1
|
Lee JM, Kim HS, Yoo J, Lee J, Ahn A, Cho H, Han EH, Jung J, Yoo JW, Kim S, Lee JW, Cho B, Chung NG, Kim M, Kim Y. Genomic insights into inherited bone marrow failure syndromes in a Korean population. Br J Haematol 2024; 205:1581-1589. [PMID: 38735735 DOI: 10.1111/bjh.19509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 04/24/2024] [Indexed: 05/14/2024]
Abstract
Inherited bone marrow failure syndromes (IBMFS) pose significant diagnostic challenges due to overlapping symptoms and variable expressivity, despite evolving genomic insights. The study aimed to elucidate the genomic landscape among 130 Korean patients with IBMFS. We conducted targeted next-generation sequencing (NGS) and clinical exome sequencing (CES) across the cohort, complemented by whole genome sequencing (WGS) and chromosomal microarray (CMA) in 12 and 47 cases, respectively, with negative initial results. Notably, 50% (n = 65) of our cohort achieved a genomic diagnosis. Among these, 35 patients exhibited mutations associated with classic IBMFSs (n = 33) and the recently defined IBMFS, aplastic anaemia, mental retardation and dwarfism syndrome (AmeDS, n = 2). Classic IBMFSs were predominantly detected via targeted NGS (85%, n = 28) and CES (88%, n = 29), whereas AMeDS was exclusively identified through CES. Both CMA and WGS aided in identifying copy number variations (n = 2) and mutations in previously unexplored regions (n = 2). Additionally, 30 patients were diagnosed with other congenital diseases, encompassing 13 distinct entities including inherited thrombocytopenia (n = 12), myeloid neoplasms with germline predisposition (n = 8), congenital immune disorders (n = 7) and miscellaneous genomic conditions (n = 3). CES was particularly effective in revealing these diverse diagnoses. Our findings underscore the significance of comprehensive genomic analysis in IBMFS, highlighting the need for ongoing exploration in this complex field.
Collapse
Affiliation(s)
- Jong-Mi Lee
- Catholic Genetic Laboratory Center, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Laboratory Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hoon Seok Kim
- Catholic Genetic Laboratory Center, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Laboratory Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jaeeun Yoo
- Department of Laboratory Medicine, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jaewoong Lee
- Department of Laboratory Medicine, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Ari Ahn
- Department of Laboratory Medicine, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hanwool Cho
- Department of Laboratory Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Eun Hee Han
- Department of Laboratory Medicine, Daejeon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jin Jung
- Department of Laboratory Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jae Won Yoo
- Department of Pediatrics, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Seongkoo Kim
- Department of Pediatrics, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jae Wook Lee
- Department of Pediatrics, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Bin Cho
- Department of Pediatrics, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Nack-Gyun Chung
- Department of Pediatrics, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Myungshin Kim
- Catholic Genetic Laboratory Center, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Laboratory Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Yonggoo Kim
- Catholic Genetic Laboratory Center, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Laboratory Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
2
|
Russo R, Iolascon A, Andolfo I, Marra R, Rosato BE. Updates on clinical and laboratory aspects of hereditary dyserythropoietic anemias. Int J Lab Hematol 2024; 46:595-605. [PMID: 38747503 DOI: 10.1111/ijlh.14307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/26/2024] [Indexed: 07/04/2024]
Abstract
Hereditary dyserythropoietic anemias, or congenital dyserythropoietic anemias (CDAs), are rare disorders disrupting normal erythroid lineage development, resulting in ineffective erythropoiesis and monolinear cytopenia. CDAs include three main types (I, II, III), transcription-factor-related forms, and syndromic forms. The widespread use of next-generation sequencing in the last decade has unveiled novel causative genes and unexpected genotype-phenotype correlations. The discovery of the genetic defects underlying the CDAs not only facilitates accurate diagnosis but also enhances understanding of CDA pathophysiology. Notable advancements include identifying a hepatic-specific role of the SEC23B loss-of-function in iron metabolism dysregulation in CDA II, deepening CDIN1 dysfunction during erythroid differentiation, and uncovering a recessive CDA III form associated with RACGAP1 variants. Current treatments primarily rely on supportive measures tailored to disease severity and clinical features. Comparative studies with pyruvate kinase deficiency have illuminated new therapeutic avenues by elucidating iron dyshomeostasis and dyserythropoiesis mechanisms. We herein discuss recent progress in diagnostic methodologies, novel gene discoveries, and enhanced comprehension of CDA pathogenesis and molecular genetics.
