1
|
Antoniades E, Keffes N, Vorri S, Tsitouras V, Gkantsinikoudis N, Tsitsopoulos P, Magras J. The Molecular Basis of Pediatric Brain Tumors: A Review with Clinical Implications. Cancers (Basel) 2025; 17:1566. [PMID: 40361492 PMCID: PMC12071314 DOI: 10.3390/cancers17091566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2025] [Revised: 04/27/2025] [Accepted: 04/29/2025] [Indexed: 05/15/2025] Open
Abstract
Central nervous system (CNS) tumors are the most common solid malignancy in the pediatric population. These lesions are the result of the aberrant cell signaling step proteins, which normally regulate cell proliferation. Mitogen-activated protein kinase (MAPK) pathways and tyrosine kinase receptors are involved in tumorigenesis of low-grade gliomas. High-grade gliomas may carry similar mutations, but loss of epigenetic control is the dominant molecular event; it can occur either due to histone mutations or inappropriate binding or unbinding of DNA on histones. Therefore, despite the absence of genetic alteration in the classic oncogenes or tumor suppressor genes, uncontrolled transcription results in tumorigenesis. Isocitric dehydrogenase (IDH) mutations do not predominate compared to their adult counterpart. Embryonic tumors include medulloblastomas, which bear mutations of transcription-regulating pathways, such as wingless-related integration sites or sonic hedgehog pathways. They may also relate to high expression of Myc family genes. Atypical teratoid rhabdoid tumors harbor alterations of molecules that contribute to ATP hydrolysis of chromatin. Embryonic tumors with multilayered rosettes are associated with microRNA mutations and impaired translation. Ependymomas exhibit great variability. As far as supratentorial lesions are concerned, the major events are mutations either of NFkB or Hippo pathways. Posterior fossa tumors are further divided into two types with different prognoses. Type A group is associated with mutations of DNA damage repair molecules. Lastly, germ cell tumors are a heterogeneous group. Among them, germinomas manifest KIT receptor mutations, a subgroup of the tyrosine kinase receptor family.
Collapse
Affiliation(s)
- Elias Antoniades
- Second Department of Neurosurgery, Aristotle University School of Medicine, 546 36 Thessaloniki, Greece; (N.K.); (V.T.); (N.G.); (P.T.); (J.M.)
| | - Nikolaos Keffes
- Second Department of Neurosurgery, Aristotle University School of Medicine, 546 36 Thessaloniki, Greece; (N.K.); (V.T.); (N.G.); (P.T.); (J.M.)
| | - Stamatia Vorri
- New York City Health and Hospital—Jacobi Medical Center Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY 10461, USA;
| | - Vassilios Tsitouras
- Second Department of Neurosurgery, Aristotle University School of Medicine, 546 36 Thessaloniki, Greece; (N.K.); (V.T.); (N.G.); (P.T.); (J.M.)
| | - Nikolaos Gkantsinikoudis
- Second Department of Neurosurgery, Aristotle University School of Medicine, 546 36 Thessaloniki, Greece; (N.K.); (V.T.); (N.G.); (P.T.); (J.M.)
| | - Parmenion Tsitsopoulos
- Second Department of Neurosurgery, Aristotle University School of Medicine, 546 36 Thessaloniki, Greece; (N.K.); (V.T.); (N.G.); (P.T.); (J.M.)
| | - John Magras
- Second Department of Neurosurgery, Aristotle University School of Medicine, 546 36 Thessaloniki, Greece; (N.K.); (V.T.); (N.G.); (P.T.); (J.M.)
| |
Collapse
|
2
|
Bakes E, Cheng R, Mañucat-Tan N, Ramaswamy V, Hansford JR. Advances in molecular prognostication and treatments in ependymoma. J Neurooncol 2025; 172:317-326. [PMID: 39757304 DOI: 10.1007/s11060-024-04923-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 12/18/2024] [Indexed: 01/07/2025]
Abstract
Ependymoma is the third most common brain tumour of childhood and historically has posed a major challenge to both pediatric and adult neuro-oncologists. Ependymoma can occur anywhere in the central nervous system throughout the entire age spectrum. Treatment options have been limited to surgery and radiation, and outcomes have been widely disparate across studies. Indeed, these disparate outcomes have rendered it extraordinarily difficult to compare studies and to truly understand which patients are low and high-risk. Over the past two decades there have been tremendous advances in our understanding of the biology of ependymoma, which have changed risk stratification dramatically. Indeed, it is now well accepted that ependymoma comprises multiple distinct entities, whereby each compartment (supratentorial, posterior fossa, spinal) are distinct, and within each compartment there exist unique groups. The driver events, demographics and response to treatment vary widely across these groups and allow for a better classification of thee disease. Herein, we review the advances in the molecular stratification of ependymoma including how an improved classification and risk stratification allows for more precise therapies.
