1
|
Sosa AL, Brucki SMD, Crivelli L, Lopera FJ, Acosta DM, Acosta‐Uribe J, Aguilar D, Aguilar‐Navarro SG, Allegri RF, Bertolucci PHF, Calandri IL, Carrillo MC, Mendez PAC, Cornejo‐Olivas M, Custodio N, Damian A, de Souza LC, Duran‐Aniotz C, García AM, García‐Peña C, Gonzales MM, Grinberg LT, Ibanez AM, Illanes‐Manrique MZ, Jack CR, Leon‐Salas JM, Llibre‐Guerra JJ, Luna‐Muñoz J, Matallana D, Miller BL, Naci L, Parra MA, Pericak‐Vance M, Piña‐Escudero SD, França Resende EDP, Ringman JM, Sevlever G, Slachevsky A, Suemoto CK, Valcour V, Villegas‐Lanau A, Yassuda MS, Mahinrad S, Sexton C. Advancements in dementia research, diagnostics, and care in Latin America: Highlights from the 2023 Alzheimer's Association International conference satellite symposium in Mexico City. Alzheimers Dement 2024; 20:5009-5026. [PMID: 38801124 PMCID: PMC11247679 DOI: 10.1002/alz.13850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 01/03/2024] [Indexed: 05/29/2024]
Abstract
INTRODUCTION While Latin America (LatAm) is facing an increasing burden of dementia due to the rapid aging of the population, it remains underrepresented in dementia research, diagnostics, and care. METHODS In 2023, the Alzheimer's Association hosted its eighth satellite symposium in Mexico, highlighting emerging dementia research, priorities, and challenges within LatAm. RESULTS Significant initiatives in the region, including intracountry support, showcased their efforts in fostering national and international collaborations; genetic studies unveiled the unique genetic admixture in LatAm; researchers conducting emerging clinical trials discussed ongoing culturally specific interventions; and the urgent need to harmonize practices and studies, improve diagnosis and care, and use affordable biomarkers in the region was highlighted. DISCUSSION The myriad of topics discussed at the 2023 AAIC satellite symposium highlighted the growing research efforts in LatAm, providing valuable insights into dementia biology, genetics, epidemiology, treatment, and care.
Collapse
|
2
|
Suzuyama K, Eriguchi M, Minagawa H, Honda H, Kai K, Kitamoto T, Hara H. Accumulation Area of a Japanese PRNP P102L Variant Associated With Gerstmann-Sträussler-Scheinker Disease: The Ariake PRNP P102L Variant. J Clin Neurol 2024; 20:321-329. [PMID: 38171504 PMCID: PMC11076189 DOI: 10.3988/jcn.2023.0102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/25/2023] [Accepted: 07/31/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND AND PURPOSE The coast of Kyushu Island on Ariake Sea in Japan is known to be an accumulation area for patients with a proline-to-leucine substitution mutation at residue 102 (P102L) of the human prion protein gene (PRNP), which is associated with Gerstmann-Sträussler-Scheinker disease. We designated this geographical distribution as the "Ariake PRNP P102L variant." The purpose of this study was to characterize the clinical features of this variant. METHODS We enrolled patients with the PRNP P102L variant who were followed up at the Saga University Hospital from April 2002 to November 2019. The clinical information of patients were obtained from medical records, including clinical histories, brain magnetic resonance imaging (MRI), and electroencephalography (EEG). A brain autopsy was performed on one of the participants. RESULTS We enrolled 24 patients from 19 family lines, including 12 males. The mean age at symptom onset was 60.6 years (range, 41-77 years). The incidence rate of the Ariake PRNP P102L variant was 3.32/1,000,000 people per year in Saga city. The initial symptoms were ataxia (ataxic gait or dysarthria) in 19 patients (79.2%), cognitive impairment in 3 (12.5%), and leg paresthesia in 2 (8.3%). The median survival time from symptom onset among the 18 fatal cases was 63 months (range, 23-105 months). Brain MRI revealed no localized cerebellar atrophy, but sparse diffusion-weighted imaging abnormalities were detected in 16.7% of the patients. No periodic sharp-wave complexes were identified in EEG. Neuropathological investigations revealed uni- and multicentric prion protein (PrP) plaques in the cerebral cortex, putamen, thalamus, and cerebellum of one patient. Western blot analysis revealed 8-kDa proteinase-K-resistant PrP. CONCLUSIONS This is the first report of the accumulation area of a PRNP P102L variant on the coast of Ariake Sea. The Ariake PRNP P102L variant can be characterized by a relatively long disease duration with sparse abnormalities in brain MRI and EEG relative to previous reports. Detailed interviews to obtain information on the birthplace and the family history of related symptoms are important to diagnosing a PRNP P102L variant.
