1
|
Lemmens MJDK, van Lanen RHGJ, Uher D, Colon AJ, Hoeberigs MC, Hoogland G, Roebroeck A, Ivanov D, Poser BA, Rouhl RPW, Hofman PAM, Gijselhart I, Drenthen GS, Jansen JFA, Backes WH, Rijkers K, Schijns OEMG. Ex vivo ultra-high field magnetic resonance imaging of human epileptogenic specimens from primarily the temporal lobe: A systematic review. Neuroradiology 2025:10.1007/s00234-024-03474-0. [PMID: 40056183 DOI: 10.1007/s00234-024-03474-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 09/30/2024] [Indexed: 03/10/2025]
Abstract
PURPOSE Magnetic resonance imaging (MRI) is the preferred diagnostic tool for the detection of structural cerebral lesions in patients with epilepsy. Ultra-high field (UHF) MRI with field strengths ≥7 Tesla has been reported to improve the visualization and delineation of epileptogenic lesions. The use of ex vivo UHF MRI may expand our knowledge on the detection and detailed micromorphology of subtle epileptogenic lesions by bridging the gap between in vivo MRI and histopathology. METHODS A systematic review of available literature was conducted following PRISMA guidelines. A descriptive analysis of included articles was performed, focusing on (I) the ability of ex vivo UHF MRI to detect subtle abnormalities related to epilepsy, (II) different post-processing methods, and (III) concordance between UHF MRI and histopathology. RESULTS Eleven studies with focus on the depiction of focal cortical dysplasia (n = 4) or hippocampal sclerosis (n = 7) as causative lesion of drug-resistant epilepsy were included. Ex vivo UHF MRI proved its ability to visualize the anatomy of cortical and hippocampal structures in greater detail when compared to ex vivo conventional field strengths. Different MRI post-processing methods enabled differentiation between lesional subtypes and provided novel insights into (peri)lesional characteristics. Concordance between ex vivo UHF MRI findings and histopathology was high. CONCLUSION Acquisition of ex vivo UHF MRI and its image processing has the potential to depict epileptogenic abnormalities in greater detail with a spatial resolution approximating histological images. The translation of ex vivo UHF MRI features to in vivo clinical settings remains challenging and urges further exploration.
Collapse
Affiliation(s)
- Marie-Julie D K Lemmens
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, The Netherlands.
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, PO box 5800, Maastricht, AZ, 6202, The Netherlands.
- Mental Health and Neuroscience (MHeNs) Research Institute, Maastricht University, Maastricht, The Netherlands.
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands.
| | - R H G J van Lanen
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, The Netherlands
- Mental Health and Neuroscience (MHeNs) Research Institute, Maastricht University, Maastricht, The Netherlands
| | - D Uher
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, The Netherlands
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, PO box 5800, Maastricht, AZ, 6202, The Netherlands
- Mental Health and Neuroscience (MHeNs) Research Institute, Maastricht University, Maastricht, The Netherlands
| | - A J Colon
- Academic Center for Epileptology, Kempenhaeghe/Maastricht University Medical Center, Heeze/Maastricht, The Netherlands
- Centre d'Etude et de Traitement de l'Epilepsie, Centre Hospitalier Universitaire Martinique, Fort-de-France, France
| | - M C Hoeberigs
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, PO box 5800, Maastricht, AZ, 6202, The Netherlands
| | - G Hoogland
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, The Netherlands
- Mental Health and Neuroscience (MHeNs) Research Institute, Maastricht University, Maastricht, The Netherlands
- Academic Center for Epileptology, Kempenhaeghe/Maastricht University Medical Center, Heeze/Maastricht, The Netherlands
| | - A Roebroeck
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - D Ivanov
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - B A Poser
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - R P W Rouhl
- Mental Health and Neuroscience (MHeNs) Research Institute, Maastricht University, Maastricht, The Netherlands
- Academic Center for Epileptology, Kempenhaeghe/Maastricht University Medical Center, Heeze/Maastricht, The Netherlands
- Department of Neurology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - P A M Hofman
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, PO box 5800, Maastricht, AZ, 6202, The Netherlands
- Mental Health and Neuroscience (MHeNs) Research Institute, Maastricht University, Maastricht, The Netherlands
- Care and Public Health Research Institute (CAPHRI), Maastricht University, Maastricht, The Netherlands
| | - I Gijselhart
- Academic Center for Epileptology, Kempenhaeghe/Maastricht University Medical Center, Heeze/Maastricht, The Netherlands
| | - G S Drenthen
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, PO box 5800, Maastricht, AZ, 6202, The Netherlands
- Mental Health and Neuroscience (MHeNs) Research Institute, Maastricht University, Maastricht, The Netherlands
| | - J F A Jansen
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, PO box 5800, Maastricht, AZ, 6202, The Netherlands
- Mental Health and Neuroscience (MHeNs) Research Institute, Maastricht University, Maastricht, The Netherlands
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - W H Backes
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, PO box 5800, Maastricht, AZ, 6202, The Netherlands
- Mental Health and Neuroscience (MHeNs) Research Institute, Maastricht University, Maastricht, The Netherlands
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - K Rijkers
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, The Netherlands
- Mental Health and Neuroscience (MHeNs) Research Institute, Maastricht University, Maastricht, The Netherlands
- Academic Center for Epileptology, Kempenhaeghe/Maastricht University Medical Center, Heeze/Maastricht, The Netherlands
| | - O E M G Schijns
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, The Netherlands
- Mental Health and Neuroscience (MHeNs) Research Institute, Maastricht University, Maastricht, The Netherlands
- Academic Center for Epileptology, Kempenhaeghe/Maastricht University Medical Center, Heeze/Maastricht, The Netherlands
| |
Collapse
|
2
|
van Lanen RHGJ, Uher D, Tse DHY, Steijvers E, Colon AJ, Jansen JFA, Drenthen GS, Ivanov D, Hoogland G, Rijkers K, Hoeberigs CM, Hofman PAM, Backes WH, Schijns OEMG. In vivo 9.4 Tesla MRI of a patient with drug-resistant epilepsy: Technical report. Acta Neurochir (Wien) 2025; 167:18. [PMID: 39820684 PMCID: PMC11739318 DOI: 10.1007/s00701-024-06385-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 07/07/2024] [Indexed: 01/19/2025]
Abstract
PURPOSE In resective epilepsy surgery for drug-resistant focal epilepsy (DRE), good seizure outcome is strongly associated with visualization of an epileptogenic lesion on MRI. Standard clinical MRI (≤ 3 Tesla (T)) may fail to detect subtle lesions. 7T MRI enhances detection and delineation, the potential benefits of increasing field strength to 9.4T are explored. METHODS A 36 years old male patient with DRE evaluated for resective surgery, in which 3T and 7T MRI failed to detect any epileptogenic lesions, was submitted to a dedicated epilepsy scan protocol using T1 and T2* weighted imaging at 9.4T. Images were evaluated independently by two neuroradiologists and one neurosurgeon. RESULTS 9.4T MRI offered increased spatial resolution and enhanced depiction of anatomical structures vital for epilepsy imaging, exemplified by regions mesio-temporal (hippocampus, amygdala), latero-temporal, insula, frontal and temporal operculum, and gray-white matter junction (precentral gyrus/frontal lobe) compared to 3T and 7T, albeit with challenges in mesial-temporal and antero-inferior temporal lobe imaging. No epileptogenic lesion was identified. CONCLUSION 9.4T demonstrates promise in the identification and delineation of anatomical structures and small epileptogenic lesions in patients with DRE eligible for resective surgery. Whether clinical 9.4T MRI in DRE has clinical advantages over 7T or leads to a more complete resection of the epileptogenic zone and improved seizure outcome after epilepsy surgery needs to be established.
Collapse
Affiliation(s)
- Rick H G J van Lanen
- Department of Neurosurgery, Maastricht University Medical Centre, Maastricht, Netherlands.
- Research Institute for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, Netherlands.
| | - Daniel Uher
- Department of Neurosurgery, Maastricht University Medical Centre, Maastricht, Netherlands
- Research Institute for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, Netherlands
- Department of Radiology & Nuclear Medicine, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Desmond H Y Tse
- Scannexus, Ultra-High Field MRI Research Centre, Maastricht, Netherlands
| | - Esther Steijvers
- Scannexus, Ultra-High Field MRI Research Centre, Maastricht, Netherlands
| | - Albert J Colon
- Academic Centre for Epileptology, Maastricht University Medical Centre, Heeze, Kempenhaeghe, Maastricht, Netherlands
- Service de la recherche et traitement d'epilepsie, Centre Hospitalier Universitaire Martinique, Fort-de-France, France
| | - Jacobus F A Jansen
- Research Institute for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, Netherlands
- Department of Radiology & Nuclear Medicine, Maastricht University Medical Centre, Maastricht, Netherlands
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Gerhard S Drenthen
- Research Institute for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, Netherlands
- Department of Radiology & Nuclear Medicine, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Dimo Ivanov
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Govert Hoogland
- Department of Neurosurgery, Maastricht University Medical Centre, Maastricht, Netherlands
- Research Institute for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, Netherlands
- Academic Centre for Epileptology, Maastricht University Medical Centre, Heeze, Kempenhaeghe, Maastricht, Netherlands
| | - Kim Rijkers
- Department of Neurosurgery, Maastricht University Medical Centre, Maastricht, Netherlands
- Research Institute for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, Netherlands
- Academic Centre for Epileptology, Maastricht University Medical Centre, Heeze, Kempenhaeghe, Maastricht, Netherlands
| | - Christianne M Hoeberigs
- Research Institute for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, Netherlands
- Department of Radiology & Nuclear Medicine, Maastricht University Medical Centre, Maastricht, Netherlands
- Academic Centre for Epileptology, Maastricht University Medical Centre, Heeze, Kempenhaeghe, Maastricht, Netherlands
| | - Paul A M Hofman
- Department of Radiology & Nuclear Medicine, Maastricht University Medical Centre, Maastricht, Netherlands
- Academic Centre for Epileptology, Maastricht University Medical Centre, Heeze, Kempenhaeghe, Maastricht, Netherlands
| | - Walter H Backes
- Research Institute for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, Netherlands
- Department of Radiology & Nuclear Medicine, Maastricht University Medical Centre, Maastricht, Netherlands
- Research Institute for Cardiovascular Diseases (CARIM), Maastricht University, Maastricht, Netherlands
| | - Olaf E M G Schijns
- Department of Neurosurgery, Maastricht University Medical Centre, Maastricht, Netherlands
- Research Institute for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, Netherlands
- Academic Centre for Epileptology, Maastricht University Medical Centre, Heeze, Kempenhaeghe, Maastricht, Netherlands
| |
Collapse
|
3
|
Li Y, Liu P, Lin Q, Li W, Zhang Y, Li J, Li X, Gong Q, Zhang H, Li L, Sima X, Cao D, Huang X, Huang K, Zhou D, An D. Temporopolar blurring signifies abnormalities of white matter in mesial temporal lobe epilepsy. Ann Clin Transl Neurol 2024; 11:2932-2945. [PMID: 39342438 PMCID: PMC11572732 DOI: 10.1002/acn3.52204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/19/2024] [Accepted: 08/26/2024] [Indexed: 10/01/2024] Open
Abstract
OBJECTIVE The single-center retrospective cohort study investigated underlying pathogenic mechanisms and clinical significance of patients with temporal lobe epilepsy and hippocampal sclerosis (TLE-HS), in the presence/absence of gray-white matter abnormalities (usually called "blurring"; GMB) in ipsilateral temporopolar region (TPR) on MRI. METHODS The study involved 105 patients with unilateral TLE-HS (60 GMB+ and 45 GMB-) who underwent standard anterior temporal lobectomy, along with 61 healthy controls. Resected specimens were examined under light microscope. With combined T1-weighted and DTI data, we quantitatively compared large-scale morphometric features and exacted diffusion parameters of ipsilateral TPR-related superficial and deep white matter (WM) by atlas-based segmentation. Along-tract analysis was added to detect heterogeneous microstructural alterations at various points along deep WM tracts, which were categorized into inferior longitudinal fasciculus (ILF), uncinate fasciculus (UF), and temporal cingulum. RESULTS Comparable seizure semiology and postoperative seizure outcome were found, while the GMB+ group had significantly higher rate of HS Type 1 and history of febrile seizures, contrasting with significantly lower proportion of interictal contralateral epileptiform discharges, HS Type 2, and increased wasteosomes in hippocampal specimens. Similar morphometric features but greater WM atrophy with more diffusion abnormalities of superficial WM was observed adjacent to ipsilateral TPR in the GMB+ group. Moreover, microstructural alterations resulting from temporopolar GMB were more localized in temporal cingulum while evenly and widely distributed along ILF and UF. INTERPRETATION Temporopolar GMB could signify more severe and widespread microstructural damage of white matter rather than a focal cortical lesion in TLE-HS, affecting selection of surgical procedures.