Collapse
Affiliation(s)
- Emma Bakes
- Michael Rice Centre for Hematology and Oncology, Women's and Children's Hospital, Adelaide, SA, Australia
| | - Rachel Cheng
- Michael Rice Centre for Hematology and Oncology, Women's and Children's Hospital, Adelaide, SA, Australia
| | - Noralyn Mañucat-Tan
- South Australia Health and Medical Research Institute, Adelaide, SA, Australia
| | - Vijay Ramaswamy
- Developmental and Stem Cell Biology, Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada.
- Division of Hematology/Oncology, Hospital for Sick Children, Toronto, ON, Canada.
- Departments of Medical Biophysics and Pediatrics, University of Toronto, Toronto, ON, Canada.
| | - Jordan R Hansford
- Michael Rice Centre for Hematology and Oncology, Women's and Children's Hospital, Adelaide, SA, Australia.
- South Australia Health and Medical Research Institute, Adelaide, SA, Australia.
- South Australia ImmunoGENomics Cancer Institute, University of Adelaide, Adelaide, SA, Australia.
| |
Collapse
|
3
|
Tauziède-Espariat A, Appay R, Bouvier C, Testud B, Girard N, Métais A, Servant E, Scavarda D, Meurgey A, Pissaloux D, Hasty L, Varlet P. A novel TEAD1::NCOA2 fusion that potentially expands the concept of supratentorial ependymoma, YAP1 fusion-positive. Acta Neuropathol 2025; 149:14. [PMID: 39928140 PMCID: PMC11811449 DOI: 10.1007/s00401-025-02852-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/23/2025] [Accepted: 01/25/2025] [Indexed: 02/11/2025]
Affiliation(s)
- Arnault Tauziède-Espariat
- Department of Neuropathology, GHU Paris - Psychiatry and Neuroscience, Sainte-Anne Hospital, 1, Rue Cabanis, 75014, Paris, France.
- UMR S1266, INSERM, IMA-BRAIN, Institute of Psychiatry and Neurosciences of Paris, Université de Paris, 75014, Paris, France.
| | - Romain Appay
- Department of Pathology, APHM La Timone, Marseille, France
| | | | - Benoît Testud
- Department of Neuroradiology, AP-HM La Timone, Marseille, France
| | - Nadine Girard
- Department of Neuroradiology, AP-HM La Timone, Marseille, France
| | - Alice Métais
- Department of Neuropathology, GHU Paris - Psychiatry and Neuroscience, Sainte-Anne Hospital, 1, Rue Cabanis, 75014, Paris, France
- UMR S1266, INSERM, IMA-BRAIN, Institute of Psychiatry and Neurosciences of Paris, Université de Paris, 75014, Paris, France
| | - Euphrasie Servant
- Department of Neuropathology, GHU Paris - Psychiatry and Neuroscience, Sainte-Anne Hospital, 1, Rue Cabanis, 75014, Paris, France
- UMR S1266, INSERM, IMA-BRAIN, Institute of Psychiatry and Neurosciences of Paris, Université de Paris, 75014, Paris, France
| | - Didier Scavarda
- Department of Pediatric Neurosurgery, AP-HM La Timone, Marseille, France
| | | | - Daniel Pissaloux
- Department of Biopathology, Léon Bérard Cancer Center, Lyon, France
| | - Lauren Hasty
- Department of Neuropathology, GHU Paris - Psychiatry and Neuroscience, Sainte-Anne Hospital, 1, Rue Cabanis, 75014, Paris, France
| | - Pascale Varlet
- Department of Neuropathology, GHU Paris - Psychiatry and Neuroscience, Sainte-Anne Hospital, 1, Rue Cabanis, 75014, Paris, France
- UMR S1266, INSERM, IMA-BRAIN, Institute of Psychiatry and Neurosciences of Paris, Université de Paris, 75014, Paris, France
| |
Collapse
|
4
|
Obrecht-Sturm D, Schoof M, Eckhardt A, Mynarek M, Gilbert MR, Aldape K, Armstrong TS, Ramaswamy V, Bockmayr M, von Hoff K, Fleischhack G, Adolph JE, Tippelt S, Pfister SM, Pajtler K, Sturm D, Drexler R, Ricklefs FL, Stepien N, Gojo J, Pietsch T, Warmuth-Metz M, Kortmann R, Timmermann B, Haberler C, Rutkowski S, Schüller U. Distinct relapse pattern across molecular ependymoma types. Neuro Oncol 2025; 27:267-276. [PMID: 39171767 PMCID: PMC11726240 DOI: 10.1093/neuonc/noae166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Indexed: 08/23/2024] Open
Abstract