Collapse
Affiliation(s)
- Kohei Suzuyama
- Division of Neurology, Department of Internal Medicine, Saga University Faculty of Medicine, Saga, Japan.
| | - Makoto Eriguchi
- Division of Neurology, Department of Internal Medicine, Saga University Faculty of Medicine, Saga, Japan
| | - Hiromu Minagawa
- Division of Neurology, Department of Internal Medicine, Saga University Faculty of Medicine, Saga, Japan
| | - Hiroyuki Honda
- Department of Neuropathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of Neurology, Neuro Muscular Center, National Hospital Organization Omuta National Hospital, Omuta, Japan
| | - Keita Kai
- Department of Pathology, Saga University Hospital, Saga, Japan
| | - Tetsuyuki Kitamoto
- Department of Neurological Science, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hideo Hara
- Division of Neurology, Department of Internal Medicine, Saga University Faculty of Medicine, Saga, Japan
| |
Collapse
|
3
|
Chen Z, Guo J, Ran N, Zhong Y, Yang F, Sun H. A family with mental disorder as the first symptom finally confirmed with Gerstmann-Sträussler-Scheinker disease with P102L mutation in PRNP gene - case report. Prion 2023; 17:37-43. [PMID: 36847171 PMCID: PMC9980613 DOI: 10.1080/19336896.2023.2180255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 01/11/2023] [Indexed: 02/24/2023] Open
Abstract
Gerstmann-Sträussler-Scheinker (GSS) disease is an autosomal dominant neurodegenerative disease, and it is characterized by progressive cerebellar ataxia. Up to now, GSS cases with the p.P102L mutation have mainly been reported in Caucasian, but rarely in Asian populations. A 54-year-old female patient presented with an unstable gait in the hospital. Last year, she was unable to walk steadily and occasionally choked, could not even walk independently gradually. After taking her medical history, we found that she was misdiagnosed with schizophrenia before the gait problems. The patient's father showed similar symptoms and was diagnosed with brain atrophy at the age of 56, but her daughter showed no similar symptoms at present. On arrival at the Neurology Department, the patient's vital signs and laboratory examinations showed no abnormality. As the proband presented with cerebellar ataxia and had an obvious family history, we were sure that she had hereditary cerebellar ataxia. Then, patient's brain MRI showed an abnormal signal in the right parietal cortex and bilateral small ischaemic lesions in the frontal lobe. A gene panel (including 142 ataxia-related genes) was performed, and a heterozygous mutation PRNP Exon2 c.305C>T p. (Pro102Leu) was identified. Her daughter had the same heterozygous mutation. The patient was diagnosed with GSS with mental disorders as initial symptoms. After 2 months of TCM treatment, the patient's walking instability decreased, and her emotional fluctuations were less than before. In conclusion, we have reported a rare case of GSS in Sichuan, China, and the family with mental disorder as the first symptom was finally confirmed with GSS PRNP P102L mutation.
