1
|
Chang SC, Arifin MI, Tahir W, McDonald KJ, Zeng D, Schatzl HM, Hannaoui S, Gilch S. Extraneural infection route restricts prion conformational variability and attenuates the impact of quaternary structure on infectivity. PLoS Pathog 2024; 20:e1012370. [PMID: 38976748 PMCID: PMC11257401 DOI: 10.1371/journal.ppat.1012370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/18/2024] [Accepted: 06/25/2024] [Indexed: 07/10/2024] Open
Abstract
Prions can exist as different strains that consist of conformational variants of the misfolded, pathogenic prion protein isoform PrPSc. Defined by stably transmissible biological and biochemical properties, strains have been identified in a spectrum of prion diseases, including chronic wasting disease (CWD) of wild and farmed cervids. CWD is highly contagious and spreads via direct and indirect transmission involving extraneural sites of infection, peripheral replication and neuroinvasion of prions. Here, we investigated the impact of infection route on CWD prion conformational selection and propagation. We used gene-targeted mouse models expressing deer PrP for intracerebral or intraperitoneal inoculation with fractionated or unfractionated brain homogenates from white-tailed deer, harboring CWD strains Wisc-1 or 116AG. Upon intracerebral inoculation, Wisc-1 and 116AG-inoculated mice differed in conformational stability of PrPSc. In brains of mice infected intraperitoneally with either inoculum, PrPSc propagated with identical conformational stability and fewer PrPSc deposits in most brain regions than intracerebrally inoculated animals. For either inoculum, PrPSc conformational stability in brain and spinal cord was similar upon intracerebral infection but significantly higher in spinal cords of intraperitoneally infected animals. Inoculation with fractionated brain homogenates resulted in lower variance of survival times upon intraperitoneal compared to intracerebral infection. In summary, we demonstrate that extraneural infection mitigates the impact of PrPSc quaternary structure on infection and reduces conformational variability of PrPSc propagated in the brain. These findings provide new insights into the evolution of stable CWD strains in natural, extraneural transmissions.
Collapse
Affiliation(s)
- Sheng Chun Chang
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada
| | | | - Waqas Tahir
- Canadian and WOAH Reference Laboratory for BSE, Canadian Food Inspection Agency, Lethbridge, Canada
| | | | - Doris Zeng
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada
| | - Hermann M. Schatzl
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Canada
| | - Samia Hannaoui
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada
| | - Sabine Gilch
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Canada
| |
Collapse
|
2
|
Björk L, Klingstedt T, Nilsson KPR. Thiophene-Based Ligands: Design, Synthesis and Their Utilization for Optical Assignment of Polymorphic-Disease-Associated Protein Aggregates. Chembiochem 2023; 24:e202300044. [PMID: 36891883 PMCID: PMC10404026 DOI: 10.1002/cbic.202300044] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/03/2023] [Accepted: 03/08/2023] [Indexed: 03/10/2023]
Abstract
The development of ligands for detecting protein aggregates is of great interest, as these aggregated proteinaceous species are the pathological hallmarks of several devastating diseases, including Alzheimer's disease. In this regard, thiophene-based ligands have emerged as powerful tools for fluorescent assessment of these pathological entities. The intrinsic conformationally sensitive photophysical properties of poly- and oligothiophenes have allowed optical assignment of disease-associated protein aggregates in tissue sections, as well as real-time in vivo imaging of protein deposits. Herein, we recount the chemical evolution of different generations of thiophene-based ligands, and exemplify their use for the optical distinction of polymorphic protein aggregates. Furthermore, the chemical determinants for achieving a superior fluorescent thiophene-based ligand, as well as the next generation of thiophene-based ligands targeting distinct aggregated species are described. Finally, the directions for future research into the chemical design of thiophene-based ligands that can aid in resolving the scientific challenges around protein aggregation diseases are discussed.