Collapse
Affiliation(s)
- Yuming Li
- Department of NeurologyWest China Hospital of Sichuan UniversityChengdu610041China
| | - Peiwen Liu
- Department of NeurologyWest China Hospital of Sichuan UniversityChengdu610041China
| | - Qiuxing Lin
- Department of NeurologyWest China Hospital of Sichuan UniversityChengdu610041China
| | - Wei Li
- Department of NeurologyWest China Hospital of Sichuan UniversityChengdu610041China
| | - Yingying Zhang
- Department of NeurologyWest China Hospital of Sichuan UniversityChengdu610041China
| | - Jinmei Li
- Department of NeurologyWest China Hospital of Sichuan UniversityChengdu610041China
| | - Xiuli Li
- Huaxi MR Research Center, Department of RadiologyWest China Hospital of Sichuan UniversityChengdu610041China
| | - Qiyong Gong
- Huaxi MR Research Center, Department of RadiologyWest China Hospital of Sichuan UniversityChengdu610041China
| | - Heng Zhang
- Department of NeurosurgeryWest China Hospital of Sichuan UniversityChengdu610041China
| | - Luying Li
- Department of NeurosurgeryWest China Hospital of Sichuan UniversityChengdu610041China
| | - Xiutian Sima
- Department of NeurosurgeryWest China Hospital of Sichuan UniversityChengdu610041China
| | - Danyang Cao
- Department of NeurologyWest China Hospital of Sichuan UniversityChengdu610041China
| | - Xiang Huang
- Department of NeurologyWest China Hospital of Sichuan UniversityChengdu610041China
| | - Kailing Huang
- Department of NeurologyWest China Hospital of Sichuan UniversityChengdu610041China
| | - Dong Zhou
- Department of NeurologyWest China Hospital of Sichuan UniversityChengdu610041China
| | - Dongmei An
- Department of NeurologyWest China Hospital of Sichuan UniversityChengdu610041China
| |
Collapse
|
4
|
Pastore LV, De Vita E, Sudhakar SV, Löbel U, Mankad K, Biswas A, Cirillo L, Pujar S, D’Arco F. Advances in magnetic resonance imaging for the assessment of paediatric focal epilepsy: a narrative review. Transl Pediatr 2024; 13:1617-1633. [PMID: 39399717 PMCID: PMC11467228 DOI: 10.21037/tp-24-166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 08/09/2024] [Indexed: 10/15/2024] Open
Abstract
Background and Objective Epilepsy affects approximately 50 million people worldwide, with 30-40% of patients not responding to medication, necessitating alternative therapies such as surgical intervention. However, the accurate localization of epileptogenic lesions, particularly in pediatric magnetic resonance imaging (MRI)-negative drug-resistant epilepsy, remains a challenge. This paper reviews advanced neuroimaging techniques aimed at improving the detection of such lesions to enhance surgical outcomes. Methods A comprehensive literature search was conducted using PubMed, focusing on advanced MRI sequences, focal epilepsy, and the integration of artificial intelligence (AI) in the diagnostic process. Key Content and Findings New MRI sequences, including magnetization prepared 2 rapid gradient echo (MP2RAGE), edge-enhancing gradient echo (EDGE), and fluid and white matter suppression (FLAWS), have demonstrated enhanced capabilities in detecting subtle epileptogenic lesions. Quantitative MRI techniques, notably magnetic resonance fingerprinting (MRF), alongside innovative post-processing methods, are emphasized for their effectiveness in delineating cortical malformations, whether used alone or in combination with ultra-high field MRI systems. Furthermore, the integration of AI in radiology is progressing, providing significant support in accurately localizing lesions, and potentially optimizing pre-surgical planning. Conclusions While advanced neuroimaging and AI offer significant improvements in the diagnostic process for epilepsy, some challenges remain. These include long acquisition times, the need for extensive data analysis, and a lack of large, standardized datasets for AI validation. However, the future holds promise as research continues to integrate these technologies into clinical practice. These efforts will improve the clinical applicability and effectiveness of these advanced techniques in epilepsy management, paving the way for more accurate diagnoses and better patient outcomes.
Collapse
Affiliation(s)
- Luigi Vincenzo Pastore
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
- Neuroradiology Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, Ospedale Bellaria, Bologna, Italy
| | - Enrico De Vita
- Department of Neuroradiology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Sniya Valsa Sudhakar
- Department of Neuroradiology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Ulrike Löbel
- Department of Neuroradiology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Kshitij Mankad
- Department of Neuroradiology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Asthik Biswas
- Department of Neuroradiology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Luigi Cirillo
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
- Neuroradiology Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, Ospedale Bellaria, Bologna, Italy
| | - Suresh Pujar
- Neurology/Epilepsy Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
- Developmental Neurosciences Unit, University College London-Great Ormond Street Institute of Child Health, London, UK
| | - Felice D’Arco
- Department of Neuroradiology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| |
Collapse
|
5
|
Galbusera R, Bahn E, Weigel M, Schaedelin S, Franz J, Lu P, Barakovic M, Melie‐Garcia L, Dechent P, Lutti A, Sati P, Reich DS, Nair G, Brück W, Kappos L, Stadelmann C, Granziera C. Postmortem quantitative MRI disentangles histological lesion types in multiple sclerosis. Brain Pathol 2023; 33:e13136. [PMID: 36480267 PMCID: PMC10580009 DOI: 10.1111/bpa.13136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 11/16/2022] [Indexed: 12/13/2022] Open
Abstract
Quantitative MRI (qMRI) probes the microstructural properties of the central nervous system (CNS) by providing biophysical measures of tissue characteristics. In this work, we aimed to (i) identify qMRI measures that distinguish histological lesion types in postmortem multiple sclerosis (MS) brains, especially the remyelinated ones; and to (ii) investigate the relationship between those measures and quantitative histological markers of myelin, axons, and astrocytes in the same experimental setting. Three fixed MS whole brains were imaged with qMRI at 3T to obtain magnetization transfer ratio (MTR), myelin water fraction (MWF), quantitative T1 (qT1), quantitative susceptibility mapping (QSM), fractional anisotropy (FA) and radial diffusivity (RD) maps. The identification of lesion types (active, inactive, chronic active, or remyelinated) and quantification of tissue components were performed using histological staining methods as well as immunohistochemistry and immunofluorescence. Pairwise logistic and LASSO regression models were used to identify the best qMRI discriminators of lesion types. The association between qMRI and quantitative histological measures was performed using Spearman's correlations and linear mixed-effect models. We identified a total of 65 lesions. MTR and MWF best predicted the chance of a lesion to be remyelinated, whereas RD and QSM were useful in the discrimination of active lesions. The measurement of microstructural properties through qMRI did not show any difference between chronic active and inactive lesions. MWF and RD were associated with myelin content in both lesions and normal-appearing white matter (NAWM), FA was the measure most associated with axon content in both locations, while MWF was associated with astrocyte immunoreactivity only in lesions. Moreover, we provided evidence of extensive astrogliosis in remyelinated lesions. Our study provides new information on the discriminative power of qMRI in differentiating MS lesions -especially remyelinated ones- as well as on the relative association between multiple qMRI measures and myelin, axon and astrocytes.
Collapse
Affiliation(s)
- Riccardo Galbusera
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, Faculty of MedicineUniversity Hospital Basel and University of BaselBaselSwitzerland
- Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB)University Hospital Basel and University of BaselBaselSwitzerland
| | - Erik Bahn
- Institute of NeuropathologyUniversity Medical CenterGöttingenGermany
| | - Matthias Weigel
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, Faculty of MedicineUniversity Hospital Basel and University of BaselBaselSwitzerland
- Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB)University Hospital Basel and University of BaselBaselSwitzerland
- Division of Radiological Physics, Department of RadiologyUniversity Hospital BaselBaselSwitzerland
| | - Sabine Schaedelin
- Clinical Trial Unit, Department of Clinical ResearchUniversity Hospital Basel, University of BaselBaselSwitzerland
| | - Jonas Franz
- Institute of NeuropathologyUniversity Medical CenterGöttingenGermany
- Campus Institute for Dynamics of Biological NetworksUniversity of GöttingenGöttingenGermany
- Max Planck Institute for Experimental MedicineGöttingenGermany
| | - Po‐Jui Lu
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, Faculty of MedicineUniversity Hospital Basel and University of BaselBaselSwitzerland
- Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB)University Hospital Basel and University of BaselBaselSwitzerland
| | - Muhamed Barakovic
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, Faculty of MedicineUniversity Hospital Basel and University of BaselBaselSwitzerland
- Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB)University Hospital Basel and University of BaselBaselSwitzerland
| | - Lester Melie‐Garcia
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, Faculty of MedicineUniversity Hospital Basel and University of BaselBaselSwitzerland
- Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB)University Hospital Basel and University of BaselBaselSwitzerland
| | - Peter Dechent
- Department of Cognitive NeurologyMR‐Research in Neurosciences, University Medical Center GöttingenGöttingenGermany
| | - Antoine Lutti
- Centre for Research in Neuroscience, Department of Clinical NeurosciencesLaboratoire de Recherche en Neuroimagerie (LREN) University Hospital and University of LausanneLausanneSwitzerland
| | - Pascal Sati
- Department of NeurologyCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
| | - Daniel S. Reich
- Translational Neuroradiology SectionNational Institute of Neurological Disorders and Stroke, National Institutes of HealthBethesdaMarylandUSA
| | - Govind Nair
- National Institute of Neurological Disorders and StrokeBethesdaMarylandUSA
| | - Wolfgang Brück
- Institute of NeuropathologyUniversity Medical CenterGöttingenGermany
| | - Ludwig Kappos
- Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB)University Hospital Basel and University of BaselBaselSwitzerland
| | - Christine Stadelmann
- Institute of NeuropathologyUniversity Medical CenterGöttingenGermany
- Cluster of Excellence “Multiscale Bioimaging: from Molecular Machines to Network of Excitable Cells (MBExC) ”University of GoettingenGermany
| | - Cristina Granziera
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, Faculty of MedicineUniversity Hospital Basel and University of BaselBaselSwitzerland
- Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB)University Hospital Basel and University of BaselBaselSwitzerland
| |
Collapse
|
6
|
Fountain C, Ghuman H, Paldino M, Tamber M, Panigrahy A, Modo M. Acquisition and Analysis of Excised Neocortex from Pediatric Patients with Focal Cortical Dysplasia Using Mesoscale Diffusion MRI. Diagnostics (Basel) 2023; 13:1529. [PMID: 37174921 PMCID: PMC10177920 DOI: 10.3390/diagnostics13091529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 04/01/2023] [Accepted: 04/15/2023] [Indexed: 05/15/2023] Open
Abstract
Non-invasive classification of focal cortical dysplasia (FCD) subtypes remains challenging from a radiology perspective. Quantitative imaging biomarkers (QIBs) have the potential to distinguish subtypes that lack pathognomonic features and might help in defining the extent of abnormal connectivity associated with each FCD subtype. A key motivation of diagnostic imaging is to improve the localization of a "lesion" that can guide the surgical resection of affected tissue, which is thought to cause seizures. Conversely, surgical resections to eliminate or reduce seizures provided unique opportunities to develop magnetic resonance imaging (MRI)-based QIBs by affording long scan times to evaluate multiple contrast mechanisms at the mesoscale (0.5 mm isotropic voxel dimensions). Using ex vivo hybrid diffusion tensor imaging on a 9.4 T MRI scanner, the grey to white matter ratio of scalar indices was lower in the resected middle temporal gyrus (MTG) of two neuropathologically confirmed cases of FCD compared to non-diseased control postmortem fixed temporal lobes. In contrast, fractional anisotropy was increased within FCD and also adjacent white matter tracts. Connectivity (streamlines/mm3) in the MTG was higher in FCD, suggesting that an altered connectivity at the lesion locus can potentially provide a tangible QIB to distinguish and characterize FCD abnormalities. However, as illustrated here, a major challenge for a robust tractographical comparison lies in the considerable differences in the ex vivo processing of bioptic and postmortem samples. Mesoscale diffusion MRI has the potential to better define and characterize epileptic tissues obtained from surgical resection to advance our understanding of disease etiology and treatment.