Collapse
Affiliation(s)
- Zeran Chen
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Junjun Guo
- Pediatric, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610075, China
| | - Ningjing Ran
- Neurology Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610075, China
| | - Yujia Zhong
- Clinical Medical College, Chengdu University of Traditional Chinese Medicine, Sichuan, 611137, China
| | - Fang Yang
- Neurology Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610075, China
| | - Honghui Sun
- Neurology Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610075, China
| |
Collapse
|
4
|
Chen L, Xu Y, Fang MJ, Shi YG, Zhang J, Zhang LL, Wang Y, Han YZ, Hu JY, Yang RM, Yu XE. Case report: A Chinese patient with spinocerebellar ataxia finally confirmed as Gerstmann-Sträussler-Scheinker syndrome with P102L mutation. Front Neurol 2023; 14:1187813. [PMID: 37602242 PMCID: PMC10435367 DOI: 10.3389/fneur.2023.1187813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 07/13/2023] [Indexed: 08/22/2023] Open
Abstract
Gerstmann-Sträussler-Scheinker syndrome (GSS) is a rare genetic prion disease caused by a mutation in the prion protein (PRNP) gene. It is typically characterized by progressive cerebellar ataxia and slowly progressive dementia. We present a case study of the GSS from China in which a 45-year-old male with a progressive gait and balance disorder developed cerebellar ataxia onset but was misdiagnosed as spinocerebellar ataxia (SCA) for 2 years. The patient's clinical, electrophysiological, and radiological data were retrospectively analyzed. Examination revealed ataxia, dysarthria, muscle weakness, areflexia in lower limbs, including a pyramidal sign, whereas cognitive decline was insignificant. His late mother had a similar unsteady gait. An electroencephalogram (EEG) showed normal findings, and 14-3-3 protein was negative. A brain MRI was performed for global brain atrophy and ventricular enlargement. Positron emission tomography-computed tomography (PET-CT) (18F-fluoro-2-deoxy-d-glucose, FDG) images showed mild to moderate decreased glucose metabolism in the left superior parietal lobe and left middle temporal lobe. According to genetic testing, his younger brother also had the P102L variant in the PRNP gene. This single case adds to the clinical and genetic phenotypes of GSS.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Xu-en Yu
- Department of Neurology, The Affiliated Hospital of Institute of Neurology, Anhui University of Chinese Medicine, Hefei, China
| |
Collapse
|
5
|
Rudenskaya GE, Konovalov FA, Illarioshkin SN, Shchagina OA. [Gerstmann-Sträussler disease: a familial case with common PRNP mutation and atypical features]. Zh Nevrol Psikhiatr Im S S Korsakova 2023; 123:138-143. [PMID: 36843471 DOI: 10.17116/jnevro2023123021138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2023]
Abstract
Gerstmann-Sträussler disease (GSD) is a very rare autosomal dominant late-onset neurodegenerative disorder related to prion protein gene PRNP. Mutation p.Pro102Leu produces about 80% of cases, which are often named GSD-102. DNA testing provides exact diagnosis. In the presented Russian family there were 3 patients: a female index case, age 32 years, her brother, age 37 years (age of onset in both is 27 years) and their deceased father (onset in 35 years, death in 44 years). GSD was not suspected until whole exome sequencing in the female detected PRNP mutation p.Pro102Leu confirmed in her and in the brother by Sanger sequencing. Atypical features of the case are: early onset in siblings, absence of mental and behavioral problems in the female and in the father and mild disturbances in the brother; epilepsy in the brother; atypical onset with transient signs in the brother. Other intrafamilial differences are prevailing spastic paraparesis in the female in contrast to predominant ataxia in the brother and dysarthria absence in the female. The case illustrates GSD-102 variability, complicating clinical diagnostics.
Collapse
Affiliation(s)
| | - F A Konovalov
- Genomed Ltd, Moscow, Russia.,Laboratory of Clinical Bioinformatics, Moscow, Russia
| | | | - O A Shchagina
- Research Centre for Medical Genetics, Moscow, Russia
| |
Collapse
|
6
|
Chen Z, Chu M, Liu L, Zhang J, Kong Y, Xie K, Cui Y, Ye H, Li J, Wang L, Wu L. Genetic prion diseases presenting as frontotemporal dementia: clinical features and diagnostic challenge. Alzheimers Res Ther 2022; 14:90. [PMID: 35768878 PMCID: PMC9245249 DOI: 10.1186/s13195-022-01033-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 06/22/2022] [Indexed: 11/10/2022]
Abstract
Abstract
Background
To elucidate the clinical and ancillary features of genetic prion diseases (gPrDs) presenting with frontotemporal dementia (FTD) to aid early identification.
Methods
Global data of gPrDs presenting with FTD caused by prion protein gene mutations were collected from literature review and our records. Fifty-one cases of typical FTD and 136 cases of prion diseases admitted to our institution were included as controls. Clinical and ancillary data of the different groups were compared.
