Austria
- Department of Hematology and Internal Oncology, Kepler University Hospital, Johannes Kepler University, Linz, Austria
- Charité-University Medical Center, Molecular Cancer Research Center, Berlin, Germany
| | - Sonia Vallet
- Austrian Group of Medical Tumor Therapy (AGMT) Study Group, Vienna, Austria
- University Hospital Krems, Department of Internal Medicine 2, Karl Landsteiner Private University of Health Sciences, Krems, Austria
| | - Thomas Melchardt
- Austrian Group of Medical Tumor Therapy (AGMT) Study Group, Vienna, Austria
- Salzburg Cancer Research Institute (SCRI) Center for Clinical Cancer and Immunology Trials (CCCIT), Salzburg, Austria
- Cancer Cluster Salzburg (CCS), Salzburg, Austria
- 3rd Medical Department with Hematology, Medical Oncology, Hemostaseology, Rheumatology and Infectiology, Oncologic Center, Paracelsus Medical University, Salzburg, Austria
| | - Armin Zebisch
- Austrian Group of Medical Tumor Therapy (AGMT) Study Group, Vienna, Austria
- Division of Hematology, Medical University of Graz, Graz, Austria
- Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria
| | - Petra Pichler
- Austrian Group of Medical Tumor Therapy (AGMT) Study Group, Vienna, Austria
- Clinical Department for Internal Medicine, University Hospital St Poelten, Karl Landsteiner University of Health Sciences, St Poelten, Austria
| | - Nadja Zaborsky
- Salzburg Cancer Research Institute (SCRI) Center for Clinical Cancer and Immunology Trials (CCCIT), Salzburg, Austria
- Cancer Cluster Salzburg (CCS), Salzburg, Austria
- 3rd Medical Department with Hematology, Medical Oncology, Hemostaseology, Rheumatology and Infectiology, Oncologic Center, Paracelsus Medical University, Salzburg, Austria
- Laboratory of Immunological and Molecular Cancer Research (LIMCR), Salzburg, Austria
| | - Sigrid Machherndl-Spandl
- Austrian Group of Medical Tumor Therapy (AGMT) Study Group, Vienna, Austria
- 1st Medical Department, Hematology with Stem Cell Transplantation, Hemostaseology and Medical Oncology, Ordensklinikum Linz GmbH Elisabethinen, Linz, Austria
| | - Dominik Wolf
- Austrian Group of Medical Tumor Therapy (AGMT) Study Group, Vienna, Austria
- Department of Hematology and Oncology, Comprehensive Cancer Center Innsbruck (CCCI), Medical University of Innsbruck (MUI), Innsbruck, Austria
| | - Felix Keil
- Austrian Group of Medical Tumor Therapy (AGMT) Study Group, Vienna, Austria
- 3rd Medical Department for Hematology and Oncology, Hanusch Hospital, Vienna, Austria
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University Vienna, Vienna, Austria
| | - Jan Hasenauer
- Life & Medical Sciences Institute, University of Bonn, Bonn, Germany
| | | | - Richard Greil
- Austrian Group of Medical Tumor Therapy (AGMT) Study Group, Vienna, Austria
- Salzburg Cancer Research Institute (SCRI) Center for Clinical Cancer and Immunology Trials (CCCIT), Salzburg, Austria
- Cancer Cluster Salzburg (CCS), Salzburg, Austria
- 3rd Medical Department with Hematology, Medical Oncology, Hemostaseology, Rheumatology and Infectiology, Oncologic Center, Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
6
|
Schulz E, Aplan PD, Freeman SD, Pavletic SZ. Moving toward a conceptualization of measurable residual disease in myelodysplastic syndromes. Blood Adv 2023; 7:4381-4394. [PMID: 37267435 PMCID: PMC10432617 DOI: 10.1182/bloodadvances.2023010098] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/03/2023] [Accepted: 05/22/2023] [Indexed: 06/04/2023] Open
Abstract
Approximately 90% of patients with myelodysplastic syndromes (MDSs) have somatic mutations that are known or suspected to be oncogenic in the malignant cells. The genetic risk stratification of MDSs has evolved substantially with the introduction of the clinical molecular international prognostic scoring system, which establishes next-generation sequencing at diagnosis as a standard of care. Furthermore, the International Consensus Classification of myeloid neoplasms and acute leukemias has refined the MDS diagnostic criteria with the introduction of a new MDS/acute myeloid leukemia category. Monitoring measurable residual disease (MRD) has historically been used to define remission status, improve relapse prediction, and determine the efficacy of antileukemic drugs in patients with acute and chronic leukemias. However, in contrast to leukemias, assessment of MRD, including tracking of patient-specific mutations, has not yet been formally defined as a biomarker for MDS. This article summarizes current evidence and challenges and provides a conceptual framework for incorporating MRD into the treatment of MDS and future clinical trials.