Collapse
Affiliation(s)
- Linnea Björk
- Department of Physics, Chemistry and Biology, Linköping University, 581 83, Linköping, Sweden
| | - Therése Klingstedt
- Department of Physics, Chemistry and Biology, Linköping University, 581 83, Linköping, Sweden
| | - K Peter R Nilsson
- Department of Physics, Chemistry and Biology, Linköping University, 581 83, Linköping, Sweden
| |
Collapse
|
3
|
Lawrence JA, Aguilar-Calvo P, Ojeda-Juárez D, Khuu H, Soldau K, Pizzo DP, Wang J, Malik A, Shay TF, Sullivan EE, Aulston B, Song SM, Callender JA, Sanchez H, Geschwind MD, Roy S, Rissman RA, Trejo J, Tanaka N, Wu C, Chen X, Patrick GN, Sigurdson CJ. Diminished Neuronal ESCRT-0 Function Exacerbates AMPA Receptor Derangement and Accelerates Prion-Induced Neurodegeneration. J Neurosci 2023; 43:3970-3984. [PMID: 37019623 PMCID: PMC10219035 DOI: 10.1523/jneurosci.1878-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 03/22/2023] [Accepted: 03/27/2023] [Indexed: 04/07/2023] Open
Abstract
Endolysosomal defects in neurons are central to the pathogenesis of prion and other neurodegenerative disorders. In prion disease, prion oligomers traffic through the multivesicular body (MVB) and are routed for degradation in lysosomes or for release in exosomes, yet how prions impact proteostatic pathways is unclear. We found that prion-affected human and mouse brain showed a marked reduction in Hrs and STAM1 (ESCRT-0), which route ubiquitinated membrane proteins from early endosomes into MVBs. To determine how the reduction in ESCRT-0 impacts prion conversion and cellular toxicity in vivo, we prion-challenged conditional knockout mice (male and female) having Hrs deleted from neurons, astrocytes, or microglia. The neuronal, but not astrocytic or microglial, Hrs-depleted mice showed a shortened survival and an acceleration in synaptic derangements, including an accumulation of ubiquitinated proteins, deregulation of phosphorylated AMPA and metabotropic glutamate receptors, and profoundly altered synaptic structure, all of which occurred later in the prion-infected control mice. Finally, we found that neuronal Hrs (nHrs) depletion increased surface levels of the cellular prion protein, PrPC, which may contribute to the rapidly advancing disease through neurotoxic signaling. Taken together, the reduced Hrs in the prion-affected brain hampers ubiquitinated protein clearance at the synapse, exacerbates postsynaptic glutamate receptor deregulation, and accelerates neurodegeneration.SIGNIFICANCE STATEMENT Prion diseases are rapidly progressive neurodegenerative disorders characterized by prion aggregate spread through the central nervous system. Early disease features include ubiquitinated protein accumulation and synapse loss. Here, we investigate how prion aggregates alter ubiquitinated protein clearance pathways (ESCRT) in mouse and human prion-infected brain, discovering a marked reduction in Hrs. Using a prion-infection mouse model with neuronal Hrs (nHrs) depleted, we show that low neuronal Hrs is detrimental and markedly shortens survival time while accelerating synaptic derangements, including ubiquitinated protein accumulation, indicating that Hrs loss exacerbates prion disease progression. Additionally, Hrs depletion increases the surface distribution of prion protein (PrPC), linked to aggregate-induced neurotoxic signaling, suggesting that Hrs loss in prion disease accelerates disease through enhancing PrPC-mediated neurotoxic signaling.