Collapse
Affiliation(s)
- Chandler Fountain
- Department of Radiology and Medical Imaging, University of Virginia Health System, 1215 Lee St, Chartlottesville, VA 22903, USA
| | - Harmanvir Ghuman
- Department of Bioengineering, University of Pittsburgh, 302 Benedum Hall, 3700 O’Hara Street, Pititsburgh, PA 15260, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Drive, Suite 300, Pittsburgh, PA 15219, USA
| | - Michael Paldino
- Department of Radiology, University of Pittsburgh, PUH Suite E204, 200 Lothrop Street, Pittsburgh, PA 15213, USA
| | - Mandeep Tamber
- Department of Neurological Surgery, University of Pittsburgh, 200 Lothrop Street, Suite B 400, Pittsburgh, PA 15213, USA
| | - Ashok Panigrahy
- Department of Radiology, University of Pittsburgh, PUH Suite E204, 200 Lothrop Street, Pittsburgh, PA 15213, USA
| | - Michel Modo
- Department of Bioengineering, University of Pittsburgh, 302 Benedum Hall, 3700 O’Hara Street, Pititsburgh, PA 15260, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Drive, Suite 300, Pittsburgh, PA 15219, USA
- Department of Radiology, University of Pittsburgh, PUH Suite E204, 200 Lothrop Street, Pittsburgh, PA 15213, USA
- Centre for the Neural Basis of Behavior, University of Pittsburgh and Carnegie Mellon University, 4074 Biomedical Science Tower 3, Pittsburgh, PA 15261, USA
| |
Collapse
|
7
|
Tang Y, Blümcke I, Su TY, Choi JY, Krishnan B, Murakami H, Alexopoulos AV, Najm IM, Jones SE, Wang ZI. Black Line Sign in Focal Cortical Dysplasia IIB: A 7T MRI and Electroclinicopathologic Study. Neurology 2022; 99:e616-e626. [PMID: 35940890 PMCID: PMC9442623 DOI: 10.1212/wnl.0000000000200702] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 03/23/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND AND OBJECTIVES We aim to provide detailed imaging-electroclinicopathologic characterization of the black line sign, a novel MRI marker for focal cortical dysplasia (FCD) IIB. METHODS 7T T2*-weighted gradient-echo (T2*w-GRE) images were retrospectively reviewed in a consecutive cohort of patients with medically intractable epilepsy with pathology-proven FCD II, for the occurrence of the black line sign. We examined the overlap between the black line region and the seizure-onset zone (SOZ) defined by intracranial EEG (ICEEG) and additionally assessed whether complete inclusion of the black line region in the surgical resection was associated with postoperative seizure freedom. The histopathologic specimen was aligned with the MRI to investigate the pathologic underpinning of the black line sign. Region-of-interest-based quantitative MRI (qMRI) analysis on the 7T T1 map was performed in the black line region, entire lesional gray matter (GM), and contralateral/ipsilateral normal gray and white matter (WM). RESULTS We included 20 patients with FCD II (14 IIB and 6 IIA). The black line sign was identified in 12/14 (85.7%) of FCD IIB and 0/6 of FCD IIA on 7T T2*w-GRE. The black line region was highly concordant with the ICEEG-defined SOZ (5/7 complete and 2/7 partial overlap). Seizure freedom was seen in 8/8 patients whose black line region was completely included in the surgical resection; in the 2 patients whose resection did not completely include the black line region, both had recurring seizures. Inclusion of the black line region in the surgical resection was significantly associated with seizure freedom (p = 0.02). QMRI analyses showed that the T1 mean value of the black line region was significantly different from the WM (p < 0.001), but similar to the GM. Well-matched histopathologic slices in one case revealed accumulated dysmorphic neurons and balloon cells in the black line region. DISCUSSION The black line sign may serve as a noninvasive marker for FCD IIB. Both MRI-pathology and qMRI analyses suggest that the black line region was an abnormal GM component within the FCD. Being highly concordant with ICEEG-defined SOZ and significantly associated with seizure freedom when included in resection, the black line sign may contribute to the planning of ICEEG/surgery of patients with medically intractable epilepsy with FCD IIB. CLASSIFICATION OF EVIDENCE This study provides Class II evidence that in individuals with intractable focal epilepsy undergoing resection who have a 7T MRI with adequate image quality, the presence of the black line sign may suggest FCD IIB, be concordant with SOZ from ICEEG, and be associated with more seizure freedom if fully included in resection.
Collapse
Affiliation(s)
- Yingying Tang
- From the Department of Neurology (Y.T.), West China Hospital of Sichuan University, Chengdu, Sichuan, China; Charles Shor Epilepsy Center (Y.T., I.B., T.-Y.S., J.Y.C., B.K., H.M., A.V.A., I.M.N., Z.I.W.), Cleveland Clinic; Department of Neuropathology (I.B.), University of Erlangen, Germany; Department of Biomedical Engineering (T.-Y.S.), Case Western Reserve University; and Imaging Institute (S.E.J.), Cleveland Clinic, OH
| | - Ingmar Blümcke
- From the Department of Neurology (Y.T.), West China Hospital of Sichuan University, Chengdu, Sichuan, China; Charles Shor Epilepsy Center (Y.T., I.B., T.-Y.S., J.Y.C., B.K., H.M., A.V.A., I.M.N., Z.I.W.), Cleveland Clinic; Department of Neuropathology (I.B.), University of Erlangen, Germany; Department of Biomedical Engineering (T.-Y.S.), Case Western Reserve University; and Imaging Institute (S.E.J.), Cleveland Clinic, OH
| | - Ting-Yu Su
- From the Department of Neurology (Y.T.), West China Hospital of Sichuan University, Chengdu, Sichuan, China; Charles Shor Epilepsy Center (Y.T., I.B., T.-Y.S., J.Y.C., B.K., H.M., A.V.A., I.M.N., Z.I.W.), Cleveland Clinic; Department of Neuropathology (I.B.), University of Erlangen, Germany; Department of Biomedical Engineering (T.-Y.S.), Case Western Reserve University; and Imaging Institute (S.E.J.), Cleveland Clinic, OH
| | - Joon Yul Choi
- From the Department of Neurology (Y.T.), West China Hospital of Sichuan University, Chengdu, Sichuan, China; Charles Shor Epilepsy Center (Y.T., I.B., T.-Y.S., J.Y.C., B.K., H.M., A.V.A., I.M.N., Z.I.W.), Cleveland Clinic; Department of Neuropathology (I.B.), University of Erlangen, Germany; Department of Biomedical Engineering (T.-Y.S.), Case Western Reserve University; and Imaging Institute (S.E.J.), Cleveland Clinic, OH
| | - Balu Krishnan
- From the Department of Neurology (Y.T.), West China Hospital of Sichuan University, Chengdu, Sichuan, China; Charles Shor Epilepsy Center (Y.T., I.B., T.-Y.S., J.Y.C., B.K., H.M., A.V.A., I.M.N., Z.I.W.), Cleveland Clinic; Department of Neuropathology (I.B.), University of Erlangen, Germany; Department of Biomedical Engineering (T.-Y.S.), Case Western Reserve University; and Imaging Institute (S.E.J.), Cleveland Clinic, OH
| | - Hiroatsu Murakami
- From the Department of Neurology (Y.T.), West China Hospital of Sichuan University, Chengdu, Sichuan, China; Charles Shor Epilepsy Center (Y.T., I.B., T.-Y.S., J.Y.C., B.K., H.M., A.V.A., I.M.N., Z.I.W.), Cleveland Clinic; Department of Neuropathology (I.B.), University of Erlangen, Germany; Department of Biomedical Engineering (T.-Y.S.), Case Western Reserve University; and Imaging Institute (S.E.J.), Cleveland Clinic, OH
| | - Andreas V Alexopoulos
- From the Department of Neurology (Y.T.), West China Hospital of Sichuan University, Chengdu, Sichuan, China; Charles Shor Epilepsy Center (Y.T., I.B., T.-Y.S., J.Y.C., B.K., H.M., A.V.A., I.M.N., Z.I.W.), Cleveland Clinic; Department of Neuropathology (I.B.), University of Erlangen, Germany; Department of Biomedical Engineering (T.-Y.S.), Case Western Reserve University; and Imaging Institute (S.E.J.), Cleveland Clinic, OH
| | - Imad M Najm
- From the Department of Neurology (Y.T.), West China Hospital of Sichuan University, Chengdu, Sichuan, China; Charles Shor Epilepsy Center (Y.T., I.B., T.-Y.S., J.Y.C., B.K., H.M., A.V.A., I.M.N., Z.I.W.), Cleveland Clinic; Department of Neuropathology (I.B.), University of Erlangen, Germany; Department of Biomedical Engineering (T.-Y.S.), Case Western Reserve University; and Imaging Institute (S.E.J.), Cleveland Clinic, OH
| | - Stephen E Jones
- From the Department of Neurology (Y.T.), West China Hospital of Sichuan University, Chengdu, Sichuan, China; Charles Shor Epilepsy Center (Y.T., I.B., T.-Y.S., J.Y.C., B.K., H.M., A.V.A., I.M.N., Z.I.W.), Cleveland Clinic; Department of Neuropathology (I.B.), University of Erlangen, Germany; Department of Biomedical Engineering (T.-Y.S.), Case Western Reserve University; and Imaging Institute (S.E.J.), Cleveland Clinic, OH
| | - Zhong Irene Wang
- From the Department of Neurology (Y.T.), West China Hospital of Sichuan University, Chengdu, Sichuan, China; Charles Shor Epilepsy Center (Y.T., I.B., T.-Y.S., J.Y.C., B.K., H.M., A.V.A., I.M.N., Z.I.W.), Cleveland Clinic; Department of Neuropathology (I.B.), University of Erlangen, Germany; Department of Biomedical Engineering (T.-Y.S.), Case Western Reserve University; and Imaging Institute (S.E.J.), Cleveland Clinic, OH.
| |
Collapse
|
8
|
Tang Y, Su TY, Choi JY, Hu S, Wang X, Sakaie K, Murakami H, Alexopoulos A, Griswold M, Jones S, Najm I, Ma D, Wang ZI. Characterizing Thalamic and Basal Ganglia Nuclei in Medically Intractable Focal Epilepsy by MR Fingerprinting. Epilepsia 2022; 63:1998-2010. [PMID: 35661353 DOI: 10.1111/epi.17318] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/11/2022] [Accepted: 06/02/2022] [Indexed: 02/05/2023]
Abstract
OBJECTIVES Magnetic resonance fingerprinting (MRF) is a novel, quantitative and noninvasive technique to measure brain tissue properties. We aim to use MRF for characterizing normal-appearing thalamic and basal ganglia nuclei in the epileptic brain. METHODS A 3D MRF protocol (1mm3 isotropic resolution) was acquired from 48 patients with unilateral medically refractory focal epilepsy and 39 healthy controls (HCs). Whole-brain T1 and T2 maps (containing T1 and T2 relaxation times) were reconstructed for each subject. Ten subcortical nuclei in the thalamus and basal ganglia were segmented as regions of interest (ROIs), within which the mean T1 and T2 values, as well as their coefficient of variation (CV) were compared between the patients and HCs at group level. Subgroup and correlation analyses were performed to examine the relationship between significant MRF measures and various clinical characteristics. Using significantly abnormal MRF measures from the group-level analyses, support vector machine (SVM) and logistic regression machine learning models were built and tested with 5-fold and 10-fold cross-validations, to separate patients from HCs, and to separate patients with left-sided and right-sided epilepsy, at individual level. RESULTS MRF revealed increased T1 mean value in the ipsilateral thalamus and nucleus accumbens; increased T1 CV in bilateral thalamus, bilateral pallidum, and ipsilateral caudate; and increased T2 CV in the ipsilateral thalamus in patients compared to HCs (P<0.05, FDR corrected). The SVM classifier produced 78.2% average accuracy to separate individual patients from HCs, with AUC of 0.83. The logistic regression classifier produced 67.4% average accuracy to separate patients with left-sided and right-sided epilepsy, with AUC of 0.72. SIGNIFICANCE MRF revealed bilateral tissue-property changes in the normal-appearing thalamus and basal ganglia, with ipsilateral predominance and thalamic preference, suggesting subcortical involvement/impairment in patients with medically intractable focal epilepsy. The individual-level performance of the MRF-based machine-learning models suggests potential opportunities for predicting lateralization.
Collapse
Affiliation(s)
- Yingying Tang
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, Sichuan, China.,Charles Shor Epilepsy Center, Cleveland Clinic, Cleveland, OH, USA
| | - Ting Yu Su
- Charles Shor Epilepsy Center, Cleveland Clinic, Cleveland, OH, USA.,Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Joon Yul Choi
- Charles Shor Epilepsy Center, Cleveland Clinic, Cleveland, OH, USA
| | - Siyuan Hu
- Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Xiaofeng Wang
- Quantitative Health Science, Cleveland Clinic, Cleveland, OH, USA
| | - Ken Sakaie
- Imaging Institute, Cleveland Clinic, Cleveland, OH, USA
| | | | | | - Mark Griswold
- Radiology, Case Western Reserve University, Cleveland, OH, USA
| | - Stephen Jones
- Imaging Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Imad Najm
- Charles Shor Epilepsy Center, Cleveland Clinic, Cleveland, OH, USA
| | - Dan Ma
- Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Zhong Irene Wang
- Charles Shor Epilepsy Center, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
9
|
Martins D, Giacomel A, Williams SCR, Turkheimer F, Dipasquale O, Veronese M. Imaging transcriptomics: Convergent cellular, transcriptomic, and molecular neuroimaging signatures in the healthy adult human brain. Cell Rep 2021; 37:110173. [PMID: 34965413 DOI: 10.1016/j.celrep.2021.110173] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 09/30/2021] [Accepted: 12/03/2021] [Indexed: 12/12/2022] Open
Abstract
The integration of transcriptomic and neuroimaging data, "imaging transcriptomics," has recently emerged to generate hypotheses about potential biological pathways underlying regional variability in neuroimaging features. However, the validity of this approach is yet to be examined in depth. Here, we sought to bridge this gap by performing transcriptomic decoding of the regional distribution of well-known molecular markers spanning different elements of the biology of the healthy human brain. Imaging transcriptomics identifies biological and cell pathways that are consistent with the known biology of a wide range of molecular neuroimaging markers. The extent to which it can capture patterns of gene expression that align well with elements of the biology of the neuroinflammatory axis, at least in healthy controls without a proinflammatory challenge, is inconclusive. Imaging transcriptomics might constitute an interesting approach to improve our understanding of the biological pathways underlying regional variability in a wide range of neuroimaging phenotypes.