Results
Forty-nine cases of gPrDs presenting with FTD were identified. Compared to FTD or prion diseases, gPrDs presenting with FTD were characterized by earlier onset age (median 45 vs. 61/60 years, P < 0.001, P < 0.001) and higher incidence of positive family history (81.6% vs. 27.5/13.2%, P < 0.001, P < 0.001). Furthermore, GPrDs presenting with FTD exhibited shorter duration (median 5 vs. 8 years) and a higher rate of parkinsonism (63.7% vs. 9.8%, P < 0.001), pyramidal signs (39.1% vs. 7.8%, P = 0.001), mutism (35.9% vs. 0%, P < 0.001), seizures (25.8% vs. 0%, P < 0.001), myoclonus (22.5% vs. 0%, P < 0.001), and hyperintensity on MRI (25.0% vs. 0, P < 0.001) compared to FTD. Compared to prion diseases, gPrDs presenting with FTD had a longer duration of symptoms (median 5 vs. 1.1 years, P < 0.001), higher rates of frontotemporal atrophy (89.7% vs. 3.3%, P < 0.001), lower rates of periodic short-wave complexes on EEG (0% vs. 30.3%, P = 0.001), and hyperintensity on MRI (25.0% vs. 83.0%, P < 0.001). The frequency of codon 129 Val allele in gPrDs presenting with FTD was significantly higher than that reported in the literature for gPrDs in the Caucasian and East Asian populations (33.3% vs. 19.2%/8.0%, P = 0.005, P < 0.001).
Conclusions
GPrDs presenting with FTD are characterized by early-onset, high incidence of positive family history, high frequency of the Val allele at codon 129, overlapping symptoms with prion disease and FTD, and ancillary features closer to FTD. PRNP mutations may be a rare cause in the FTD spectrum, and PRNP genotyping should be considered in patients with these features.
Collapse
|
7
|
Chen Z, Ma J, Liu L, Liu S, Zhang J, Chu M, Wang Z, Chan P, Wu L. Alterations of Striatal Subregions in a Prion Protein Gene V180I Mutation Carrier Presented as Frontotemporal Dementia With Parkinsonism. Front Aging Neurosci 2022; 14:830602. [PMID: 35493933 PMCID: PMC9053668 DOI: 10.3389/fnagi.2022.830602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 03/18/2022] [Indexed: 11/13/2022] Open
Abstract
Objective To explore the roles of striatal subdivisions in the pathogenesis of frontotemporal dementia with parkinsonism (FTDP) in a patient resulting from prion protein gene (PRNP) mutation. Methods This patient received clinical interviews and underwent neuropsychological assessments, genetic testing, [18F]-fluorodeoxyglucose positron emission tomography ([18F]-FDG PET)/MRI, and [18F]-dihydrotetrabenazine positron emission tomography ([18F]-DTBZ PET)/CT. Region-of-interest analysis was conducted concerning metabolism, and dopamine transport function between this patient and 12 controls, focusing on the striatum subregions according to the Oxford-GSK-Imanova Striatal Connectivity Atlas. Results A 64-year-old man initially presented with symptoms of motor dysfunction and subsequently behavioral and personality changes. FTDP was initially suspected. Sequence analysis disclosed a valine to isoleucine at codon 180 in PRNP. Compared to controls, this patient had a severe reduction (> 2SD) of standard uptake value ratio (SUVR) in the limbic and executive subregions but relative retention of metabolism in rostral motor and caudal motor subregions using [18F]-FDG PET/MRI, and the SUVR decreased significantly across the striatal in [18F]-DTBZ PET/CT, especially in the rostral motor and caudal motor subregions. Conclusion The alteration of frontal striatal loops may be involved in cognitive impairment in FTDP, and the development of parkinsonism in FTDP may be primarily due to the involvement of the presynaptic nigrostriatal loops in PRNP V180I mutation.