Collapse
Affiliation(s)
- Roberta Russo
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli 'Federico II', Naples, Italy
- CEINGE Biotecnologie Avanzate Franco Salvatore, Naples, Italy
| | - Achille Iolascon
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli 'Federico II', Naples, Italy
- CEINGE Biotecnologie Avanzate Franco Salvatore, Naples, Italy
| | - Immacolata Andolfo
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli 'Federico II', Naples, Italy
- CEINGE Biotecnologie Avanzate Franco Salvatore, Naples, Italy
| | - Roberta Marra
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli 'Federico II', Naples, Italy
- CEINGE Biotecnologie Avanzate Franco Salvatore, Naples, Italy
| | - Barbara Eleni Rosato
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli 'Federico II', Naples, Italy
- CEINGE Biotecnologie Avanzate Franco Salvatore, Naples, Italy
| |
Collapse
|
3
|
Isik E, Aydinok Y, Albayrak C, Durmus B, Karakas Z, Orhan MF, Sarper N, Aydın S, Unal S, Oymak Y, Karadas N, Turedi A, Albayrak D, Tayfun F, Tugcu D, Karaman S, Tobu M, Unal E, Ozcan A, Unal S, Aksu T, Unuvar A, Bilici M, Azik F, Ay Y, Gelen SA, Zengin E, Albudak E, Eker I, Karakaya T, Cogulu O, Ozkinay F, Atik T. Identification of the molecular etiology in rare congenital hemolytic anemias using next-generation sequencing with exome-based copy number variant analysis. Eur J Haematol 2024; 113:82-89. [PMID: 38556258 DOI: 10.1111/ejh.14194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 02/29/2024] [Accepted: 03/09/2024] [Indexed: 04/02/2024]
Abstract
OBJECTIVES In congenital hemolytic anemias (CHA), it is not always possible to determine the specific diagnosis by evaluating clinical findings and conventional laboratory tests. The aim of this study is to evaluate the utility of next-generation sequencing (NGS) and clinical-exome-based copy number variant (CNV) analysis in patients with CHA. METHODS One hundred and forty-three CHA cases from 115 unrelated families referred for molecular analysis were enrolled in the study. Molecular analysis was performed using two different clinical exome panels in 130 patients, and whole-exome sequencing in nine patients. Exome-based CNV calling was incorporated into the traditional single-nucleotide variant and small insertion/deletion analysis pipeline for NGS data in 92 cases. In four patients from the same family, the PK Gypsy variant was investigated using long-range polymerase chain reaction. RESULTS Molecular diagnosis was established in 86% of the study group. The most frequently mutated genes were SPTB (31.7%) and PKLR (28.5%). CNV analysis of 92 cases revealed that three patients had different sizes of large deletions in the SPTB and six patients had a deletion in the PKLR. CONCLUSIONS In this study, NGS provided a high molecular diagnostic rate in cases with rare CHA. Analysis of the CNVs contributed to the diagnostic success.
Collapse
Affiliation(s)
- Esra Isik
- Division of Pediatric Genetics, Department of Pediatrics, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Yesim Aydinok
- Division of Pediatric Hematology, Department of Pediatrics, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Canan Albayrak
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - Basak Durmus
- Division of Pediatric Genetics, Department of Pediatrics, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Zeynep Karakas
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Mehmet Fatih Orhan
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Faculty of Medicine, Sakarya University, Sakarya, Turkey
| | - Nazan Sarper
- Division of Pediatric Hematology, Department of Pediatrics, Faculty of Medicine, Kocaeli University, Kocaeli, Turkey
| | - Sultan Aydın
- Division of Pediatric Hematology and Oncology, Antalya Training and Research Hospital, Antalya, Turkey
| | - Selma Unal
- Division of Pediatric Hematology, Department of Pediatrics, Faculty of Medicine, Mersin University, Mersin, Turkey
| | - Yesim Oymak
- Division of Pediatric Hematology, Dr. Behcet Uz Children's Hospital, Izmir, Turkey
| | - Nihal Karadas
- Division of Pediatric Genetics, Department of Pediatrics, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Aysen Turedi
- Division of Pediatric Hematology, Department of Pediatrics, Faculty of Medicine, Celal Bayar University, Manisa, Turkey
| | - Davut Albayrak
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Medical Park Samsun Hospital, Samsun, Turkey
| | - Funda Tayfun
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Deniz Tugcu
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Serap Karaman
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Mahmut Tobu