Collapse
Affiliation(s)
- Daniel Martins
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London SE5 8AF, UK.
| | - Alessio Giacomel
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London SE5 8AF, UK
| | - Steven C R Williams
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London SE5 8AF, UK
| | - Federico Turkheimer
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London SE5 8AF, UK
| | - Ottavia Dipasquale
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London SE5 8AF, UK
| | - Mattia Veronese
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London SE5 8AF, UK; Department of Information Engineering, University of Padua, Via Gradenigo, 6/b, 35131 Padova, Italy.
| | | |
Collapse
|
10
|
Norbom LB, Ferschmann L, Parker N, Agartz I, Andreassen OA, Paus T, Westlye LT, Tamnes CK. New insights into the dynamic development of the cerebral cortex in childhood and adolescence: Integrating macro- and microstructural MRI findings. Prog Neurobiol 2021; 204:102109. [PMID: 34147583 DOI: 10.1016/j.pneurobio.2021.102109] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 04/26/2021] [Accepted: 06/15/2021] [Indexed: 12/11/2022]
Abstract
Through dynamic transactional processes between genetic and environmental factors, childhood and adolescence involve reorganization and optimization of the cerebral cortex. The cortex and its development plays a crucial role for prototypical human cognitive abilities. At the same time, many common mental disorders appear during these critical phases of neurodevelopment. Magnetic resonance imaging (MRI) can indirectly capture several multifaceted changes of cortical macro- and microstructure, of high relevance to further our understanding of the neural foundation of cognition and mental health. Great progress has been made recently in mapping the typical development of cortical morphology. Moreover, newer less explored MRI signal intensity and specialized quantitative T2 measures have been applied to assess microstructural cortical development. We review recent findings of typical postnatal macro- and microstructural development of the cerebral cortex from early childhood to young adulthood. We cover studies of cortical volume, thickness, area, gyrification, T1-weighted (T1w) tissue contrasts such a grey/white matter contrast, T1w/T2w ratio, magnetization transfer and myelin water fraction. Finally, we integrate imaging studies with cortical gene expression findings to further our understanding of the underlying neurobiology of the developmental changes, bridging the gap between ex vivo histological- and in vivo MRI studies.
Collapse
Affiliation(s)
- Linn B Norbom
- NORMENT, Institute of Clinical Medicine, University of Oslo, Norway; PROMENTA Research Center, Department of Psychology, University of Oslo, Norway; Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway.
| | - Lia Ferschmann
- PROMENTA Research Center, Department of Psychology, University of Oslo, Norway
| | - Nadine Parker
- Institute of Medical Science, University of Toronto, Ontario, Canada
| | - Ingrid Agartz
- NORMENT, Institute of Clinical Medicine, University of Oslo, Norway; Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway; K.G Jebsen Center for Neurodevelopmental Disorders, University of Oslo, Norway
| | - Ole A Andreassen
- K.G Jebsen Center for Neurodevelopmental Disorders, University of Oslo, Norway; NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway
| | - Tomáš Paus
- ECOGENE-21, Chicoutimi, Quebec, Canada; Department of Psychology and Psychiatry, University of Toronto, Ontario, Canada; Department of Psychiatry and Centre hospitalier universitaire Sainte-Justine, University of Montreal, Canada
| | - Lars T Westlye
- K.G Jebsen Center for Neurodevelopmental Disorders, University of Oslo, Norway; NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway; Department of Psychology, University of Oslo, Norway
| | - Christian K Tamnes
- NORMENT, Institute of Clinical Medicine, University of Oslo, Norway; PROMENTA Research Center, Department of Psychology, University of Oslo, Norway; Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway.
| |
Collapse
|
11
|
Lazari A, Lipp I. Can MRI measure myelin? Systematic review, qualitative assessment, and meta-analysis of studies validating microstructural imaging with myelin histology. Neuroimage 2021; 230:117744. [PMID: 33524576 PMCID: PMC8063174 DOI: 10.1016/j.neuroimage.2021.117744] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 01/05/2021] [Accepted: 01/09/2021] [Indexed: 12/16/2022] Open
Abstract
Recent years have seen an increased understanding of the importance of myelination in healthy brain function and neuropsychiatric diseases. Non-invasive microstructural magnetic resonance imaging (MRI) holds the potential to expand and translate these insights to basic and clinical human research, but the sensitivity and specificity of different MR markers to myelination is a subject of debate. To consolidate current knowledge on the topic, we perform a systematic review and meta-analysis of studies that validate microstructural imaging by combining it with myelin histology. We find meta-analytic evidence for correlations between various myelin histology metrics and markers from different MRI modalities, including fractional anisotropy, radial diffusivity, macromolecular pool, magnetization transfer ratio, susceptibility and longitudinal relaxation rate, but not mean diffusivity. Meta-analytic correlation effect sizes range widely, between R2 = 0.26 and R2 = 0.82. However, formal comparisons between MRI-based myelin markers are limited by methodological variability, inconsistent reporting and potential for publication bias, thus preventing the establishment of a single most sensitive strategy to measure myelin with MRI. To facilitate further progress, we provide a detailed characterisation of the evaluated studies as an online resource. We also share a set of 12 recommendations for future studies validating putative MR-based myelin markers and deploying them in vivo in humans.
Collapse
Affiliation(s)
- Alberto Lazari
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, UK
| | - Ilona Lipp
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
| |
Collapse
|
12
|
van Lanen RHGJ, Colon AJ, Wiggins CJ, Hoeberigs MC, Hoogland G, Roebroeck A, Ivanov D, Poser BA, Rouhl RPW, Hofman PAM, Jansen JFA, Backes W, Rijkers K, Schijns OEMG. Ultra-high field magnetic resonance imaging in human epilepsy: A systematic review. Neuroimage Clin 2021; 30:102602. [PMID: 33652376 PMCID: PMC7921009 DOI: 10.1016/j.nicl.2021.102602] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 02/12/2021] [Accepted: 02/13/2021] [Indexed: 12/15/2022]
Abstract
RATIONALE Resective epilepsy surgery is an evidence-based curative treatment option for patients with drug-resistant focal epilepsy. The major preoperative predictor of a good surgical outcome is detection of an epileptogenic lesion by magnetic resonance imaging (MRI). Application of ultra-high field (UHF) MRI, i.e. field strengths ≥ 7 Tesla (T), may increase the sensitivity to detect such a lesion. METHODS A keyword search strategy was submitted to Pubmed, EMBASE, Cochrane Database and clinicaltrials.gov to select studies on UHF MRI in patients with epilepsy. Follow-up study selection and data extraction were performed following PRISMA guidelines. We focused on I) diagnostic gain of UHF- over conventional MRI, II) concordance of MRI-detected lesion, seizure onset zone and surgical decision-making, and III) postoperative histopathological diagnosis and seizure outcome. RESULTS Sixteen observational cohort studies, all using 7T MRI were included. Diagnostic gain of 7T over conventional MRI ranged from 8% to 67%, with a pooled gain of 31%. Novel techniques to visualize pathological processes in epilepsy and lesion detection are discussed. Seizure freedom was achieved in 73% of operated patients; no seizure outcome comparison was made between 7T MRI positive, 7T negative and 3T positive patients. 7T could influence surgical decision-making, with high concordance of lesion and seizure onset zone. Focal cortical dysplasia (54%), hippocampal sclerosis (12%) and gliosis (8.1%) were the most frequently diagnosed histopathological entities. SIGNIFICANCE UHF MRI increases, yet variably, the sensitivity to detect an epileptogenic lesion, showing potential for use in clinical practice. It remains to be established whether this results in improved seizure outcome after surgical treatment. Prospective studies with larger cohorts of epilepsy patients, uniform scan and sequence protocols, and innovative post-processing technology are equally important as further increasing field strengths. Besides technical ameliorations, improved correlation of imaging features with clinical semiology, histopathology and clinical outcome has to be established.
Collapse
Affiliation(s)
- R H G J van Lanen
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, the Netherlands; School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands.
| | - A J Colon
- Academic Center for Epileptology, Kempenhaeghe/Maastricht University Medical Center, Heeze/Maastricht, The Netherlands
| | - C J Wiggins
- Scannexus, Ultra High Field MRI Research Center, Maastricht, The Netherlands
| | - M C Hoeberigs
- Department of Radiology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - G Hoogland
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, the Netherlands; School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands; Academic Center for Epileptology, Kempenhaeghe/Maastricht University Medical Center, Heeze/Maastricht, The Netherlands
| | - A Roebroeck
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - D Ivanov
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - B A Poser
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - R P W Rouhl
- School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands; Academic Center for Epileptology, Kempenhaeghe/Maastricht University Medical Center, Heeze/Maastricht, The Netherlands; Department of Neurology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - P A M Hofman
- School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands; Department of Radiology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - J F A Jansen
- School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands; Department of Radiology, Maastricht University Medical Center, Maastricht, The Netherlands; Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - W Backes
- School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands; Department of Radiology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - K Rijkers
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, the Netherlands; School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands; Academic Center for Epileptology, Kempenhaeghe/Maastricht University Medical Center, Heeze/Maastricht, The Netherlands
| | - O E M G Schijns
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, the Netherlands; School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands; Academic Center for Epileptology, Kempenhaeghe/Maastricht University Medical Center, Heeze/Maastricht, The Netherlands
| |
Collapse
|
13
|
Bryant L, McKinnon ET, Taylor JA, Jensen JH, Bonilha L, de Bezenac C, Kreilkamp BAK, Adan G, Wieshmann UC, Biswas S, Marson AG, Keller SS. Fiber ball white matter modeling in focal epilepsy. Hum Brain Mapp 2021; 42:2490-2507. [PMID: 33605514 PMCID: PMC8090772 DOI: 10.1002/hbm.25382] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 12/15/2022] Open
Abstract
Multicompartment diffusion magnetic resonance imaging (MRI) approaches are increasingly being applied to estimate intra‐axonal and extra‐axonal diffusion characteristics in the human brain. Fiber ball imaging (FBI) and its extension fiber ball white matter modeling (FBWM) are such recently described multicompartment approaches. However, these particular approaches have yet to be applied in clinical cohorts. The modeling of several diffusion parameters with interpretable biological meaning may offer the development of new, noninvasive biomarkers of pharmacoresistance in epilepsy. In the present study, we used FBI and FBWM to evaluate intra‐axonal and extra‐axonal diffusion properties of white matter tracts in patients with longstanding focal epilepsy. FBI/FBWM diffusion parameters were calculated along the length of 50 white matter tract bundles and statistically compared between patients with refractory epilepsy, nonrefractory epilepsy and controls. We report that patients with chronic epilepsy had a widespread distribution of extra‐axonal diffusivity relative to controls, particularly in circumscribed regions along white matter tracts projecting to cerebral cortex from thalamic, striatal, brainstem, and peduncular regions. Patients with refractory epilepsy had significantly greater markers of extra‐axonal diffusivity compared to those with nonrefractory epilepsy. The extra‐axonal diffusivity alterations in patients with epilepsy observed in the present study could be markers of neuroinflammatory processes or a reflection of reduced axonal density, both of which have been histologically demonstrated in focal epilepsy. FBI is a clinically feasible MRI approach that provides the basis for more interpretive conclusions about the microstructural environment of the brain and may represent a unique biomarker of pharmacoresistance in epilepsy.
Collapse
Affiliation(s)
- Lorna Bryant
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, UK
| | - Emilie T McKinnon
- Center for Biomedical Imaging, Medical University of South Carolina, Charleston, South Carolina, USA
| | - James A Taylor
- Center for Biomedical Imaging, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Jens H Jensen
- Center for Biomedical Imaging, Medical University of South Carolina, Charleston, South Carolina, USA.,Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Leonardo Bonilha
- Department of Neurology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Christophe de Bezenac
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, UK
| | - Barbara A K Kreilkamp
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, UK.,Department of Clinical Neurophysiology, University Medicine Göttingen, Göttingen, Germany
| | - Guleed Adan
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, UK.,The Walton Centre NHS Foundation Trust, Liverpool, UK
| | | | | | - Anthony G Marson
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, UK.,The Walton Centre NHS Foundation Trust, Liverpool, UK
| | - Simon S Keller
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, UK.,The Walton Centre NHS Foundation Trust, Liverpool, UK
| |
Collapse
|
14
|
van der Weijden CWJ, García DV, Borra RJH, Thurner P, Meilof JF, van Laar PJ, Dierckx RAJO, Gutmann IW, de Vries EFJ. Myelin quantification with MRI: A systematic review of accuracy and reproducibility. Neuroimage 2020; 226:117561. [PMID: 33189927 DOI: 10.1016/j.neuroimage.2020.117561] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 10/27/2020] [Accepted: 11/07/2020] [Indexed: 12/29/2022] Open
Abstract
OBJECTIVES Currently, multiple sclerosis is treated with anti-inflammatory therapies, but these treatments lack efficacy in progressive disease. New treatment strategies aim to repair myelin damage and efficacy evaluation of such new therapies would benefit from validated myelin imaging techniques. Several MRI methods for quantification of myelin density are available now. This systematic review aims to analyse the performance of these MRI methods. METHODS Studies comparing myelin quantification by MRI with histology, the current gold standard, or assessing reproducibility were retrieved from PubMed/MEDLINE and Embase (until December 2019). Included studies assessed both myelin histology and MRI quantitatively. Correlation or variance measurements were extracted from the studies. Non-parametric tests were used to analyse differences in study methodologies. RESULTS The search yielded 1348 unique articles. Twenty-two animal studies and 13 human studies correlated myelin MRI with histology. Eighteen clinical studies analysed the reproducibility. Overall bias risk was low or unclear. All MRI methods performed comparably, with a mean correlation between MRI and histology of R2=0.54 (SD=0.30) for animal studies, and R2=0.54 (SD=0.18) for human studies. Reproducibility for the MRI methods was good (ICC=0.75-0.93, R2=0.90-0.98, COV=1.3-27%), except for MTR (ICC=0.05-0.51). CONCLUSIONS Overall, MRI-based myelin imaging methods show a fairly good correlation with histology and a good reproducibility. However, the amount of validation data is too limited and the variability in performance between studies is too large to select the optimal MRI method for myelin quantification yet.