Collapse
Affiliation(s)
- Zhongyun Chen
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jinghong Ma
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Li Liu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Shuying Liu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jing Zhang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Min Chu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Zhen Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Piu Chan
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Liyong Wu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Geriatric Diseases, Beijing, China
| |
Collapse
|
8
|
Tesar A, Matej R, Kukal J, Johanidesova S, Rektorova I, Vyhnalek M, Keller J, Eliasova I, Parobkova E, Smetakova M, Musova Z, Rusina R. Clinical Variability in P102L Gerstmann-Sträussler-Scheinker Syndrome. Ann Neurol 2019; 86:643-652. [PMID: 31397917 DOI: 10.1002/ana.25579] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 08/05/2019] [Accepted: 08/07/2019] [Indexed: 12/22/2022]
Abstract
Gerstmann-Sträussler-Scheinker syndrome (GSS) with the P102L mutation is a rare genetic prion disease caused by a pathogenic mutation at codon 102 in the prion protein gene. Cluster analysis encompassing data from 7 Czech patients and 87 published cases suggests the existence of 4 clinical phenotypes (typical GSS, GSS with areflexia and paresthesia, pure dementia GSS, and Creutzfeldt-Jakob disease-like GSS); GSS may be more common than previously estimated. In making a clinical diagnosis or progression estimates of GSS, magnetic resonance imaging and real-time quaking-induced conversion may be helpful, but the results should be evaluated with respect to the overall clinical context. ANN NEUROL 2019;86:643-652.
Collapse
Affiliation(s)
- Adam Tesar
- The Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University, and General University Hospital, Prague
| | - Radoslav Matej
- Department of Pathology and Molecular Medicine, Third Faculty of Medicine, Charles University, and Thomayer Hospital, Prague.,Department of Pathology, First Faculty of Medicine, Charles University, and General University Hospital, Prague.,Department of Pathology, Third Faculty of Medicine, Charles University, and Kralovske Vinohrady University Hospital, Prague
| | - Jaromir Kukal
- Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University, Prague
| | - Silvie Johanidesova
- Department of Neurology, Third Faculty of Medicine, Charles University, and Thomayer Hospital, Prague
| | - Irena Rektorova
- Applied Neuroscience Research Group, Central European Institute of Technology, Masaryk University, Brno.,Department of Neurology, Faculty of Medicine, Masaryk University, and Saint Anne's University Hospital, Brno
| | - Martin Vyhnalek
- Department of Neurology, Second Faculty of Medicine, Charles University, and Motol University Hospital, Prague.,International Clinical Research Center, St Anne's University Hospital Brno, Brno
| | - Jiri Keller
- The Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University, and General University Hospital, Prague.,Department of Radiology, Na Homolce Hospital, Prague
| | - Ilona Eliasova
- Applied Neuroscience Research Group, Central European Institute of Technology, Masaryk University, Brno.,Department of Neurology, Faculty of Medicine, Masaryk University, and Saint Anne's University Hospital, Brno
| | - Eva Parobkova
- Department of Pathology and Molecular Medicine, Third Faculty of Medicine, Charles University, and Thomayer Hospital, Prague.,Department of Pathology, Third Faculty of Medicine, Charles University, and Kralovske Vinohrady University Hospital, Prague
| | - Magdalena Smetakova
- Department of Pathology and Molecular Medicine, Third Faculty of Medicine, Charles University, and Thomayer Hospital, Prague.,Department of Pathology, Third Faculty of Medicine, Charles University, and Kralovske Vinohrady University Hospital, Prague
| | - Zuzana Musova
- Department of Biology and Medical Genetics, Second Faculty of Medicine, Charles University, and Motol University Hospital, Prague, Czech Republic
| | - Robert Rusina
- The Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University, and General University Hospital, Prague.,Department of Neurology, Third Faculty of Medicine, Charles University, and Thomayer Hospital, Prague
| |
Collapse
|
9
|
Ghetti B, Piccardo P, Zanusso G. Dominantly inherited prion protein cerebral amyloidoses - a modern view of Gerstmann-Sträussler-Scheinker. HANDBOOK OF CLINICAL NEUROLOGY 2018; 153:243-269. [PMID: 29887140 DOI: 10.1016/b978-0-444-63945-5.00014-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Among genetically determined neurodegenerative diseases, the dominantly inherited prion protein cerebral amyloidoses are characterized by deposition of amyloid in cerebral parenchyma or blood vessels. Among them, Gerstmann-Sträussler-Scheinker disease has been the first to be described. Their clinical, neuropathologic, and molecular phenotypes are distinct from those observed in Creutzfeldt-Jakob disease (CJD) and related spongiform encephalopathies. It is not understood why specific mutations in the prion protein gene (PRNP) cause cerebral amyloidosis and others cause CJD. A significant neurobiologic event in these amyloidoses is the frequent coexistence of prion amyloid with tau neurofibrillary pathology, a phenomenon suggesting that similar pathogenetic mechanisms may be shared among different diseases in the sequence of events occurring in the cascade from amyloid formation to tau aggregation. This chapter describes the clinical, neuropathologic, and biochemical phenotypes associated with each of the PRNP mutations causing an inherited cerebral amyloidosis and emphasizes the variability of phenotypes.