Collapse
Affiliation(s)
- Jessica A Lawrence
- Department of Pathology, University of California, San Diego, La, Jolla, California, 92093
| | - Patricia Aguilar-Calvo
- Department of Pathology, University of California, San Diego, La, Jolla, California, 92093
| | - Daniel Ojeda-Juárez
- Department of Pathology, University of California, San Diego, La, Jolla, California, 92093
| | - Helen Khuu
- Department of Pathology, University of California, San Diego, La, Jolla, California, 92093
| | - Katrin Soldau
- Department of Pathology, University of California, San Diego, La, Jolla, California, 92093
| | - Donald P Pizzo
- Department of Pathology, University of California, San Diego, La, Jolla, California, 92093
| | - Jin Wang
- Department of Pathology, University of California, San Diego, La, Jolla, California, 92093
| | - Adela Malik
- Department of Pathology, University of California, San Diego, La, Jolla, California, 92093
| | - Timothy F Shay
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125
| | - Erin E Sullivan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125
| | - Brent Aulston
- Department of Neurosciences, University of California, San Diego, La Jolla, California 92093
| | - Seung Min Song
- Department of Pathology, University of California, San Diego, La, Jolla, California, 92093
| | - Julia A Callender
- Department of Pathology, University of California, San Diego, La, Jolla, California, 92093
| | - Henry Sanchez
- Department of Pathology, University of California, San Francisco, San Francisco, California 94143
| | - Michael D Geschwind
- Department of Neurology, Memory and Aging Center, University of California, San Francisco (UCSF), San Francisco, California 94143
| | - Subhojit Roy
- Department of Pathology, University of California, San Diego, La, Jolla, California, 92093
- Department of Neurosciences, University of California, San Diego, La Jolla, California 92093
| | - Robert A Rissman
- Department of Neurosciences, University of California, San Diego, La Jolla, California 92093
| | - JoAnn Trejo
- Department of Pharmacology, University of California, San Diego, La Jolla, California 92093
| | - Nobuyuki Tanaka
- Division of Tumor Immunobiology, Miyagi Cancer Center Research Institute, Natori 981-1293, Japan
- Division of Tumor Immunobiology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Chengbiao Wu
- Department of Neurosciences, University of California, San Diego, La Jolla, California 92093
| | - Xu Chen
- Department of Neurosciences, University of California, San Diego, La Jolla, California 92093
| | - Gentry N Patrick
- Department of Biology, University of California, San Diego, La Jolla, California 92093
| | - Christina J Sigurdson
- Department of Pathology, University of California, San Diego, La, Jolla, California, 92093
- Department of Pathology, Microbiology, and Immunology, University of California, Davis, Davis, California 95616
- Department of Medicine, University of California, San Diego, La Jolla, California 92093
| |
Collapse
|
4
|
Non-human primates in prion diseases. Cell Tissue Res 2022; 392:7-20. [PMID: 35661921 DOI: 10.1007/s00441-022-03644-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 05/21/2022] [Indexed: 11/02/2022]
Abstract
The fascinating history of prion diseases is intimately linked to the use of nonhuman primates as experimental models, which brought so fundamental and founding information about transmissibility, pathogenesis, and resistance of prions. These models are still of crucial need for risk assessment of human health and may contribute to pave a new way towards the moving field of prion-like entities which now includes the main human neurodegenerative diseases (especially Alzheimer's and Parkinson's diseases).
Collapse
|
5
|
Moore SJ, Carlson CM, Schneider JR, Johnson CJ, Greenlee JJ. Increased Attack Rates and Decreased Incubation Periods in Raccoons with Chronic Wasting Disease Passaged through Meadow Voles. Emerg Infect Dis 2022; 28:793-801. [PMID: 35318913 PMCID: PMC8962881 DOI: 10.3201/eid2804.210271] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Chronic wasting disease (CWD) is a naturally-occurring neurodegenerative disease of cervids. Raccoons (Procyon lotor) and meadow voles (Microtus pennsylvanicus) have previously been shown to be susceptible to the CWD agent. To investigate the potential for transmission of the agent of CWD from white-tailed deer to voles and subsequently to raccoons, we intracranially inoculated raccoons with brain homogenate from a CWD-affected white-tailed deer (CWDWtd) or derivatives of this isolate after it had been passaged through voles 1 or 5 times. We found that passage of the CWDWtd isolate through voles led to a change in the biologic behavior of the CWD agent, including increased attack rates and decreased incubation periods in raccoons. A better understanding of the dynamics of cross-species transmission of CWD prions can provide insights into how these infectious proteins evolve in new hosts.
Collapse
|
6
|
Bartz JC. Environmental and host factors that contribute to prion strain evolution. Acta Neuropathol 2021; 142:5-16. [PMID: 33899132 PMCID: PMC8932343 DOI: 10.1007/s00401-021-02310-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 04/13/2021] [Accepted: 04/14/2021] [Indexed: 02/08/2023]
Abstract
Prions are novel pathogens that are composed entirely of PrPSc, the self-templating conformation of the host prion protein, PrPC. Prion strains are operationally defined as a heritable phenotype of disease that are encoded by strain-specific conformations of PrPSc. The factors that influence the relative distribution of strains in a population are only beginning to be understood. For prions with an infectious etiology, environmental factors, such as strain-specific binding to surfaces and resistance to weathering, can influence which strains are available for transmission to a naïve host. Strain-specific differences in efficiency of infection by natural routes of infection can also select for prion strains. The host amino acid sequence of PrPC has the greatest effect on dictating the repertoire of prion strains. The relative abundance of PrPC, post-translational modifications of PrPC and cellular co-factors involved in prion conversion can also provide conditions that favor the prevalence of a subset of prion strains. Additionally, prion strains can interfere with each other, influencing the emergence of a dominant strain. Overall, both environmental and host factors may influence the repertoire and distribution of strains within a population.