Collapse
Affiliation(s)
- Eduard Schulz
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
- Myeloid Malignancies Program, National Institutes of Health, Bethesda, MD
| | - Peter D. Aplan
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
- Myeloid Malignancies Program, National Institutes of Health, Bethesda, MD
| | - Sylvie D. Freeman
- Department of Clinical Immunology, Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Steven Z. Pavletic
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
- Myeloid Malignancies Program, National Institutes of Health, Bethesda, MD
| |
Collapse
|
7
|
Kagan AB, Garrison DA, Anders NM, Webster J, Baker SD, Yegnasubramanian S, Rudek MA. DNA methyltransferase inhibitor exposure-response: Challenges and opportunities. Clin Transl Sci 2023; 16:1309-1322. [PMID: 37345219 PMCID: PMC10432879 DOI: 10.1111/cts.13548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/04/2023] [Accepted: 05/10/2023] [Indexed: 06/23/2023] Open
Abstract
Although DNA methyltransferase inhibitors (DNMTis), such as azacitidine and decitabine, are used extensively in the treatment of myelodysplastic syndromes and acute myeloid leukemia, there remain unanswered questions about DNMTi's mechanism of action and predictors of clinical response. Because patients often remain on single-agent DNMTis or DNMTi-containing regimens for several months before knowing whether clinical benefit can be achieved, the development and clinical validation of response-predictive biomarkers represents an important unmet need in oncology. In this review, we will summarize the clinical studies that led to the approval of azacitidine and decitabine, as well as the real-world experience with these drugs. We will then focus on biomarker development for DNMTis-specifically, efforts at determining exposure-response relationships and challenges that remain impacting the broader clinical translation of these methods. We will highlight recent progress in liquid-chromatography tandem mass spectrometry technology that has allowed for the simultaneous measurement of decitabine genomic incorporation and global DNA methylation, which has significant potential as a mechanism-of-action based biomarker in patients on DNMTis. Last, we will cover important research questions that need to be addressed in order to optimize this potential biomarker for clinical use.
Collapse
Affiliation(s)
- Amanda B. Kagan
- Department of Oncology, School of MedicineJohns Hopkins UniversityBaltimoreMarylandUSA
- Department of Medicine, School of MedicineJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Dominique A. Garrison
- Department of Medicine, School of MedicineJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Nicole M. Anders
- Department of Oncology, School of MedicineJohns Hopkins UniversityBaltimoreMarylandUSA
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins UniversityBaltimoreMarylandUSA
| | - Jonathan A. Webster
- Department of Oncology, School of MedicineJohns Hopkins UniversityBaltimoreMarylandUSA
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins UniversityBaltimoreMarylandUSA
| | - Sharyn D. Baker
- Division of Pharmaceutics and Pharmacology, College of PharmacyThe Ohio State UniversityColumbusOhioUSA
| | - Srinivasan Yegnasubramanian
- Department of Oncology, School of MedicineJohns Hopkins UniversityBaltimoreMarylandUSA
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins UniversityBaltimoreMarylandUSA
| | - Michelle A. Rudek
- Department of Oncology, School of MedicineJohns Hopkins UniversityBaltimoreMarylandUSA
- Department of Medicine, School of MedicineJohns Hopkins UniversityBaltimoreMarylandUSA
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins UniversityBaltimoreMarylandUSA
| |
Collapse
|
8
|
Stempel JM, Xie Z, Bewersdorf JP, Stahl M, Zeidan AM. Evolution of Therapeutic Benefit Measurement Criteria in Myelodysplastic Syndromes/Neoplasms. Cancer J 2023; 29:203-211. [PMID: 37195777 DOI: 10.1097/ppo.0000000000000666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
ABSTRACT Myelodysplastic syndromes/neoplasms (MDS) are heterogeneous, clonal myeloid neoplasms characterized by ineffective hematopoiesis, progressive cytopenias, and an increased risk of progression to acute myeloid leukemia. The diversity in disease severity, morphology, and genetic landscape challenges not only novel drug development but also therapeutic response assessment. The MDS International Working Group (IWG) response criteria were first published in the year 2000 focusing on measures of blast burden reduction and hematologic recovery. Despite revision of the IWG criteria in 2006, correlation between IWG-defined responses and patient-focused outcomes, including long-term benefits, remains limited and has potentially contributed to failures of several phase III clinical trials. Several IWG 2006 criteria also lacked clear definitions leading to problems in practical applications and interobserver and intraobserver consistency of response reporting. Although the 2018 revision addressed lower-risk MDS, the most recent update in 2023 redefined responses for higher-risk MDS and has set out to provide clear definitions to enhance consistency while focusing on clinically meaningful outcomes and patient-centered responses. In this review, we analyze the evolution of the MDS response criteria, limitations, and areas of improvement.