Collapse
Affiliation(s)
- Bernardino Ghetti
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, United States.
| | - Pedro Piccardo
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Roslin, Midlothian, United Kingdom
| | - Gianluigi Zanusso
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| |
Collapse
|
10
|
Smid J, Studart A, Landemberger MC, Machado CF, Nóbrega PR, Canedo NHS, Schultz RR, Naslavsky MS, Rosemberg S, Kok F, Chimelli L, Martins VR, Nitrini R. High phenotypic variability in Gerstmann-Sträussler-Scheinker disease. ARQUIVOS DE NEURO-PSIQUIATRIA 2017; 75:331-338. [PMID: 28658400 DOI: 10.1590/0004-282x20170049] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 02/15/2017] [Indexed: 12/20/2022]
Abstract
Gerstmann-Sträussler-Scheinker is a genetic prion disease and the most common mutation is p.Pro102Leu. We report clinical, molecular and neuropathological data of seven individuals, belonging to two unrelated Brazilian kindreds, carrying the p.Pro102Leu. Marked differences among patients were observed regarding age at onset, disease duration and clinical presentation. In the first kindred, two patients had rapidly progressive dementia and three exhibited predominantly ataxic phenotypes with variable ages of onset and disease duration. In this family, age at disease onset in the mother and daughter differed by 39 years. In the second kindred, different phenotypes were also reported and earlier ages of onset were associated with 129 heterozygosis. No differences were associated with apoE genotype. In these kindreds, the codon 129 polymorphism could not explain the clinical variability and 129 heterozygosis was associated with earlier disease onset. Neuropathological examination in two patients confirmed the presence of typical plaques and PrPsc immunopositivity.
Collapse
Affiliation(s)
- Jerusa Smid
- Universidade de São Paulo, Faculdade de Medicina, Departamento de Neurologia, São Paulo SP, Brasil
| | - Adalberto Studart
- Universidade de São Paulo, Faculdade de Medicina, Departamento de Neurologia, São Paulo SP, Brasil
| | | | | | - Paulo Ribeiro Nóbrega
- Universidade Federal do Ceará, Faculdade de Medicina, Departamento de Neurologia, Fortaleza CE Brasil
| | | | - Rodrigo Rizek Schultz
- Universidade Federal de São Paulo, Seção de Neurologia Comportamental, São Paulo SP, Brasil
| | - Michel Satya Naslavsky
- Universidade de São Paulo, Instituto de Biociências, Centro de Estudos do Genoma Humano, São Paulo SP, Brasil
| | - Sérgio Rosemberg
- Universidade de São Paulo, Departamento de Patologia, Divisão de Neuropatologia, São Paulo SP, Brasil
| | - Fernando Kok
- Universidade de São Paulo, Faculdade de Medicina, Departamento de Neurologia, São Paulo SP, Brasil
| | - Leila Chimelli
- Universidade Federal do Rio de Janeiro, Departamento de Patologia, Rio de Janeiro RJ, Brasil
| | | | - Ricardo Nitrini
- Universidade de São Paulo, Faculdade de Medicina, Departamento de Neurologia, São Paulo SP, Brasil
| |
Collapse
|
11
|
Atkinson CJ, Zhang K, Munn AL, Wiegmans A, Wei MQ. Prion protein scrapie and the normal cellular prion protein. Prion 2016; 10:63-82. [PMID: 26645475 PMCID: PMC4981215 DOI: 10.1080/19336896.2015.1110293] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 10/12/2015] [Accepted: 10/13/2015] [Indexed: 01/08/2023] Open
Abstract
Prions are infectious proteins and over the past few decades, some prions have become renowned for their causative role in several neurodegenerative diseases in animals and humans. Since their discovery, the mechanisms and mode of transmission and molecular structure of prions have begun to be established. There is, however, still much to be elucidated about prion diseases, including the development of potential therapeutic strategies for treatment. The significance of prion disease is discussed here, including the categories of human and animal prion diseases, disease transmission, disease progression and the development of symptoms and potential future strategies for treatment. Furthermore, the structure and function of the normal cellular prion protein (PrP(C)) and its importance in not only in prion disease development, but also in diseases such as cancer and Alzheimer's disease will also be discussed.