Collapse
Affiliation(s)
- Jason C Bartz
- Department of Medical Microbiology and Immunology, School of Medicine, Creighton University, 2500 California Plaza, Omaha, NE, 68178, USA.
| |
Collapse
|
7
|
Gustafsson C, Shirani H, Leira P, Rehn DR, Linares M, Nilsson KPR, Norman P, Lindgren M. Deciphering the Electronic Transitions of Thiophene-Based Donor-Acceptor-Donor Pentameric Ligands Utilized for Multimodal Fluorescence Microscopy of Protein Aggregates. Chemphyschem 2021; 22:323-335. [PMID: 33219724 PMCID: PMC7898931 DOI: 10.1002/cphc.202000669] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/28/2020] [Indexed: 12/23/2022]
Abstract
Anionic pentameric thiophene acetates can be used for fluorescence detection and diagnosis of protein amyloid aggregates. Replacing the central thiophene unit by benzothiadiazole (BTD) or quinoxaline (QX) leads to large emission shifts and basic spectral features have been reported [Chem. Eur. J. 2015, 21, 15133-13137]. Here we present new detailed experimental results of solvent effects, time-resolved fluorescence and examples employing multi-photon microscopy and lifetime imaging. Quantum chemical response calculations elucidate how the introduction of the BTD/QX groups changes the electronic states and emissions. The dramatic red-shift follows an increased conjugation and quinoid character of the π-electrons of the thiophene backbone. An efficient charge transfer in the excited states S1 and S2 compared to the all-thiophene analogue makes these more sensitive to the polarity and quenching by the solvent. Taken together, the results guide in the interpretation of images of stained Alzheimer disease brain sections employing advanced fluorescence microscopy and lifetime imaging, and can aid in optimizing future fluorescent ligand development.
Collapse
Affiliation(s)
- Camilla Gustafsson
- Department of Theoretical Chemistry and BiologySchool of Engineering Sciences in Chemistry, Biotechnology and Health KTH Royal Institute of Technology106 91StockholmSweden
| | - Hamid Shirani
- Division of Chemistry, Department of PhysicsChemistry and Biology Linköping University581 83LinköpingSweden
| | - Petter Leira
- Department of Physics-Faculty of Natural SciencesNorwegian University of Science and Technology (NTNU)7491TrondheimNorway
| | - Dirk R. Rehn
- Department of Theoretical Chemistry and BiologySchool of Engineering Sciences in Chemistry, Biotechnology and Health KTH Royal Institute of Technology106 91StockholmSweden
| | - Mathieu Linares
- Department of Theoretical Chemistry and BiologySchool of Engineering Sciences in Chemistry, Biotechnology and Health KTH Royal Institute of Technology106 91StockholmSweden
- Laboratory of Organic Electronics and Scientific Visualization GroupITN and Swedish e-Science Research Center (SeRC) Linköping University581 83LinköpingSweden
| | - K. Peter R. Nilsson
- Division of Chemistry, Department of PhysicsChemistry and Biology Linköping University581 83LinköpingSweden
| | - Patrick Norman
- Department of Theoretical Chemistry and BiologySchool of Engineering Sciences in Chemistry, Biotechnology and Health KTH Royal Institute of Technology106 91StockholmSweden
| | - Mikael Lindgren
- Department of Physics-Faculty of Natural SciencesNorwegian University of Science and Technology (NTNU)7491TrondheimNorway
| |
Collapse
|
8
|
Béringue V, Tixador P, Andréoletti O, Reine F, Castille J, Laï TL, Le Dur A, Laisné A, Herzog L, Passet B, Rezaei H, Vilotte JL, Laude H. Host prion protein expression levels impact prion tropism for the spleen. PLoS Pathog 2020; 16:e1008283. [PMID: 32702070 PMCID: PMC7402522 DOI: 10.1371/journal.ppat.1008283] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 08/04/2020] [Accepted: 06/22/2020] [Indexed: 11/18/2022] Open
Abstract
Prions are pathogens formed from abnormal conformers (PrPSc) of the host-encoded cellular prion protein (PrPC). PrPSc conformation to disease phenotype relationships extensively vary among prion strains. In particular, prions exhibit a strain-dependent tropism for lymphoid tissues. Prions can be composed of several substrain components. There is evidence that these substrains can propagate in distinct tissues (e.g. brain and spleen) of a single individual, providing an experimental paradigm to study the cause of prion tissue selectivity. Previously, we showed that PrPC expression levels feature in prion substrain selection in the brain. Transmission of sheep scrapie isolates (termed LAN) to multiple lines of transgenic mice expressing varying levels of ovine PrPC in their brains resulted in the phenotypic expression of the dominant sheep substrain in mice expressing near physiological PrPC levels, whereas a minor substrain replicated preferentially on high expresser mice. Considering that PrPC expression levels are markedly decreased in the spleen compared to the brain, we interrogate whether spleen PrPC dosage could drive prion selectivity. The outcome of