Collapse
Affiliation(s)
- Chris W J van der Weijden
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, the Netherlands.
| | - David Vállez García
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, the Netherlands; Department of Radiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, the Netherlands.
| | - Ronald J H Borra
- Department of Radiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, the Netherlands.
| | - Patrick Thurner
- Universitätsklinik für Radiologie und Nuklearmedizin, Medizinische Universität Wien, Währinger Gürtel 18-20, 1090 Wien, Austria.
| | - Jan F Meilof
- Multiple Sclerosis Center Noord Nederland, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, the Netherlands.
| | - Peter-Jan van Laar
- Department of Radiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, the Netherlands; Department of Radiology, Zorggroep Twente, Zilvermeeuw 1, 7609 PP Almelo, the Netherlands.
| | - Rudi A J O Dierckx
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, the Netherlands.
| | - Ingomar W Gutmann
- Physics of Functional Material, Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria.
| | - Erik F J de Vries
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, the Netherlands.
| |
Collapse
|
15
|
Mancini M, Karakuzu A, Cohen-Adad J, Cercignani M, Nichols TE, Stikov N. An interactive meta-analysis of MRI biomarkers of myelin. eLife 2020; 9:e61523. [PMID: 33084576 PMCID: PMC7647401 DOI: 10.7554/elife.61523] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 10/20/2020] [Indexed: 12/17/2022] Open
Abstract
Several MRI measures have been proposed as in vivo biomarkers of myelin, each with applications ranging from plasticity to pathology. Despite the availability of these myelin-sensitive modalities, specificity and sensitivity have been a matter of discussion. Debate about which MRI measure is the most suitable for quantifying myelin is still ongoing. In this study, we performed a systematic review of published quantitative validation studies to clarify how different these measures are when compared to the underlying histology. We analyzed the results from 43 studies applying meta-analysis tools, controlling for study sample size and using interactive visualization (https://neurolibre.github.io/myelin-meta-analysis). We report the overall estimates and the prediction intervals for the coefficient of determination and find that MT and relaxometry-based measures exhibit the highest correlations with myelin content. We also show which measures are, and which measures are not statistically different regarding their relationship with histology.
Collapse
Affiliation(s)
- Matteo Mancini
- Department of Neuroscience, Brighton and Sussex Medical School, University of SussexBrightonUnited Kingdom
- NeuroPoly Lab, Polytechnique MontrealMontrealCanada
- CUBRIC, Cardiff UniversityCardiffUnited Kingdom
| | | | - Julien Cohen-Adad
- NeuroPoly Lab, Polytechnique MontrealMontrealCanada
- Functional Neuroimaging Unit, CRIUGM, Université de MontréalMontrealCanada
| | - Mara Cercignani
- Department of Neuroscience, Brighton and Sussex Medical School, University of SussexBrightonUnited Kingdom
- Neuroimaging Laboratory, Fondazione Santa LuciaRomeItaly
| | - Thomas E Nichols
- Wellcome Centre for Integrative Neuroimaging (WIN FMRIB), University of OxfordOxfordUnited Kingdom
- Big Data Institute, University of OxfordOxfordUnited Kingdom
| | - Nikola Stikov
- NeuroPoly Lab, Polytechnique MontrealMontrealCanada
- Montreal Heart Institute, Université de MontréalMontrealCanada
| |
Collapse
|
16
|
Patel Y, Shin J, Drakesmith M, Evans J, Pausova Z, Paus T. Virtual histology of multi-modal magnetic resonance imaging of cerebral cortex in young men. Neuroimage 2020; 218:116968. [DOI: 10.1016/j.neuroimage.2020.116968] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 05/02/2020] [Accepted: 05/14/2020] [Indexed: 12/21/2022] Open
|
17
|
Patodia S, Tachrount M, Somani A, Scheffer I, Yousry T, Golay X, Sisodiya SM, Thom M. MRI and pathology correlations in the medulla in sudden unexpected death in epilepsy (SUDEP): a postmortem study. Neuropathol Appl Neurobiol 2020; 47:157-170. [PMID: 32559314 DOI: 10.1111/nan.12638] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 06/10/2020] [Indexed: 12/21/2022]
Abstract
AIMS Sudden unexpected death in epilepsy (SUDEP) likely arises as a result of autonomic dysfunction around the time of a seizure. In vivo MRI studies report volume reduction in the medulla and other brainstem autonomic regions. Our aim, in a pathology series, is to correlate regional quantitative features on 9.4T MRI with pathology measures in medullary regions. METHODS Forty-seven medullae from 18 SUDEP, 18 nonepilepsy controls and 11 epilepsy controls were studied. In 16 cases, representing all three groups, ex vivo 9.4T MRI of the brainstem was carried out. Five regions of interest (ROI) were delineated, including the reticular formation zone (RtZ), and actual and relative volumes (RV), as well as T1, T2, T2* and magnetization transfer ratio (MTR) measurements were evaluated on MRI. On serial sections, actual and RV estimates using Cavalieri stereological method and immunolabelling indices for myelin basic protein, synaptophysin and Microtubule associated protein 2 (MAP2) were carried out in similar ROI. RESULTS Lower relative RtZ volumes in the rostral medulla but higher actual volumes in the caudal medulla were observed in SUDEP (P < 0.05). No differences between groups for T1, T2, T2* and MTR values in any region was seen but a positive correlation between T1 values and MAP2 labelling index in RtZ (P < 0.05). Significantly lower MAP2 LI were noted in the rostral medulla RtZ in epilepsy cases (P < 0.05). CONCLUSIONS Rostro-caudal alterations of medullary volume in SUDEP localize with regions containing respiratory regulatory nuclei. They may represent seizure-related alterations, relevant to the pathophysiology of SUDEP.
Collapse
Affiliation(s)
- S Patodia
- Department of Neuropathology, UCL Queen Square Institute of Neurology, London, UK.,Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
| | - M Tachrount
- Neuroradiology Academic Unit, Brain Repair and Rehabilitation, UCL Queen Square Institute of Neurology, London, UK.,FMRIB, Nuffield Department of Clinical Neurosciences, Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
| | - A Somani
- Department of Neuropathology, UCL Queen Square Institute of Neurology, London, UK.,Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
| | - I Scheffer
- Department of Medicine (Neurology), Epilepsy Research Centre, University of Melbourne, Melbourne, VIC, Australia
| | - T Yousry
- Neuroradiology Academic Unit, Brain Repair and Rehabilitation, UCL Queen Square Institute of Neurology, London, UK
| | - X Golay
- Neuroradiology Academic Unit, Brain Repair and Rehabilitation, UCL Queen Square Institute of Neurology, London, UK
| | - S M Sisodiya
- Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK.,Chalfont Centre for Epilepsy, Chalfont St Peter, UK
| | - M Thom
- Department of Neuropathology, UCL Queen Square Institute of Neurology, London, UK.,Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
| |
Collapse
|
18
|
Ahmad R, Maiworm M, Nöth U, Seiler A, Hattingen E, Steinmetz H, Rosenow F, Deichmann R, Wagner M, Gracien RM. Cortical Changes in Epilepsy Patients With Focal Cortical Dysplasia: New Insights With T 2 Mapping. J Magn Reson Imaging 2020; 52:1783-1789. [PMID: 32383241 DOI: 10.1002/jmri.27184] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/17/2020] [Accepted: 04/17/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND In epilepsy patients with focal cortical dysplasia (FCD) as the epileptogenic focus, global cortical signal changes are generally not visible on conventional MRI. However, epileptic seizures or antiepileptic medication might affect normal-appearing cerebral cortex and lead to subtle damage. PURPOSE To investigate cortical properties outside FCD regions with T2 -relaxometry. STUDY TYPE Prospective study. SUBJECTS Sixteen patients with epilepsy and FCD and 16 age-/sex-matched healthy controls. FIELD STRENGTH/SEQUENCE 3T, fast spin-echo T2 -mapping, fluid-attenuated inversion recovery (FLAIR), and synthetic T1 -weighted magnetization-prepared rapid acquisition of gradient-echoes (MP-RAGE) datasets derived from T1 -maps. ASSESSMENT Reconstruction of the white matter and cortical surfaces based on MP-RAGE structural images was performed to extract cortical T2 values, excluding lesion areas. Three independent raters confirmed that morphological cortical/juxtacortical changes in the conventional FLAIR datasets outside the FCD areas were definitely absent for all patients. Averaged global cortical T2 values were compared between groups. Furthermore, group comparisons of regional cortical T2 values were performed using a surface-based approach. Tests for correlations with clinical parameters were carried out. STATISTICAL TESTS General linear model analysis, permutation simulations, paired and unpaired t-tests, and Pearson correlations. RESULTS Cortical T2 values were increased outside FCD regions in patients (83.4 ± 2.1 msec, control group 81.4 ± 2.1 msec, P = 0.01). T2 increases were widespread, affecting mainly frontal, but also parietal and temporal regions of both hemispheres. Significant correlations were not observed (P ≥ 0.55) between cortical T2 values in the patient group and the number of seizures in the last 3 months or the number of anticonvulsive drugs in the medical history. DATA CONCLUSION Widespread increases in cortical T2 in FCD-associated epilepsy patients were found, suggesting that structural epilepsy in patients with FCD is not only a symptom of a focal cerebral lesion, but also leads to global cortical damage not visible on conventional MRI. EVIDENCE LEVEL 21 TECHNICAL EFFICACY STAGE: 3 J. MAGN. RESON. IMAGING 2020;52:1783-1789.
Collapse
Affiliation(s)
- Rida Ahmad
- Department of Neurology, Goethe University, Frankfurt/Main, Germany.,Department of Neuroradiology, Goethe University, Frankfurt/Main, Germany.,Brain Imaging Center, Goethe University, Frankfurt/Main, Germany.,Center for Personalized Translational Epilepsy Research (CePTER) Consortium, Germany
| | - Michelle Maiworm
- Department of Neurology, Goethe University, Frankfurt/Main, Germany.,Department of Neuroradiology, Goethe University, Frankfurt/Main, Germany.,Brain Imaging Center, Goethe University, Frankfurt/Main, Germany.,Center for Personalized Translational Epilepsy Research (CePTER) Consortium, Germany
| | - Ulrike Nöth
- Brain Imaging Center, Goethe University, Frankfurt/Main, Germany.,Center for Personalized Translational Epilepsy Research (CePTER) Consortium, Germany
| | - Alexander Seiler
- Department of Neurology, Goethe University, Frankfurt/Main, Germany.,Brain Imaging Center, Goethe University, Frankfurt/Main, Germany
| | - Elke Hattingen
- Department of Neuroradiology, Goethe University, Frankfurt/Main, Germany.,Center for Personalized Translational Epilepsy Research (CePTER) Consortium, Germany
| | - Helmuth Steinmetz
- Department of Neurology, Goethe University, Frankfurt/Main, Germany.,Center for Personalized Translational Epilepsy Research (CePTER) Consortium, Germany
| | - Felix Rosenow
- Department of Neurology, Goethe University, Frankfurt/Main, Germany.,Center for Personalized Translational Epilepsy Research (CePTER) Consortium, Germany.,Epilepsy Center Frankfurt Rhine-Main, Center of Neurology and Neurosurgery, Goethe University, Frankfurt/Main, Germany
| | - Ralf Deichmann
- Brain Imaging Center, Goethe University, Frankfurt/Main, Germany.,Center for Personalized Translational Epilepsy Research (CePTER) Consortium, Germany
| | - Marlies Wagner
- Department of Neuroradiology, Goethe University, Frankfurt/Main, Germany.,Center for Personalized Translational Epilepsy Research (CePTER) Consortium, Germany
| | - René-Maxime Gracien
- Department of Neurology, Goethe University, Frankfurt/Main, Germany.,Brain Imaging Center, Goethe University, Frankfurt/Main, Germany.,Center for Personalized Translational Epilepsy Research (CePTER) Consortium, Germany
| |
Collapse
|
19
|
On the merits of non-invasive myelin imaging in epilepsy, a literature review. J Neurosci Methods 2020; 338:108687. [PMID: 32173402 DOI: 10.1016/j.jneumeth.2020.108687] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/09/2020] [Accepted: 03/11/2020] [Indexed: 01/10/2023]
|
20
|
Nöth U, Gracien RM, Maiworm M, Reif PS, Hattingen E, Knake S, Wagner M, Deichmann R. Detection of cortical malformations using enhanced synthetic contrast images derived from quantitative T1 maps. NMR IN BIOMEDICINE 2020; 33:e4203. [PMID: 31797463 DOI: 10.1002/nbm.4203] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 10/02/2019] [Accepted: 10/03/2019] [Indexed: 06/10/2023]
Abstract
The detection of cortical malformations in conventional MR images can be challenging. Prominent examples are focal cortical dysplasias (FCD), the most common cause of drug-resistant focal epilepsy. The two main MRI hallmarks of cortical malformations are increased cortical thickness and blurring of the gray (GM) and white matter (WM) junction. The purpose of this study was to derive synthetic anatomies from quantitative T1 maps for the improved display of the above imaging characteristics in individual patients. On the basis of a T1 map, a mask comprising pixels with T1 values characteristic for GM is created from which the local cortical extent (CE) is determined. The local smoothness (SM) of the GM-WM junctions is derived from the T1 gradient. For display of cortical malformations, the resulting CE and SM maps serve to enhance local intensities in synthetic double inversion recovery (DIR) images calculated from the T1 map. The resulting CE- and/or SM-enhanced DIR images appear hyperintense at the site of cortical malformations, thus facilitating FCD detection in epilepsy patients. However, false positives may arise in areas with naturally elevated CE and/or SM, such as large GM structures and perivascular spaces. In summary, the proposed method facilitates the detection of cortical abnormalities such as cortical thickening and blurring of the GM-WM junction which are typical FCD markers. Still, subject motion artifacts, perivascular spaces, and large normal GM structures may also yield signal hyperintensity in the enhanced synthetic DIR images, requiring careful comparison with clinical MR images by an experienced neuroradiologist to exclude false positives.