Collapse
Affiliation(s)
- Caroline J. Atkinson
- Division of Molecular and Gene Therapies, Menzies Health Institute, Griffith University, Gold Coast, QLD, Australia
| | - Kai Zhang
- Division of Molecular and Gene Therapies, Menzies Health Institute, Griffith University, Gold Coast, QLD, Australia
| | - Alan L. Munn
- Laboratory of Yeast Cell Biology, Molecular Basis of Disease Program, Menzies Health Institute Queensland and School of Medical Science, Griffith University, Gold Coast, QLD, Australia
| | - Adrian Wiegmans
- Tumour Microenvironment Laboratory, QIMR Berghofer Medical Research Institute, Herston, Australia
| | - Ming Q. Wei
- Division of Molecular and Gene Therapies, Menzies Health Institute, Griffith University, Gold Coast, QLD, Australia
| |
Collapse
|
12
|
Transmission Properties of Human PrP 102L Prions Challenge the Relevance of Mouse Models of GSS. PLoS Pathog 2015; 11:e1004953. [PMID: 26135918 PMCID: PMC4489887 DOI: 10.1371/journal.ppat.1004953] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 05/13/2015] [Indexed: 02/01/2023] Open
Abstract
Inherited prion disease (IPD) is caused by autosomal-dominant pathogenic mutations in the human prion protein (PrP) gene (PRNP). A proline to leucine substitution at PrP residue 102 (P102L) is classically associated with Gerstmann-Sträussler-Scheinker (GSS) disease but shows marked clinical and neuropathological variability within kindreds that may be caused by variable propagation of distinct prion strains generated from either PrP 102L or wild type PrP. To-date the transmission properties of prions propagated in P102L patients remain ill-defined. Multiple mouse models of GSS have focused on mutating the corresponding residue of murine PrP (P101L), however murine PrP 101L, a novel PrP primary structure, may not have the repertoire of pathogenic prion conformations necessary to accurately model the human disease. Here we describe the transmission properties of prions generated in human PrP 102L expressing transgenic mice that were generated after primary challenge with ex vivo human GSS P102L or classical CJD prions. We show that distinct strains of prions were generated in these mice dependent upon source of the inoculum (either GSS P102L or CJD brain) and have designated these GSS-102L and CJD-102L prions, respectively. GSS-102L prions have transmission properties distinct from all prion strains seen in sporadic and acquired human prion disease. Significantly, GSS-102L prions appear incapable of transmitting disease to conventional mice expressing wild type mouse PrP, which contrasts strikingly with the reported transmission properties of prions generated in GSS P102L-challenged mice expressing mouse PrP 101L. We conclude that future transgenic modeling of IPDs should focus exclusively on expression of mutant human PrP, as other approaches may generate novel experimental prion strains that are unrelated to human disease. Inherited prion disease (IPD) is caused by pathogenic mutations in the human prion protein (PrP) gene leading to the formation of lethal prions in the brain. To-date the properties of prions causing IPD and their similarities to prions causing other forms of human prion disease remain ill-defined. In the present study we have investigated the properties of prions seen in patients with Gerstmann-Sträussler-Scheinker (GSS) disease associated with the substitution of leucine for proline at amino acid position 102 (GSS P102L). We examined the ability of these prions to infect transgenic mice expressing human mutant 102L PrP, human wild-type PrP or wild-type mice. We found that GSS-102L prions have properties distinct from other types of human prions by showing that they can only infect transgenic mice expressing human PrP carrying the same mutation. Mice expressing wild-type human PrP or wild-type mouse PrP were entirely resistant to infection with GSS-102L prions. We conclude that accurate modeling of inherited prion disease requires the expression of authentic mutant human PrP in transgenic models, as other approaches may generate results that do not mirror the human disease.
Collapse
|