the transmission of a large cohort of LAN isolates in the spleen from high expresser mice correlated with the replication rate dependency on PrPC amount. There was a prominent spleen colonization by the substrain preferentially replicating on low expresser mice and a relative incapacity of the substrain with higher-PrPC level need to propagate in the spleen. Early colonization of the spleen after intraperitoneal inoculation allowed neuropathological expression of the lymphoid substrain. In addition, a pair of substrain variants resulting from the adaptation of human prions to ovine high expresser mice, and exhibiting differing brain versus spleen tropism, showed different tropism on transmission to low expresser mice, with the lymphoid substrain colonizing the brain. Overall, these data suggest that PrPC expression levels are instrumental in prion lymphotropism. The cause of prion phenotype variation among prion strains remains poorly understood. In particular, prions replicate in a strain-dependent manner in the spleen. This can result in prion asymptomatic carriers. Based on our previous observations that dosage of the prion precursor (PrP) determined prion substrain selection in the brain, we examine whether PrP levels in the spleen could drive prion replication in this tissue, due to the low levels of the protein. We observe that the prion substrain with higher PrP need for replication does barely replicate in the spleen, while the component with low PrP need replicates efficiently. In addition, other human co-propagating prions with differing spleen and brain tropism showed different tropism on transmission to mice expressing low PrP levels, with the lymphoid substrain colonizing the brain. PrPC expression levels may thus be instrumental in prion tropism for the lymphoid tissue. From a diagnostic point of view, given the apparent complexity of prion diseases with respect to prion substrain composition, these data advocate to type extraneural tissues or fluids for a comprehensive identification of the circulating prions in susceptible mammals.
Collapse
Affiliation(s)
- Vincent Béringue
- Université Paris-Saclay, INRAE, UVSQ, VIM Jouy-en-Josas, France
- * E-mail:
| | | | | | - Fabienne Reine
- Université Paris-Saclay, INRAE, UVSQ, VIM Jouy-en-Josas, France
| | - Johan Castille
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France
| | - Thanh-Lan Laï
- Université Paris-Saclay, INRAE, UVSQ, VIM Jouy-en-Josas, France
| | - Annick Le Dur
- Université Paris-Saclay, INRAE, UVSQ, VIM Jouy-en-Josas, France
| | - Aude Laisné
- Université Paris-Saclay, INRAE, UVSQ, VIM Jouy-en-Josas, France
| | - Laetitia Herzog
- Université Paris-Saclay, INRAE, UVSQ, VIM Jouy-en-Josas, France
| | - Bruno Passet
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France
| | - Human Rezaei
- Université Paris-Saclay, INRAE, UVSQ, VIM Jouy-en-Josas, France
| | - Jean-Luc Vilotte
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France
| | - Hubert Laude
- Université Paris-Saclay, INRAE, UVSQ, VIM Jouy-en-Josas, France
| |
Collapse
|
9
|
Detection of Pathognomonic Biomarker PrP Sc and the Contribution of Cell Free-Amplification Techniques to the Diagnosis of Prion Diseases. Biomolecules 2020; 10:biom10030469. [PMID: 32204429 PMCID: PMC7175149 DOI: 10.3390/biom10030469] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/16/2020] [Accepted: 03/17/2020] [Indexed: 02/07/2023] Open
Abstract
Transmissible spongiform encephalopathies or prion diseases are rapidly progressive neurodegenerative diseases, the clinical manifestation of which can resemble other promptly evolving neurological maladies. Therefore, the unequivocal ante-mortem diagnosis is highly challenging and was only possible by histopathological and immunohistochemical analysis of the brain at necropsy. Although surrogate biomarkers of neurological damage have become invaluable to complement clinical data and provide more accurate diagnostics at early stages, other neurodegenerative diseases show similar alterations hindering the differential diagnosis. To solve that, the detection of the pathognomonic biomarker of disease, PrPSc, the aberrantly folded isoform of the prion protein, could be used. However, the amounts in easily accessible tissues or body fluids at pre-clinical or early clinical stages are extremely low for the standard detection methods. The solution comes from the recent development of in vitro prion propagation techniques, such as Protein Misfolding Cyclic Amplification (PMCA) and Real Time-Quaking Induced Conversion (RT-QuIC), which have been already applied to detect minute amounts of PrPSc in different matrixes and make early diagnosis of prion diseases feasible in a near future. Herein, the most relevant tissues and body fluids in which PrPSc has been detected in animals and humans are being reviewed, especially those in which cell-free prion propagation systems have been used with diagnostic purposes.