- Department of Hematology, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Ekrem Unal
- Division of Pediatric Hematology, Department of Pediatrics, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Alper Ozcan
- Division of Pediatric Hematology, Department of Pediatrics, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Sule Unal
- Division of Pediatric Hematology, Department of Pediatrics, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Tekin Aksu
- Division of Pediatric Hematology, Department of Pediatrics, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Aysegul Unuvar
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Mustafa Bilici
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Fatih Azik
- Department of Pediatrics, Division of Pediatric Hematology, Faculty of Medicine, Muğla Sıtkı Koçman University, Mugla, Turkey
| | - Yilmaz Ay
- Division of Pediatric Hematology and Oncology, Kartal Dr Lütfi Kırdar Training and Research Hospital, Istanbul, Turkey
| | - Sema Aylan Gelen
- Division of Pediatric Hematology, Department of Pediatrics, Faculty of Medicine, Kocaeli University, Kocaeli, Turkey
| | - Emine Zengin
- Division of Pediatric Hematology, Department of Pediatrics, Faculty of Medicine, Kocaeli University, Kocaeli, Turkey
| | - Esin Albudak
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Tepecik Training and Research Hospital, Izmir, Turkey
| | - Ibrahim Eker
- Department of Pediatric Hematology and Oncology and Pediatric Hematopoietic Stem Cell Transplantation Unit, Afyonkarahisar Health Science University Faculty of Medicine, Afyon, Turkey
| | - Taner Karakaya
- Department of Medical Genetics, Samsun Education and Research Hospital, Samsun, Turkey
| | - Ozgur Cogulu
- Division of Pediatric Genetics, Department of Pediatrics, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Ferda Ozkinay
- Division of Pediatric Genetics, Department of Pediatrics, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Tahir Atik
- Division of Pediatric Genetics, Department of Pediatrics, Faculty of Medicine, Ege University, Izmir, Turkey
| |
Collapse
|
4
|
Chueh HW, Shim YJ, Jung HL, Kim N, Hwang SM, Kim M, Choi HS. Current Status of Molecular Diagnosis of Hereditary Hemolytic Anemia in Korea. J Korean Med Sci 2024; 39:e162. [PMID: 38742293 PMCID: PMC11091231 DOI: 10.3346/jkms.2024.39.e162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 04/16/2024] [Indexed: 05/16/2024] Open
Abstract
Hereditary hemolytic anemia (HHA) is considered a group of rare hematological diseases in Korea, primarily because of its unique ethnic characteristics and diagnostic challenges. Recently, the prevalence of HHA has increased in Korea, reflecting the increasing number of international marriages and increased awareness of the disease. In particular, the diagnosis of red blood cell (RBC) enzymopathy experienced a resurgence, given the advances in diagnostic techniques. In 2007, the RBC Disorder Working Party of the Korean Society of Hematology developed the Korean Standard Operating Procedure for the Diagnosis of Hereditary Hemolytic Anemia, which has been continuously updated since then. The latest Korean clinical practice guidelines for diagnosing HHA recommends performing next-generation sequencing as a preliminary step before analyzing RBC membrane proteins and enzymes. Recent breakthroughs in molecular genetic testing methods, particularly next-generation sequencing, are proving critical in identifying and providing insight into cases of HHA with previously unknown diagnoses. These innovative molecular genetic testing methods have now become important tools for the management and care planning of patients with HHA. This review aims to provide a comprehensive overview of recent advances in molecular genetic testing for the diagnosis of HHA, with particular emphasis on the Korean context.
Collapse
Affiliation(s)
- Hee Won Chueh
- Department of Pediatrics, Inje University Haeundae Paik Hospital, Busan, Korea
| | - Ye Jee Shim
- Department of Pediatrics, Keimyung University Dongsan Hospital, Keimyung University School of Medicine, Daegu, Korea
| | - Hye Lim Jung
- Department of Pediatrics, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Namhee Kim
- Department of Laboratory Medicine, Dong-A University College of Medicine, Busan, Korea
| | - Sang Mee Hwang
- Department of Laboratory Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Myungshin Kim
- Department of Laboratory Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea.
| | - Hyoung Soo Choi
- Department of Pediatrics, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea.