Collapse
Affiliation(s)
- Jessica M Stempel
- From the Department of Internal Medicine, Hematology Section, Yale School of Medicine, New Haven, CT
| | - Zhuoer Xie
- Department of Hematology, H. Lee Moffitt Cancer Center, Tampa, FL
| | - Jan Philipp Bewersdorf
- Department of Medicine, Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Maximilian Stahl
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Harvard University, Boston, MA
| | - Amer M Zeidan
- From the Department of Internal Medicine, Hematology Section, Yale School of Medicine, New Haven, CT
| |
Collapse
|
9
|
Madanat YF, Xie Z, Zeidan AM. Advances in myelodysplastic syndromes: promising novel agents and combination strategies. Expert Rev Hematol 2023; 16:51-63. [PMID: 36620919 DOI: 10.1080/17474086.2023.2166923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
INTRODUCTION Myelodysplastic syndromes (MDS) are heterogeneous group of clonal hematopoietic stem cell neoplasms that have limited approved treatment options. Multiple novel agents are currently being tested in a clinical trial setting. From a therapeutic perspective, MDS is generally divided into lower-risk and higher-risk disease. In this review, we summarize some of the most prominent novel agents currently in development. AREAS COVERED This review focuses on select clinical trials in both lower- and higher-risk MDS, elucidating the mechanisms of action and rationale for drug combinations and summarizing early safety and efficacy data using novel agents in MDS. EXPERT OPINION Advances in understanding the innate immune system, telomere biology, as well as genomic drivers of the disease have led to the development of multiple novel agents that are currently in late stages of clinical development in MDS. Imetelstat is being tested in lower-risk disease and the phase III clinical trial recently completed accrual. Magrolimab, sabatolimab, and venetoclax in addition to novel oral hypomethylating agents (HMA) are being investigated in higher-risk MDS. These advances will hopefully bring better treatment options to patients and lead to a shift in the treatment paradigm. Post HMA therapy remains an area of dire unmet need.
Collapse
Affiliation(s)
- Yazan F Madanat
- Simmons Comprehensive Cancer Center, Division of Hematology/Oncology, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Zhuoer Xie
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center, Tampa, Florida, USA
| | - Amer M Zeidan
- Section of Hematology, Department of Internal Medicine, Yale Cancer Center, New Haven, Connecticut, USA
| |
Collapse
|
10
|
Brunner AM, Gavralidis A, Ali NA, Hunter A, Komrokji R, Zeidan A, Sallman DA. Evaluating complete remission with partial hematologic recovery (CRh) as a response criterion in myelodysplastic syndromes (MDS). Blood Cancer J 2022; 12:153. [PMID: 36379923 PMCID: PMC9666661 DOI: 10.1038/s41408-022-00748-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 11/16/2022] Open
Abstract
Myelodysplastic syndromes (MDS) treated with DNMTI therapy have responses according to the 2006 IWG response criteria. CR responses have had the strongest association with OS. Recently, CR with partial hematologic recovery (CRh; i.e. blasts <5%, ANC > 500, platelets > 50) has been evaluated in AML, but its relevance is unknown in MDS. We identified adult patients with MDS treated with DNMTIs. We assessed best overall response to therapy according to IWG 2006 criteria, and subsequently identified patients meeting CRh criteria from the subgroup with SD or mCR. We evaluated duration of therapy and overall survival according to response. We identified 311 patients with MDS who received treatment between 2007 and 2018. The median age at the time of therapy was 69 years (range 23-91). Median follow up was 60 months. According to IWG 2006, responses included CR (n = 43, 14%), PR (n = 2, 1%), mCR (n = 57, 18%), SD (n = 149, 48%) and PD (n = 60, 19%). 79 patients (25%) achieved HI. A total of 62 patients (20%) met CRh criteria leading to reclassification of mCR (now n = 26, 8%) or SD (now n = 118, 38%). Patients achieving CR had similar time on therapy (median 8.1mo) compared to CRh (median 6mo, HR 1.4, 95% CI 0.9-2.0), and longer than other responses (p < 0.001). OS varied according to response; median OS was similar between CR (23.3mo) and CRh (25mo, HR 1.28 [0.79-2.08]), which was longer than those with mCR (17.2mo, HR 1.71 [0.96-3.05]), SD (16.3mo, HR 1.61 [1.04-2.48]), and PD (8.7mo, HR 3.04 [1.91-4.83]) (p < 0.001). OS associations with CR/CRh were confirmed in multivariable analysis accounting for allogeneic transplant. MDS patients who achieve a CRh response had similar survival and duration on therapy as patients who achieve CR response and superior to other IWG responses. These data support further evaluation of CRh into future response criteria and clinical trials.
Collapse
Affiliation(s)
| | | | | | | | | | - Amer Zeidan
- Yale University School of Medicine, New Haven, CT, USA
| | | |
Collapse
|
11
|
Pleyer L, Sekeres MA. An early glimpse at azacitidine plus venetoclax for myelodysplastic syndromes. Lancet Haematol 2022; 9:e714-e716. [PMID: 36063831 DOI: 10.1016/s2352-3026(22)00252-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Affiliation(s)
- Lisa Pleyer
- Austrian Group for Medical Tumor Therapy Study Group, Vienna, Austria; Salzburg Cancer Research Institute, Center for Clinical Cancer and Immunology Trials, Salzburg, Austria; Cancer Cluster Salzburg, Salzburg, Austria; 3rd Medical Department with Hematology, Medical Oncology, Hemostaseology, Rheumatology and Infectiology, Oncologic Center, Paracelsus Medical University, Salzburg, Austria.
| | - Mikkael A Sekeres
- Division of Hematology, Sylvester Comprehensive Cancer Center, University of Miami Health System, Miami, FL, USA
| |
Collapse
|