Collapse
|
10
|
Shortening heparan sulfate chains prolongs survival and reduces parenchymal plaques in prion disease caused by mobile, ADAM10-cleaved prions. Acta Neuropathol 2020; 139:527-546. [PMID: 31673874 DOI: 10.1007/s00401-019-02085-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 10/10/2019] [Accepted: 10/13/2019] [Indexed: 12/18/2022]
Abstract
Cofactors are essential for driving recombinant prion protein into pathogenic conformers. Polyanions promote prion aggregation in vitro, yet the cofactors that modulate prion assembly in vivo remain largely unknown. Here we report that the endogenous glycosaminoglycan, heparan sulfate (HS), impacts prion propagation kinetics and deposition sites in the brain. Exostosin-1 haploinsufficient (Ext1+/-) mice, which produce short HS chains, show a prolonged survival and a redistribution of plaques from the parenchyma to vessels when infected with fibrillar prions, and a modest delay when infected with subfibrillar prions. Notably, the fibrillar, plaque-forming prions are composed of ADAM10-cleaved prion protein lacking a glycosylphosphatidylinositol anchor, indicating that these prions are mobile and assemble extracellularly. By analyzing the prion-bound HS using liquid chromatography-mass spectrometry (LC-MS), we identified the disaccharide signature of HS differentially bound to fibrillar compared to subfibrillar prions, and found approximately 20-fold more HS bound to the fibrils. Finally, LC-MS of prion-bound HS from human patients with familial and sporadic prion disease also showed distinct HS signatures and higher HS levels associated with fibrillar prions. This study provides the first in vivo evidence of an endogenous cofactor that accelerates prion disease progression and enhances parenchymal deposition of ADAM10-cleaved, mobile prions.
Collapse
|
11
|
Heterogeneity and Architecture of Pathological Prion Protein Assemblies: Time to Revisit the Molecular Basis of the Prion Replication Process? Viruses 2019; 11:v11050429. [PMID: 31083283 PMCID: PMC6563208 DOI: 10.3390/v11050429] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 05/07/2019] [Accepted: 05/08/2019] [Indexed: 01/24/2023] Open
Abstract
Prions are proteinaceous infectious agents responsible for a range of neurodegenerative diseases in animals and humans. Prion particles are assemblies formed from a misfolded, β-sheet rich, aggregation-prone isoform (PrPSc) of the host-encoded cellular prion protein (PrPC). Prions replicate by recruiting and converting PrPC into PrPSc, by an autocatalytic process. PrPSc is a pleiomorphic protein as different conformations can dictate different disease phenotypes in the same host species. This is the basis of the strain phenomenon in prion diseases. Recent experimental evidence suggests further structural heterogeneity in PrPSc assemblies within specific prion populations and strains. Still, this diversity is rather seen as a size continuum of assemblies with the same core structure, while analysis of the available experimental data points to the existence of structurally distinct arrangements. The atomic structure of PrPSc has not been elucidated so far, making the prion replication process difficult to understand. All currently available models suggest that PrPSc assemblies exhibit a PrPSc subunit as core constituent, which was recently identified. This review summarizes our current knowledge on prion assembly heterogeneity down to the subunit level and will discuss its importance with regard to the current molecular principles of the prion replication process.