| |
Collapse
|
5
|
Al-Samkari H, Shehata N, Lang-Robertson K, Bianchi P, Glenthøj A, Sheth S, Neufeld EJ, Rees DC, Chonat S, Kuo KHM, Rothman JA, Barcellini W, van Beers EJ, Pospíšilová D, Shah AJ, van Wijk R, Glader B, Mañú Pereira MDM, Andres O, Kalfa TA, Eber SW, Gallagher PG, Kwiatkowski JL, Galacteros F, Lander C, Watson A, Elbard R, Peereboom D, Grace RF. Diagnosis and management of pyruvate kinase deficiency: international expert guidelines. Lancet Haematol 2024; 11:e228-e239. [PMID: 38330977 DOI: 10.1016/s2352-3026(23)00377-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/04/2023] [Accepted: 12/13/2023] [Indexed: 02/10/2024]
Abstract
Pyruvate kinase (PK) deficiency is the most common cause of chronic congenital non-spherocytic haemolytic anaemia worldwide, with an estimated prevalence of one in 100 000 to one in 300 000 people. PK deficiency results in chronic haemolytic anaemia, with wide ranging and serious consequences affecting health, quality of life, and mortality. The goal of the International Guidelines for the Diagnosis and Management of Pyruvate Kinase Deficiency was to develop evidence-based guidelines for the clinical care of patients with PK deficiency. These clinical guidelines were developed by use of GRADE methodology and the AGREE II framework. Experts were invited after consideration of area of expertise, scholarly contributions in PK deficiency, and country of practice for global representation. The expert panel included 29 expert physicians (including adult and paediatric haematologists and other subspecialists), geneticists, laboratory specialists, nurses, a guidelines methodologist, patients with PK deficiency, and caregivers from ten countries. Five key topic areas were identified, the panel prioritised key questions, and a systematic literature search was done to generate evidence summaries that were used in the development of draft recommendations. The expert panel then met in person to finalise and vote on recommendations according to a structured consensus procedure. Agreement of greater than or equal to 67% among the expert panel was required for inclusion of a recommendation in the final guideline. The expert panel agreed on 31 total recommendations across five key topics: diagnosis and genetics, monitoring and management of chronic complications, standard management of anaemia, targeted and advanced therapies, and special populations. These new guidelines should facilitate best practices and evidence-based PK deficiency care into clinical practice.
Collapse
Affiliation(s)
- Hanny Al-Samkari
- Division of Hematology Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Nadine Shehata
- Departments of Medicine and Laboratory Medicine and Pathobiology, Mount Sinai Hospital, University of Toronto, Toronto, ON, Canada
| | | | - Paola Bianchi
- Hematology Unit, Pathophysiology of Anemias Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Andreas Glenthøj
- Danish Red Blood Cell Center, Department of Hematology, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
| | - Sujit Sheth
- Division of Pediatric Hematology/Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Ellis J Neufeld
- Department of Hematology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - David C Rees
- Department of Paediatric Haematology, King's College London, King's College Hospital, London, UK
| | - Satheesh Chonat
- Pediatric Hematology/Oncology, Children's Healthcare of Atlanta, Emory University, Atlanta, GA, USA
| | - Kevin H M Kuo
- Division of Medical Oncology and Hematology, University Health Network, University of Toronto, ON, Canada
| | | | - Wilma Barcellini
- Hematology Unit, Pathophysiology of Anemias Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Eduard J van Beers
- Benign Hematology Center, Van Creveldkliniek, University Medical Center Utrecht, University Utrecht, Utrecht, Netherlands
| | - Dagmar Pospíšilová
- Department of Pediatrics, Faculty of Medicine and Dentistry, Palacky University and University Hospital Olomouc, Olomouc, Czech Republic
| | - Ami J Shah
- Division of Stem Cell Transplantation and Regenerative Medicine, Lucile Packard Children Hospital, Stanford School of Medicine, Palo Alto, CA, USA
| | - Richard van Wijk
- Central Diagnostic Laboratory, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Bertil Glader
- Division of Pediatric Hematology/Oncology, Lucile Packard Children Hospital, Stanford School of Medicine, Palo Alto, CA, USA
| | - Maria Del Mar Mañú Pereira
- Rare Anaemia Disorders Research Laboratory, Institut de Recerca - Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Oliver Andres
- Centre of Inherited Blood Cell Disorders, University Hospital Würzburg, Würzburg, Germany
| | - Theodosia A Kalfa
- Division of Hematology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Stefan W Eber
- Department of Pediatrics, Practice for Pediatric Hematology and Hemostaseology, University Children's Hospital, Technical University, Munich, Germany
| | - Patrick G Gallagher
- Department of Pediatrics, Center for Perinatal Research, Abigail Wexner Research Institute, Nationwide Children's Hospital, Ohio State University, Columbus, OH, USA