Collapse
Affiliation(s)
- Ulrike Nöth
- Brain Imaging Center, Goethe University, Frankfurt am Main, Germany
| | | | - Michelle Maiworm
- Institute of Neuroradiology, Goethe University, Frankfurt am Main, Germany
| | - Philipp S Reif
- Department of Neurology, Goethe University, Frankfurt am Main, Germany
- Epilepsy Center Frankfurt Rhine-Main, Goethe University, Frankfurt am Main, Germany
| | - Elke Hattingen
- Institute of Neuroradiology, Goethe University, Frankfurt am Main, Germany
| | - Susanne Knake
- Epilepsy Center Hessen, University Hospital Marburg, Marburg, Germany
| | - Marlies Wagner
- Institute of Neuroradiology, Goethe University, Frankfurt am Main, Germany
| | - Ralf Deichmann
- Brain Imaging Center, Goethe University, Frankfurt am Main, Germany
| |
Collapse
|
21
|
Owen JE, BenediktsdÓttir B, Gislason T, Robinson SR. Neuropathological investigation of cell layer thickness and myelination in the hippocampus of people with obstructive sleep apnea. Sleep 2019; 42:5139668. [PMID: 30346595 DOI: 10.1093/sleep/zsy199] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Indexed: 12/11/2022] Open
Abstract
Obstructive sleep apnea (OSA) is commonly associated with memory impairments. Although MRI studies have found volumetric differences in the hippocampus of people with OSA compared with controls, MRI lacks the spatial resolution to detect changes in the specific regions of the hippocampus that process different types of memory. The present study performed histopathological investigations on autopsy brain tissue from 32 people with OSA (17 females and 15 males) to examine whether the thickness and myelination of the hippocampus and entorhinal cortex (EC) vary as a function of OSA severity. Increasing OSA severity was found to be related to cortical thinning in the molecular layer of the dentate gyrus (r2 = 0.136, p = 0.038), the CA1 (overall, r2 = 0.135, p = 0.039; layer 1, r2 = 0.157, p = 0.025; layer 2, r2 = 0.255, p = 0.003; and layer 3, r2 = 0.185, p = 0.014) and in some layers of the EC (layer 1, r2 = 0.186, p = 0.028; trend in layer 3, r2 = 0.124, p = 0.078). OSA severity was also related to decreased myelin in the deep layers but not the superficial layers of the EC (layer 6, r2 = 0.282, p = 0.006; deep white matter, r2 = 0.390, p = 0.001). Patients known to have used continuous positive airway pressure (CPAP) treatment showed no significant reductions in cortical thickness when compared with controls, suggesting that CPAP had a protective effect. However, CPAP did not protect against myelin loss. The regions of decreased cortical thickness and demyelination are locations of synaptic connections in both the polysynaptic (episodic and spatial) and direct (semantic) memory pathways and may underpin the impairments observed in episodic, semantic, and spatial memory in people with OSA.
Collapse
Affiliation(s)
- Jessica E Owen
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| | | | - Thorarinn Gislason
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland.,Department of Sleep Medicine, Landspitali - The National University Hospital of Iceland, Reykjavik, Iceland
| | - Stephen R Robinson
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| |
Collapse
|
22
|
Bartolini E, Cosottini M, Costagli M, Barba C, Tassi L, Spreafico R, Garbelli R, Biagi L, Buccoliero A, Giordano F, Guerrini R. Ultra-High-Field Targeted Imaging of Focal Cortical Dysplasia: The Intracortical Black Line Sign in Type IIb. AJNR Am J Neuroradiol 2019; 40:2137-2142. [PMID: 31727747 DOI: 10.3174/ajnr.a6298] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 09/18/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND PURPOSE Conventional MR imaging has limitations in detecting focal cortical dysplasia. We assessed the added value of 7T in patients with histologically proved focal cortical dysplasia to highlight correlations between neuropathology and ultra-high-field imaging. MATERIALS AND METHODS Between 2013 and 2019, we performed a standardized 7T MR imaging protocol in patients with drug-resistant focal epilepsy. We focused on 12 patients in whom postsurgical histopathology revealed focal cortical dysplasia and explored the diagnostic yield of preoperative 7T versus 1.5/3T MR imaging and the correlations of imaging findings with histopathology. We also assessed the relationship between epilepsy surgery outcome and the completeness of surgical removal of the MR imaging-visible structural abnormality. RESULTS We observed clear abnormalities in 10/12 patients using 7T versus 9/12 revealed by 1.5/3T MR imaging. In patients with focal cortical dysplasia I, 7T MR imaging did not disclose morphologic abnormalities (n = 0/2). In patients with focal cortical dysplasia II, 7T uncovered morphologic signs that were not visible on clinical imaging in 1 patient with focal cortical dysplasia IIa (n = 1/4) and in all those with focal cortical dysplasia IIb (n = 6/6). T2*WI provided the highest added value, disclosing a peculiar intracortical hypointense band (black line) in 5/6 patients with focal cortical dysplasia IIb. The complete removal of the black line was associated with good postsurgical outcome (n = 4/5), while its incomplete removal yielded unsatisfactory results (n = 1/5). CONCLUSIONS The high sensitivity of 7T T2*-weighted images provides an additional tool in defining potential morphologic markers of high epileptogenicity within the dysplastic tissue of focal cortical dysplasia IIb and will likely help to more precisely plan epilepsy surgery and explain surgical failures.
Collapse
Affiliation(s)
- E Bartolini
- From the Department of Pediatric Neurology (E.B., C.B., A.B., R. Guerrini).,Neurology Unit (E.B.), USL Centro Toscana, Nuovo Ospedale Santo Stefano, Prato, Italy
| | - M Cosottini
- Department of Translational Research and New Technologies in Medicine and Surgery (M. Cosottini), University of Pisa, Pisa, Italy
| | - M Costagli
- IMAGO7 Research Foundation (M. Costagli), Pisa, Italy
| | - C Barba
- From the Department of Pediatric Neurology (E.B., C.B., A.B., R. Guerrini)
| | - L Tassi
- Epilepsy Surgery Centre C. Munari (L.T.), Ospedale Niguarda, Milano, Italy
| | - R Spreafico
- Clinical Epileptology and Experimental Neurophysiology Unit (R.S., R. Garbelli), Fondazione Istituto di Ricovero e Cura a Carattere Scientifico, Istituto Neurologico C. Besta, Milano, Italy
| | - R Garbelli
- Clinical Epileptology and Experimental Neurophysiology Unit (R.S., R. Garbelli), Fondazione Istituto di Ricovero e Cura a Carattere Scientifico, Istituto Neurologico C. Besta, Milano, Italy
| | - L Biagi
- Istituto Di Ricovero e Cura a Carattere Scientifico Fondazione Stella Maris (L.B., R. Guerrini), Pisa, Italy
| | - A Buccoliero
- From the Department of Pediatric Neurology (E.B., C.B., A.B., R. Guerrini)
| | - F Giordano
- Neurogenetics and Neurobiology Unit and Laboratories, and Pediatric Neurosurgery Unit (F.G.), Children's Hospital A. Meyer-University of Florence, Florence, Italy
| | - R Guerrini
- From the Department of Pediatric Neurology (E.B., C.B., A.B., R. Guerrini) .,Istituto Di Ricovero e Cura a Carattere Scientifico Fondazione Stella Maris (L.B., R. Guerrini), Pisa, Italy
| |
Collapse
|
23
|
Trajectories of brain remodeling in temporal lobe epilepsy. J Neurol 2019; 266:3150-3159. [PMID: 31549200 DOI: 10.1007/s00415-019-09546-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 09/12/2019] [Accepted: 09/14/2019] [Indexed: 12/24/2022]
Abstract
Temporal lobe epilepsy has been usually associated with progressive brain atrophy due to neuronal cell loss. However, recent animal models demonstrated a dual effect of epileptic seizures with initial enhancement of hippocampal neurogenesis followed by abnormal astrocyte proliferation and neurogenesis depletion in the chronic stage. Our aim was to test for the hypothesized bidirectional pattern of epilepsy-associated brain remodeling in the context of the presence and absence of mesial temporal lobe sclerosis. We acquired MRIs from a large cohort of mesial temporal lobe epilepsy patients with or without hippocampus sclerosis on radiological examination. The statistical analysis tested explicitly for common and differential brain patterns between the two patients' cohorts and healthy controls within the computational anatomy framework of voxel-based morphometry. The main effect of disease was associated with continuous hippocampus volume loss ipsilateral to the seizure onset zone in both temporal lobe epilepsy cohorts. The post hoc simple effects tests demonstrated bilateral hippocampus volume increase in the early epilepsy stages in patients without hippocampus sclerosis. Early age of onset and longer disease duration correlated with volume decrease in the ipsilateral hippocampus. Our findings of seizure-induced hippocampal remodeling are associated with specific patterns of mesial temporal lobe atrophy that are modulated by individual clinical phenotype features. Directionality of hippocampus volume changes strongly depends on the chronicity of disease. Specific anatomy differences represent a snapshot within a progressive continuum of seizure-induced structural remodeling.
Collapse
|
24
|
Novel Application of the Pfirrmann Disc Degeneration Grading System to 9.4T MRI: Higher Reliability Compared to 3T MRI. Spine (Phila Pa 1976) 2019; 44:E766-E773. [PMID: 31205169 DOI: 10.1097/brs.0000000000002967] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN Reliability study. OBJECTIVE To evaluate the applicability and reliability of 9.4T magnetic resonance imaging (MRI) in the assessment of degenerative disc disease compared with 3T MRI. SUMMARY OF BACKGROUND DATA MRI is a reliable indicator of biochemical changes in the intervertebral disc (IVD) including hydration status, proteoglycan content, and disc degeneration compared with anatomical and histological studies. High-field 9.4T MRI has been shown to provide superior resolution and anatomical detail. However, it has not been tested against current standard MRI techniques. METHODS Disc degeneration was initiated in 36 skeletally mature ewes 6 months prior to necropsy via validated surgical IVD injury models using either scalpel injury or drill-bit injury techniques at lumbar spine levels L2/3 and L3/4 with L1/2, L4/5, and L5/6 serving as control discs. All ex vivo IVDs were examined with 9.4T MRI and 3T MRI. All scans were analyzed using the Pfirrmann grading system by four independent observers. Intra- and interobserver reliability was assessed using kappa statistics and Spearman correlation. RESULTS Inter- and intraobserver agreement for 9.4T MRI was excellent, both at κ 0.91 (P < 0.001). Comparatively, 3T interobserver reliability demonstrated substantial agreement at κ 0.61 (P < 0.001). Complete agreement was obtained in 92.7% to 100% of discs at 9.4T compared with 69.7% to 83.1% at 3T. A difference of one grade or more occurred in 6.7% at 9.4T and 39.3% at 3T. 9.4T MRI scored 97.3% of discs as grade 1 to 2 compared with 71.3% at 3T. 3T MRI tended to over-score the extent of disc degeneration with 28.6% of discs scored as grade 3 or higher compared with 2.7% at 9.4T MRI. CONCLUSION 9.4T MRI study of IVD degeneration using the Pfirrmann grading system demonstrated excellent inter- and intraobserver reliability. Comparatively, 3T MRI demonstrated a tendency to over score the extent of disc degeneration. This improved reliability of 9.4T MRI holds great potential for its clinical applications. LEVEL OF EVIDENCE 3.