Collapse
|
12
|
Mishra R, Elgland M, Begum A, Fyrner T, Konradsson P, Nyström S, Hammarström P. Impact of N-glycosylation site variants during human PrP aggregation and fibril nucleation. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2019; 1867:909-921. [PMID: 30935958 DOI: 10.1016/j.bbapap.2019.03.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 03/25/2019] [Accepted: 03/25/2019] [Indexed: 02/06/2023]
Abstract
Misfolding and aggregation of the human prion protein (PrP) cause neurodegenerative transmissible spongiform encephalopathies such as Creutzfeldt-Jakob disease. Mature native PrP is composed of 209 residues and is folded into a C-terminal globular domain (residues 125-209) comprising a small two-stranded β-sheet and three α-helices. The N-terminal domain (residues 23-124) is intrinsically disordered. Expression of truncated PrP (residues 90-231) is sufficient to cause prion disease and residues 90/100-231 is comprising the amyloid-like fibril core of misfolded infectious PrP. During PrP fibril formation under native conditions in vitro, the disordered N-terminal domain slows down fibril formation likely due to a mechanism of initial aggregation forming morphologically disordered aggregates. The morphological disordered aggregate is a transient phase. Nucleation of fibrils occurs from this initial aggregate. The aggregate phase is largely circumvented by seeding with preformed PrP fibrils. In vivo PrP is N-glycosylated at positions Asn181 and Asn197. Little is known about the importance of these positions and their glycans for PrP stability, aggregation and fibril formation. We have in this study taken a step towards that goal by mutating residues 181 and 197 for cysteines to study the positional impact on these processes. We have further by organic synthetic chemistry and chemical modification generated synthetic glycosylations in these positions. Our data shows that residue 181 when mutated to a cysteine is a key residue for self-chaperoning, rendering a trap in the initial aggregate preventing conformational changes towards amyloid fibril formation. Position 197 is less involved in the aggregate trapping and is more geared towards β-sheet structure conversion within amyloid fibrils. As expected, synthetic glycosylated 197 is less affected towards fibril formation compared to glycosylated 181. Our data are rather compatible with the parallel in-register intermolecular β-sheet model structure of the PrP90-231 fibril and sheds light on the misfolding transitions of PrP in vitro. We hypothesize that glycosylation of position 181 is a key site for prion strain differentiation in vivo.
Collapse
Affiliation(s)
- Rajesh Mishra
- IFM-Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden; School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Mathias Elgland
- IFM-Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | - Afshan Begum
- IFM-Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | - Timmy Fyrner
- IFM-Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | - Peter Konradsson
- IFM-Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | - Sofie Nyström
- IFM-Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | - Per Hammarström
- IFM-Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden.
| |
Collapse
|
13
|
Abstract
Prion diseases are rapidly progressive, incurable neurodegenerative disorders caused by misfolded, aggregated proteins known as prions, which are uniquely infectious. Remarkably, these infectious proteins have been responsible for widespread disease epidemics, including kuru in humans, bovine spongiform encephalopathy in cattle, and chronic wasting disease in cervids, the latter of which has spread across North America and recently appeared in Norway and Finland. The hallmark histopathological features include widespread spongiform encephalopathy, neuronal loss, gliosis, and deposits of variably sized aggregated prion protein, ranging from small, soluble oligomers to long, thin, unbranched fibrils, depending on the disease. Here, we explore recent advances in prion disease research, from the function of the cellular prion protein to the dysfunction triggering neurotoxicity, as well as mechanisms underlying prion spread between cells. We also highlight key findings that have revealed new therapeutic targets and consider unanswered questions for future research.