| | - Janet L Kwiatkowski
- Division of Hematology, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Carl Lander
- Thrive with Pyruvate Kinase Deficiency Foundation, Bloomington, MN, USA
| | | | - Riyad Elbard
- Thalassemia International Federation, Nicosia, Cyprus
| | | | - Rachael F Grace
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
6
|
Fermo E, Zaninoni A, Vercellati C, Marcello AP, Bestetti I, Castronovo P, Fattizzo B, Barcellini W, Bianchi P. When alpha spectrin null alleles meet low expression alpha spectrin polymorphisms. Br J Haematol 2023; 203:684-687. [PMID: 37565283 DOI: 10.1111/bjh.19038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/29/2023] [Accepted: 08/02/2023] [Indexed: 08/12/2023]
Affiliation(s)
- Elisa Fermo
- SC Ematologia, SS Fisiopatologia delle Anemie, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Anna Zaninoni
- SC Ematologia, SS Fisiopatologia delle Anemie, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Cristina Vercellati
- SC Ematologia, SS Fisiopatologia delle Anemie, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Anna Paola Marcello
- SC Ematologia, SS Fisiopatologia delle Anemie, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Ilaria Bestetti
- SC Patologia Clinica, SS Laboratorio Genetica Medica, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Paola Castronovo
- SC Patologia Clinica, SS Laboratorio Genetica Medica, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Bruno Fattizzo
- SC Ematologia, SS Fisiopatologia delle Anemie, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Dipartimento di Oncologia e Emato-oncologia, Università degli Studi di Milano, Milan, Italy
| | - Wilma Barcellini
- SC Ematologia, SS Fisiopatologia delle Anemie, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Paola Bianchi
- SC Ematologia, SS Fisiopatologia delle Anemie, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
7
|
Vercellati C, Marcello AP, Fattizzo B, Zaninoni A, Seresini A, Barcellini W, Bianchi P, Fermo E. Effect of primary lesions in cytoskeleton proteins on red cell membrane stability in patients with hereditary spherocytosis. Front Physiol 2022; 13:949044. [PMID: 36035481 PMCID: PMC9413078 DOI: 10.3389/fphys.2022.949044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 07/08/2022] [Indexed: 11/30/2022] Open
Abstract
We investigated by targeted next generation sequencing the genetic bases of hereditary spherocytosis in 25 patients and compared the molecular results with the biochemical lesion of RBC membrane obtained by SDS-PAGE analysis. The HS diagnosis was based on available guidelines for diagnosis of congenital hemolytic anemia, and patients were selected because of atypical clinical presentation or intra-family variability, or because presented discrepancies between laboratory investigation and biochemical findings. In all patients but 5 we identified pathogenic variants in SPTA1, SPTB, ANK1, SLC4A1, EPB42 genes able to justify the clinical phenotype. Interestingly, a correspondence between the biochemical lesion and the molecular defect was identified in only 11/25 cases, mostly with band 3 deficiency due to SLC4A1 mutations. Most of the mutations in SPTB and ANK1 gene didn’t hesitate in abnormalities of RBC membrane protein; conversely, in two cases the molecular lesion didn’t correspond to the biochemical defect, suggesting that a mutation in a specific cytoskeleton protein may result in a more complex RBC membrane damage or suffering. Finally, in two cases the HS diagnosis was maintained despite absence of both protein defect and molecular lesion, basing on clinical and family history, and on presence of clear laboratory markers of HS. The study revealed complex relationships between the primary molecular lesion and the final effect in the RBC membrane cytoskeleton, and further underlines the concept that there is not a unique approach to the diagnosis of HS.
Collapse
Affiliation(s)
- Cristina Vercellati
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico Milano—UOC Ematologia, UOS Fisiopatologia Delle Anemie, Milan, Italy
| | - Anna Paola Marcello
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico Milano—UOC Ematologia, UOS Fisiopatologia Delle Anemie, Milan, Italy
| | - Bruno Fattizzo
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico Milano—UOC Ematologia, UOS Fisiopatologia Delle Anemie, Milan, Italy
| | - Anna Zaninoni
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico Milano—UOC Ematologia, UOS Fisiopatologia Delle Anemie, Milan, Italy
| | - Agostino Seresini
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico Milano—UOC Laboratorio Centrale, UOS Laboratorio Genetica Medica, Milan, Italy
| | - Wilma Barcellini
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico Milano—UOC Ematologia, UOS Fisiopatologia Delle Anemie, Milan, Italy
| | - Paola Bianchi
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico Milano—UOC Ematologia, UOS Fisiopatologia Delle Anemie, Milan, Italy
- *Correspondence: Paola Bianchi,
| | - Elisa Fermo
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico Milano—UOC Ematologia, UOS Fisiopatologia Delle Anemie, Milan, Italy
| |
Collapse
|