Collapse
|
25
|
Peters JM, Struyven RR, Prohl AK, Vasung L, Stajduhar A, Taquet M, Bushman JJ, Lidov H, Singh JM, Scherrer B, Madsen JR, Prabhu SP, Sahin M, Afacan O, Warfield SK. White matter mean diffusivity correlates with myelination in tuberous sclerosis complex. Ann Clin Transl Neurol 2019; 6:1178-1190. [PMID: 31353853 PMCID: PMC6649396 DOI: 10.1002/acn3.793] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 04/18/2019] [Accepted: 04/22/2019] [Indexed: 11/26/2022] Open
Abstract
Objective Diffusion tensor imaging (DTI) of the white matter is a biomarker for neurological disease burden in tuberous sclerosis complex (TSC). To clarify the basis of abnormal diffusion in TSC, we correlated ex vivo high‐resolution diffusion imaging with histopathology in four tissue types: cortex, tuber, perituber, and white matter. Methods Surgical specimens of three children with TSC were scanned in a 3T or 7T MRI with a structural image isotropic resolution of 137–300 micron, and diffusion image isotropic resolution of 270‐1,000 micron. We stained for myelin (luxol fast blue, LFB), gliosis (glial fibrillary acidic protein, GFAP), and neurons (NeuN) and registered the digitized histopathology slides (0.686 micron resolution) to MRI for visual comparison. We then performed colocalization analysis in four tissue types in each specimen. Finally, we applied a linear mixed model (LMM) for pooled analysis across the three specimens. Results In white matter and perituber regions, LFB optical density measures correlated with fractional anisotropy (FA) and inversely with mean diffusivity (MD). In white matter only, GFAP correlated with MD, and inversely with FA. In tubers and in the cortex, there was little variation in mean LFB and GFAP signal intensity, and no correlation with MRI metrics. Neuronal density correlated with MD. In the analysis of the combined specimens, the most robust correlation was between white matter MD and LFB metrics. Interpretation In TSC, diffusion imaging abnormalities in microscopic tissue types correspond to specific histopathological markers. Across all specimens, white matter diffusivity correlates with myelination.
Collapse
Affiliation(s)
- Jurriaan M Peters
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts.,Computational Radiology Laboratory, Department of Radiology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Robbert R Struyven
- Computational Radiology Laboratory, Department of Radiology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Anna K Prohl
- Computational Radiology Laboratory, Department of Radiology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Lana Vasung
- Computational Radiology Laboratory, Department of Radiology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Andrija Stajduhar
- Croatian Institute for Brain Research and Center of Research Excellence for Basic, Clinical and Translational Neuroscience, University of Zagreb, Zagreb, Croatia
| | - Maxime Taquet
- Computational Radiology Laboratory, Department of Radiology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| | - John J Bushman
- Computational Radiology Laboratory, Department of Radiology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Hart Lidov
- Division of Neuropathology, Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Jolene M Singh
- Computational Radiology Laboratory, Department of Radiology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Benoit Scherrer
- Computational Radiology Laboratory, Department of Radiology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Joseph R Madsen
- Department of Neurosurgery, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Sanjay P Prabhu
- Computational Radiology Laboratory, Department of Radiology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Mustafa Sahin
- Translational Neuroscience Center, Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Onur Afacan
- Computational Radiology Laboratory, Department of Radiology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Simon K Warfield
- Computational Radiology Laboratory, Department of Radiology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
26
|
Abstract
Supplemental Digital Content is Available in the Text. High-resolution histology at the border of geographic atrophy (or complete retinal pigment epithelium and outer retinal atrophy) secondary to age-related macular degeneration reveals marked gliosis and near-total photoreceptor depletion, abundant extracellular deposits, and long-standing abnormalities of Bruch membrane and choriocapillaris, indicating severe and potentially irreversible tissue damage at this stage of the disease. Purpose: To systematically characterize histologic features of multiple chorioretinal layers in eyes with geographic atrophy, or complete retinal pigment epithelium (RPE) and outer retinal atrophy, secondary to age-related macular degeneration, including Henle fiber layer and outer nuclear layer; and to compare these changes to those in the underlying RPE-Bruch membrane—choriocapillaris complex and associated extracellular deposits. Methods: Geographic atrophy was delimited by the external limiting membrane (ELM) descent towards Bruch membrane. In 13 eyes, histologic phenotypes and/or thicknesses of Henle fiber layer, outer nuclear layer, underlying supporting tissues, and extracellular deposits at four defined locations on the non-atrophic and atrophic sides of the ELM descent were assessed and compared across other tissue layers, with generalized estimating equations and logit models. Results: On the non-atrophic side of the ELM descent, distinct Henle fiber layer and outer nuclear layer became dyslaminated, cone photoreceptor inner segment myoids shortened, photoreceptor nuclei and mitochondria translocated inward, and RPE was dysmorphic. On the atrophic side of the ELM descent, all measures of photoreceptor health declined to zero. Henle fiber layer/outer nuclear layer thickness halved, and only Müller cells remained, in the absence of photoreceptors. Sub-RPE deposits remained, Bruch membrane thinned, and choriocapillaris density decreased. Conclusion: The ELM descent sharply delimits an area of marked gliosis and near-total photoreceptor depletion clinically defined as Geographic atrophy (or outer retinal atrophy), indicating severe and potentially irreversible tissue damage. Degeneration of supporting tissues across this boundary is gradual, consistent with steady age-related change and suggesting that RPE and Müller cells subsequently respond to a threshold of stress. Novel clinical trial endpoints should be sought at age-related macular degeneration stages before intense gliosis and thick deposits impede therapeutic intervention.
Collapse
|
27
|
TO THE EDITOR. Spine (Phila Pa 1976) 2019; 44:E630-E631. [PMID: 31046002 DOI: 10.1097/brs.0000000000003026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
28
|
Guye M, Bartolomei F, Ranjeva JP. Malformations of cortical development: The role of 7-Tesla magnetic resonance imaging in diagnosis. Rev Neurol (Paris) 2019; 175:157-162. [DOI: 10.1016/j.neurol.2019.01.393] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 11/14/2018] [Accepted: 01/02/2019] [Indexed: 12/31/2022]
|
29
|
Thom M, Boldrini M, Bundock E, Sheppard MN, Devinsky O. Review: The past, present and future challenges in epilepsy-related and sudden deaths and biobanking. Neuropathol Appl Neurobiol 2019; 44:32-55. [PMID: 29178443 PMCID: PMC5820128 DOI: 10.1111/nan.12453] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 11/14/2017] [Indexed: 12/14/2022]
Abstract
Awareness and research on epilepsy-related deaths (ERD), in particular Sudden Unexpected Death in Epilepsy (SUDEP), have exponentially increased over the last two decades. Most publications have focused on guidelines that inform clinicians dealing with these deaths, educating patients, potential risk factors and mechanisms. There is a relative paucity of information available for pathologists who conduct these autopsies regarding appropriate post mortem practice and investigations. As we move from recognizing SUDEP as the most common form of ERD toward in-depth investigations into its causes and prevention, health professionals involved with these autopsies and post mortem procedure must remain fully informed. Systematizing a more comprehensive and consistent practice of examining these cases will facilitate (i) more precise determination of cause of death, (ii) identification of SUDEP for improved epidemiological surveillance (the first step for an intervention study), and (iii) biobanking and cell-based research. This article reviews how pathologists and healthcare professionals have approached ERD, current practices, logistical problems and areas to improve and harmonize. The main neuropathology, cardiac and genetic findings in SUDEP are outlined, providing a framework for best practices, integration of clinical, pathological and molecular genetic investigations in SUDEP, and ultimately prevention.
Collapse
Affiliation(s)
- M Thom
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, London, UK
| | - M Boldrini
- Department of Psychiatry, Columbia University Medical Centre, Divisions of Molecular Imaging and Neuropathology, New York State Psychiatric Institute, New York, NY, USA
| | - E Bundock
- Office of the Chief Medical Examiner, Burlington, VT, USA
| | - M N Sheppard
- Department of Pathology, St George's University Hospitals NHS Foundation Trust, London, UK
| | - O Devinsky
- Department of Neurology, NYU Epilepsy Center, New York, NY, USA
| |
Collapse
|
30
|
Dusek P, Madai VI, Huelnhagen T, Bahn E, Matej R, Sobesky J, Niendorf T, Acosta-Cabronero J, Wuerfel J. The choice of embedding media affects image quality, tissue R 2 * , and susceptibility behaviors in post-mortem brain MR microscopy at 7.0T. Magn Reson Med 2018; 81:2688-2701. [PMID: 30506939 DOI: 10.1002/mrm.27595] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 09/19/2018] [Accepted: 10/14/2018] [Indexed: 12/22/2022]
Abstract
PURPOSE The quality and precision of post-mortem MRI microscopy may vary depending on the embedding medium used. To investigate this, our study evaluated the impact of 5 widely used media on: (1) image quality, (2) contrast of high spatial resolution gradient-echo (T1 and T2 * -weighted) MR images, (3) effective transverse relaxation rate (R2 * ), and (4) quantitative susceptibility measurements (QSM) of post-mortem brain specimens. METHODS Five formaldehyde-fixed brain slices were scanned using 7.0T MRI in: (1) formaldehyde solution (formalin), (2) phosphate-buffered saline (PBS), (3) deuterium oxide (D2 O), (4) perfluoropolyether (Galden), and (5) agarose gel. SNR and contrast-to-noise ratii (SNR/CNR) were calculated for cortex/white matter (WM) and basal ganglia/WM regions. In addition, median R2 * and QSM values were extracted from caudate nucleus, putamen, globus pallidus, WM, and cortical regions. RESULTS PBS, Galden, and agarose returned higher SNR/CNR compared to formalin and D2 O. Formalin fixation, and its use as embedding medium for scanning, increased tissue R2 * . Imaging with agarose, D2 O, and Galden returned lower R2 * values than PBS (and formalin). No major QSM offsets were observed, although spatial variance was increased (with respect to R2 * behaviors) for formalin and agarose. CONCLUSIONS Embedding media affect gradient-echo image quality, R2 * , and QSM in differing ways. In this study, PBS embedding was identified as the most stable experimental setup, although by a small margin. Agarose and Galden were preferred to formalin or D2 O embedding. Formalin significantly increased R2 * causing noisier data and increased QSM variance.
Collapse
Affiliation(s)
- Petr Dusek
- Department of Neurology, Charles University, 1st Faculty of Medicine and General University Hospital in Prague, Praha, Czech Republic.,Department of Radiology, Charles University, 1st Faculty of Medicine and General University Hospital in Prague, Praha, Czech Republic
| | - Vince Istvan Madai
- Department of Neurology and Center for Stroke Research Berlin (CSB), Charité-Universitaetsmedizin, Berlin, Germany
| | - Till Huelnhagen
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Erik Bahn
- Institute of Neuropathology, University Medicine Göttingen, Göttingen, Germany
| | - Radoslav Matej
- Department of Pathology and Molecular Medicine, Thomayer Hospital, Praha, Czech Republic.,Department of Pathology, Charles University, 1st Faculty of Medicine and General University Hospital in Prague, Praha, Czech Republic
| | - Jan Sobesky
- Department of Neurology and Center for Stroke Research Berlin (CSB), Charité-Universitaetsmedizin, Berlin, Germany.,Experimental and Clinical Research Center (ECRC), Charité-Universitaetsmedizin and Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Thoralf Niendorf
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.,Experimental and Clinical Research Center (ECRC), Charité-Universitaetsmedizin and Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Julio Acosta-Cabronero
- Wellcome Centre for Human Neuroimaging, UCL Institute of Neurology, University College London, London, United Kingdom.,German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Jens Wuerfel
- NeuroCure Clinical Research Center, Charité-Universitaetsmedizin, Berlin, Germany.,Medical Imaging Analysis Center AG, Basel, Switzerland.,Department of Biomedical Engineering, University Basel, Switzerland
| |
Collapse
|
31
|
Dührsen L, Sauvigny T, House PM, Stodieck S, Holst B, Matschke J, Schön G, Westphal M, Martens T. Impact of focal cortical dysplasia Type IIIa on seizure outcome following anterior mesial temporal lobe resection for the treatment of epilepsy. J Neurosurg 2018; 128:1668-1673. [DOI: 10.3171/2017.2.jns161295] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
OBJECTIVETemporal lobe epilepsy (TLE) is the most common type of pharmacoresistant focal epilepsy, for which anterior mesial temporal lobe resection (AMTLR) is a treatment option. Focal cortical dysplasia Type IIIa (FCD IIIa), a developmental lesion resulting from defects in neuronal formation and migration into the temporal pole (FCD I) combined with hippocampal sclerosis (HS), can be a neuropathological finding. In this study, the authors investigate the impact of FCD IIIa on seizure outcome in patients with TLE who underwent AMTLR.METHODSThe authors performed a retrospective analysis of all patients with TLE who underwent AMTLR at their institution between June 2011 and April 2014. Histopathological analysis was used to determine whether patients had HS together with FCD I (FCD IIIa) or HS alone. The groups were compared with regard to age, sex, years of epilepsy, and seizure outcome using the Engel classification.RESULTSA total of 51 patients with TLE underwent AMTLR at the authors’ institution. FCD IIIa was diagnosed in 13 cases. The patients experienced seizures for a mean duration of 31.1 years. The mean length of follow-up after the procedure was 18 months. All patients with FCD IIIa had a favorable seizure outcome (Engel Class I or II) compared with 71% of the patients with no pathological findings in the temporal pole (p < 0.01).CONCLUSIONSPatients with histopathologically proven FCD IIIa had a significantly better seizure outcome after AMTLR than patients with HS alone. Further effort should be made during presurgical evaluation to detect FCD IIIa so that the most suitable resection technique can be chosen and postoperative seizure outcome can be predicted for patient counseling.