Collapse
Affiliation(s)
- Christina J Sigurdson
- Departments of Pathology and Medicine, UC San Diego School of Medicine, University of California, San Diego, La Jolla, California 92093, USA;
| | - Jason C Bartz
- Department of Medical Microbiology and Immunology, Creighton University, Omaha, Nebraska 68178, USA
| | - Markus Glatzel
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| |
Collapse
|
14
|
Eckland TE, Shikiya RA, Bartz JC. Independent amplification of co-infected long incubation period low conversion efficiency prion strains. PLoS Pathog 2018; 14:e1007323. [PMID: 30335854 PMCID: PMC6193734 DOI: 10.1371/journal.ppat.1007323] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 09/07/2018] [Indexed: 11/19/2022] Open
Abstract
Prion diseases are caused by a misfolded isoform of the prion protein, PrPSc. Prion strains are hypothesized to be encoded by strain-specific conformations of PrPSc and prions can interfere with each other when a long-incubation period strain (i.e. blocking strain) inhibits the conversion of a short-incubation period strain (i.e. non-blocking). Prion strain interference influences prion strain dynamics and the emergence of a strain from a mixture; however, it is unknown if two long-incubation period strains can interfere with each other. Here, we show that co-infection of animals with combinations of long-incubation period strains failed to identify evidence of strain interference. To exclude the possibility that this inability of strains to interfere in vivo was due to a failure to infect common populations of neurons we used protein misfolding cyclic amplification strain interference (PMCAsi). Consistent with the animal bioassay studies, PMCAsi indicated that both co-infecting strains were amplifying independently, suggesting that the lack of strain interference is not due to a failure to target the same cells but is an inherent property of the strains involved. Importantly PMCA reactions seeded with long incubation-period strains contained relatively higher levels of remaining PrPC compared to reactions seeded with a short-incubation period strain. Mechanistically, we hypothesize the abundance of PrPC is not limiting in vivo or in vitro resulting in prion strains with relatively low prion conversion efficiency to amplify independently. Overall, this observation changes the paradigm of the interactions of prion strains and has implications for interspecies transmission and emergence of prion strains from a mixture. This is the first example of prion strains that replicate independently in vitro and in vivo. This observation changes the paradigm of the interactions of prion strains and provides further evidence that strains are a dynamic mixture of substrains. Strain interference is influenced by the abundance of PrPC that is convertible by the strains involved. These observations have implications for interspecies transmission and emergence of prion strains from a mixture.
Collapse
Affiliation(s)
- Thomas E. Eckland
- Department of Medical Microbiology and Immunology, School of Medicine, Creighton University, Omaha, Nebraska, United States of America
| | - Ronald A. Shikiya
- Department of Medical Microbiology and Immunology, School of Medicine, Creighton University, Omaha, Nebraska, United States of America
| | - Jason C. Bartz
- Department of Medical Microbiology and Immunology, School of Medicine, Creighton University, Omaha, Nebraska, United States of America
- * E-mail:
| |
Collapse
|
15
|
Comoy EE, Mikol J, Deslys JP. Unexpected prion phenotypes in experimentally transfused animals: predictive models for humans? Prion 2018; 12:1-8. [PMID: 30080439 PMCID: PMC6277188 DOI: 10.1080/19336896.2018.1505399] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 07/24/2018] [Indexed: 12/12/2022] Open
Abstract
The recently reevaluated high prevalence of healthy carriers (1/2,000 in UK) of variant Creutzfeldt-Jakob Disease (v-CJD), whose blood might be infectious, suggests that the evolution of this prion disease might not be under full control as expected. After experimental transfusion of macaques and conventional mice with blood derived from v-CJD exposed (human and animal) individuals, we confirmed in these both models the transmissibility of v-CJD, but we also observed unexpected neurological syndromes transmissible by transfusion: despite their prion etiology confirmed through transmission experiments, these original cases would escape classical prion diagnosis, notably in the absence of detectable abnormal PrP with current techniques. It is noteworthy that macaques developed an original, yet undescribed myelopathic syndrome associating demyelination and pseudo-necrotic lesions of spinal cord, brainstem and optical tract without affecting encephalon, which is rather evocative of spinal cord disease than prion disease in human medicine. These observations strongly suggest that the spectrum of human prion diseases may extend the current field restricted to the phenotypes associated to protease-resistant PrP, and may notably include spinal cord diseases.
Collapse
Affiliation(s)
- Emmanuel E. Comoy
- Prion Research Unit, Institut François Jacob, Division of Fundamental Research, Commissariat à l’Energie Atomique, Fontenay-aux-Roses, France
| | - Jacqueline Mikol
- Prion Research Unit, Institut François Jacob, Division of Fundamental Research, Commissariat à l’Energie Atomique, Fontenay-aux-Roses, France
| | - Jean-Philippe Deslys
- Prion Research Unit, Institut François Jacob, Division of Fundamental Research, Commissariat à l’Energie Atomique, Fontenay-aux-Roses, France
| |
Collapse
|