Collapse
Affiliation(s)
| | | | - Patrick M. House
- 2Department of Neurology and Epileptology, Hamburg Epilepsy Center, Hamburg, Germany
| | - Stefan Stodieck
- 2Department of Neurology and Epileptology, Hamburg Epilepsy Center, Hamburg, Germany
| | | | | | - Gerhard Schön
- 5Medical Biometry and Epidemiology, University Medical Center Hamburg–Eppendorf; and
| | | | | |
Collapse
|
32
|
Deleo F, Thom M, Concha L, Bernasconi A, Bernhardt BC, Bernasconi N. Histological and MRI markers of white matter damage in focal epilepsy. Epilepsy Res 2017; 140:29-38. [PMID: 29227798 DOI: 10.1016/j.eplepsyres.2017.11.010] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 11/10/2017] [Accepted: 11/20/2017] [Indexed: 12/21/2022]
Abstract
Growing evidence highlights the importance of white matter in the pathogenesis of focal epilepsy. Ex vivo and post-mortem studies show pathological changes in epileptic patients in white matter myelination, axonal integrity, and cellular composition. Diffusion-weighted MRI and its analytical extensions, particularly diffusion tensor imaging (DTI), have been the most widely used technique to image the white matter in vivo for the last two decades, and have shown microstructural alterations in multiple tracts both in the vicinity and at distance from the epileptogenic focus. These techniques have also shown promising ability to predict cognitive status and response to pharmacological or surgical treatments. More recently, the hypothesis that focal epilepsy may be more adequately described as a system-level disorder has motivated a shift towards the study of macroscale brain connectivity. This review will cover emerging findings contributing to our understanding of white matter alterations in focal epilepsy, studied by means of histological and ultrastructural analyses, diffusion MRI, and large-scale network analysis. Focus is put on temporal lobe epilepsy and focal cortical dysplasia. This topic was addressed in a special interest group on neuroimaging at the 70th annual meeting of the American Epilepsy Society, held in Houston December 2-6, 2016.
Collapse
Affiliation(s)
- Francesco Deleo
- NeuroImaging of Epilepsy Laboratory, Montreal Neurological Institute, McGill University, Canada
| | - Maria Thom
- Division of Neuropathology and Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Luis Concha
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | - Andrea Bernasconi
- NeuroImaging of Epilepsy Laboratory, Montreal Neurological Institute, McGill University, Canada
| | - Boris C Bernhardt
- NeuroImaging of Epilepsy Laboratory, Montreal Neurological Institute, McGill University, Canada; Multimodal Imaging and Connectome Analysis Laboratory, Montreal Neurological Institute, McGill University, Canada
| | - Neda Bernasconi
- NeuroImaging of Epilepsy Laboratory, Montreal Neurological Institute, McGill University, Canada.
| |
Collapse
|
33
|
Thom M, Liu J, Bongaarts A, Reinten RJ, Paradiso B, Jäger HR, Reeves C, Somani A, An S, Marsdon D, McEvoy A, Miserocchi A, Thorne L, Newman F, Bucur S, Honavar M, Jacques T, Aronica E. Multinodular and vacuolating neuronal tumors in epilepsy: dysplasia or neoplasia? Brain Pathol 2017; 28:155-171. [PMID: 28833756 PMCID: PMC5887881 DOI: 10.1111/bpa.12555] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 06/27/2017] [Accepted: 08/01/2017] [Indexed: 12/28/2022] Open
Abstract
Multinodular and vacuolating neuronal tumor (MVNT) is a new pattern of neuronal tumour included in the recently revised WHO 2016 classification of tumors of the CNS. There are 15 reports in the literature to date. They are typically associated with late onset epilepsy and a neoplastic vs. malformative biology has been questioned. We present a series of ten cases and compare their pathological and genetic features to better characterized epilepsy‐associated malformations including focal cortical dysplasia type II (FCDII) and low‐grade epilepsy‐associated tumors (LEAT). Clinical and neuroradiology data were reviewed and a broad immunohistochemistry panel was applied to explore neuronal and glial differentiation, interneuronal populations, mTOR pathway activation and neurodegenerative changes. Next generation sequencing was performed for targeted multi‐gene analysis to identify mutations common to epilepsy lesions including FCDII and LEAT. All of the surgical cases in this series presented with seizures, and were located in the temporal lobe. There was a lack of any progressive changes on serial pre‐operative MRI and a mean age at surgery of 45 years. The vacuolated cells of the lesion expressed mature neuronal markers (neurofilament/SMI32, MAP2, synaptophysin). Prominent labelling of the lesional cells for developmentally regulated proteins (OTX1, TBR1, SOX2, MAP1b, CD34, GFAPδ) and oligodendroglial lineage markers (OLIG2, SMI94) was observed. No mutations were detected in the mTOR pathway genes, BRAF, FGFR1 or MYB. Clinical, pathological and genetic data could indicate that MVNT aligns more with a malformative lesion than a true neoplasm with origin from a progenitor neuro‐glial cell type showing aberrant maturation.
Collapse
Affiliation(s)
- Maria Thom
- Departments of Clinical and Experimental Epilepsy and Neuropathology, UCL Institute of Neurology and the National Hospital for Neurology and Neurosurgery, Queen Square, London WCN1BG, UK
| | - Joan Liu
- Departments of Clinical and Experimental Epilepsy and Neuropathology, UCL Institute of Neurology and the National Hospital for Neurology and Neurosurgery, Queen Square, London WCN1BG, UK
| | - Anika Bongaarts
- Department of (Neuro)Pathology, Academic Medical Center, Amsterdam, The Netherlands
| | - Roy J Reinten
- Department of (Neuro)Pathology, Academic Medical Center, Amsterdam, The Netherlands
| | - Beatrice Paradiso
- Departments of Clinical and Experimental Epilepsy and Neuropathology, UCL Institute of Neurology and the National Hospital for Neurology and Neurosurgery, Queen Square, London WCN1BG, UK.,Cardiovascular Pathology Unit, Department of Cardiac, Thoracic and Vascular Sciences University of Padua Medical School, Padova, Italy
| | - Hans Rolf Jäger
- Neuroradiological Academic Unit, Department of Brain Repair and Rehabilitation, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Cheryl Reeves
- Departments of Clinical and Experimental Epilepsy and Neuropathology, UCL Institute of Neurology and the National Hospital for Neurology and Neurosurgery, Queen Square, London WCN1BG, UK
| | - Alyma Somani
- Departments of Clinical and Experimental Epilepsy and Neuropathology, UCL Institute of Neurology and the National Hospital for Neurology and Neurosurgery, Queen Square, London WCN1BG, UK
| | - Shu An
- Departments of Clinical and Experimental Epilepsy and Neuropathology, UCL Institute of Neurology and the National Hospital for Neurology and Neurosurgery, Queen Square, London WCN1BG, UK
| | - Derek Marsdon
- Departments of Clinical and Experimental Epilepsy and Neuropathology, UCL Institute of Neurology and the National Hospital for Neurology and Neurosurgery, Queen Square, London WCN1BG, UK
| | - Andrew McEvoy
- Victor Horsley Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK
| | - Anna Miserocchi
- Victor Horsley Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK
| | - Lewis Thorne
- Victor Horsley Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK
| | - Fay Newman
- Neurosurgery Department, Brighton and Sussex University Hospitals, Brighton, UK
| | - Sorin Bucur
- Neurosurgery Department, Brighton and Sussex University Hospitals, Brighton, UK
| | - Mrinalini Honavar
- Department of Anatomic Pathology, Hospital Pedro Hispano, Matosinhos, Portugal
| | - Tom Jacques
- Neuropathology Department, Great Ormond Street Hospital, London, UK
| | - Eleonora Aronica
- Department of (Neuro)Pathology, Academic Medical Center, Amsterdam, The Netherlands.,Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, The Netherlands
| |
Collapse
|
34
|
Adler S, Lorio S, Jacques TS, Benova B, Gunny R, Cross JH, Baldeweg T, Carmichael DW. Towards in vivo focal cortical dysplasia phenotyping using quantitative MRI. Neuroimage Clin 2017; 15:95-105. [PMID: 28491496 PMCID: PMC5413300 DOI: 10.1016/j.nicl.2017.04.017] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 03/10/2017] [Accepted: 04/18/2017] [Indexed: 12/31/2022]
Abstract
Focal cortical dysplasias (FCDs) are a range of malformations of cortical development each with specific histopathological features. Conventional radiological assessment of standard structural MRI is useful for the localization of lesions but is unable to accurately predict the histopathological features. Quantitative MRI offers the possibility to probe tissue biophysical properties in vivo and may bridge the gap between radiological assessment and ex-vivo histology. This review will cover histological, genetic and radiological features of FCD following the ILAE classification and will explain how quantitative voxel- and surface-based techniques can characterise these features. We will provide an overview of the quantitative MRI measures available, their link with biophysical properties and finally the potential application of quantitative MRI to the problem of FCD subtyping. Future research linking quantitative MRI to FCD histological properties should improve clinical protocols, allow better characterisation of lesions in vivo and tailored surgical planning to the individual.
Collapse
Affiliation(s)
- Sophie Adler
- Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Sara Lorio
- Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, University College London, London, UK.
| | - Thomas S Jacques
- Developmental Biology and Cancer Programme, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Barbora Benova
- Developmental Biology and Cancer Programme, UCL Great Ormond Street Institute of Child Health, University College London, London, UK; Department of Paediatric Neurology, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic; 2nd Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Roxana Gunny
- Department of Radiology, Great Ormond Street Hospital for Children, London, UK
| | - J Helen Cross
- Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Torsten Baldeweg
- Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - David W Carmichael
- Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| |
Collapse
|
35
|
Sengupta S, Fritz FJ, Harms RL, Hildebrand S, Tse DHY, Poser BA, Goebel R, Roebroeck A. High resolution anatomical and quantitative MRI of the entire human occipital lobe ex vivo at 9.4T. Neuroimage 2017; 168:162-171. [PMID: 28336427 PMCID: PMC5862655 DOI: 10.1016/j.neuroimage.2017.03.039] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 03/17/2017] [Accepted: 03/19/2017] [Indexed: 11/06/2022] Open
Abstract
Several magnetic resonance imaging (MRI) contrasts are sensitive to myelin content in gray matter in vivo which has ignited ambitions of MRI-based in vivo cortical histology. Ultra-high field (UHF) MRI, at fields of 7 T and beyond, is crucial to provide the resolution and contrast needed to sample contrasts over the depth of the cortex and get closer to layer resolved imaging. Ex vivo MRI of human post mortem samples is an important stepping stone to investigate MRI contrast in the cortex, validate it against histology techniques applied in situ to the same tissue, and investigate the resolutions needed to translate ex vivo findings to in vivo UHF MRI. Here, we investigate key technology to extend such UHF studies to large human brain samples while maintaining high resolution, which allows investigation of the layered architecture of several cortical areas over their entire 3D extent and their complete borders where architecture changes. A 16 channel cylindrical phased array radiofrequency (RF) receive coil was constructed to image a large post mortem occipital lobe sample (~80×80×80 mm3) in a wide-bore 9.4 T human scanner with the aim of achieving high-resolution anatomical and quantitative MR images. Compared with a human head coil at 9.4 T, the maximum Signal-to-Noise ratio (SNR) was increased by a factor of about five in the peripheral cortex. Although the transmit profile with a circularly polarized transmit mode at 9.4 T is relatively inhomogeneous over the large sample, this challenge was successfully resolved with parallel transmit using the kT-points method. Using this setup, we achieved 60μm anatomical images for the entire occipital lobe showing increased spatial definition of cortical details compared to lower resolutions. In addition, we were able to achieve sufficient control over SNR, B0 and B1 homogeneity and multi-contrast sampling to perform quantitative T2* mapping over the same volume at 200 μm. Markov Chain Monte Carlo sampling provided maximum posterior estimates of quantitative T2* and their uncertainty, allowing delineation of the stria of Gennari over the entire length and width of the calcarine sulcus. We discuss how custom RF receive coil arrays built to specific large post mortem sample sizes can provide a platform for UHF cortical layer-specific quantitative MRI over large fields of view. Custom-built 16 channel 9.4 T RF-coil to image large post mortem samples at high resolution. Parallel transmit techniques allow homogenization of B1+ for 3D GRE imaging at UHF. 60 μm anatomical MRI of the entire human occipital lobe. 200 μm isotropic quantitative T2* mapping of the entire human occipital lobe. A platform for future UHF cortical layer specific qMRI over large FoVs.
Collapse
Affiliation(s)
- S Sengupta
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands.
| | - F J Fritz
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - R L Harms
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - S Hildebrand
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - D H Y Tse
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - B A Poser
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - R Goebel
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - A Roebroeck
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
36
|
Abstract
PURPOSE OF REVIEW Advanced MRI postprocessing techniques are increasingly used to complement visual analysis and elucidate structural epileptogenic lesions. This review summarizes recent developments in MRI postprocessing in the context of epilepsy presurgical evaluation, with the focus on patients with unremarkable MRI by visual analysis (i.e. 'nonlesional' MRI). RECENT FINDINGS Various methods of MRI postprocessing have been reported to show additional clinical values in the following areas: lesion detection on an individual level; lesion confirmation for reducing the risk of over reading the MRI; detection of sulcal/gyral morphologic changes that are particularly difficult for visual analysis; and delineation of cortical abnormalities extending beyond the visible lesion. Future directions to improve the performance of MRI postprocessing include using higher magnetic field strength for better signal-to-noise ratio and contrast-to-noise ratio adopting a multicontrast frame work and integration with other noninvasive modalities. SUMMARY MRI postprocessing can provide essential value to increase the yield of structural MRI and should be included as part of the presurgical evaluation of nonlesional epilepsies. MRI postprocessing allows for more accurate identification/delineation of cortical abnormalities, which should then be more confidently targeted and mapped.
Collapse
|