BACKGROUND Ependymoma (EPN) is not a uniform disease but represents different disease types with biological and clinical heterogeneity. However, the pattern of when and where different types of EPN relapse is not yet comprehensively described. METHODS We assembled 269 relapsed intracranial EPN from pediatric (n = 233) and adult (n = 36) patients from European and Northern American cohorts and correlated DNA methylation patterns and copy-number alterations with clinical information. RESULTS The cohort comprised the following molecular EPN types: PF-EPN-A (n = 177), ST-EPN-ZFTA (n = 45), PF-EPN-B (n = 31), PF-EPN-SE (n = 12), and ST-EPN-YAP (n = 4). First relapses of PF-EPN-B (PF: posterior-fossa) and PF-EPN-SE (SE: subependymoma) occurred later than of PF-EPN-A, ST-EPN-YAP (ST: supratentorial), or ST-EPN-ZFTA (median time to relapse: 4.3 and 6.0 years vs. 1.9/1.0/2.4 years; P < .01). Metastatic or combined recurrences in PF-EPN-B and -A more often involved the spinal cord than in ST-EPN-ZFTA (72.7% and 40.0 vs. 12.5%; P < .01). No distant relapses were observed in ST-EPN-YAP (n = 4) or PF-EPN-SE (n = 12). Post-relapse survival (PRS) was poor for PF-EPN-A and ST-EPN-ZFTA (5-year PRS: 44.5% ± 4.4%/47.8% ± 9.1%), whereas PF-EPN-B and PF-EPN-SE displayed a 5-year PRS of 89.5% ± 7.1%/90.0% ± 9.5% (P = .03). However, 10-year PRS for PF-EPN-B dropped to 45.8% ± 17.3%. Neither between the radiation field and relapse pattern nor between the radiation field and spinal involvement at relapse an impact was identified. Notably, all patients with relapsed ST-EPN-YAP did not receive upfront radiotherapy but were successfully salvaged using irradiation at relapse. CONCLUSIONS Relapse patterns of specific EPN types are different. Future clinical trials, treatment adaptions, duration of surveillance, and diagnostics should be planned to incorporate entity-specific relapse information.
Collapse
Affiliation(s)
- Denise Obrecht-Sturm
- Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Melanie Schoof
- Research Institute Children’s Cancer Center Hamburg, Hamburg, Germany
| | - Alicia Eckhardt
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Research Institute Children’s Cancer Center Hamburg, Hamburg, Germany
| | - Martin Mynarek
- Mildred Scheel Cancer Career Center HaTriCS4, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Mark R Gilbert
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Kenneth Aldape
- Laboratory of Pathology, National Cancer Institute, Bethesda, Maryland, USA
| | - Terri S Armstrong
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Vijay Ramaswamy
- Division of Hematology/Oncology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Michael Bockmayr
- Institute of Pathology, Charité University Medicine, Berlin, Germany
- Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Katja von Hoff
- Department of Pediatrics and Adolescent Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Pediatric Oncology and Hematology, Charité University Medicine, Berlin, Germany
| | - Gudrun Fleischhack
- Pediatrics III, Center for Translational Neuro- and Behavioral Sciences (CTNBS), University Hospital of Essen, Essen, Germany
| | - Jonas E Adolph
- Pediatrics III, Center for Translational Neuro- and Behavioral Sciences (CTNBS), University Hospital of Essen, Essen, Germany
| | - Stephan Tippelt
- Pediatrics III, Center for Translational Neuro- and Behavioral Sciences (CTNBS), University Hospital of Essen, Essen, Germany
| | - Stefan M Pfister
- Division of Pediatric Glioma Research, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Hopp Children’s Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology and Immunology, Heidelberg University Hospital, Heidelberg, Germany
| | - Kristian Pajtler
- Division of Pediatric Glioma Research, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Hopp Children’s Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology and Immunology, Heidelberg University Hospital, Heidelberg, Germany
| | - Dominik Sturm
- Division of Pediatric Glioma Research, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Hopp Children’s Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology and Immunology, Heidelberg University Hospital, Heidelberg, Germany
| | - Richard Drexler
- Department for Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Franz L Ricklefs
- Department for Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Natalia Stepien
- Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Johannes Gojo
- Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Torsten Pietsch
- Department of Neuropathology and DGNN Brain Tumor Reference Center, University of Bonn Medical Center, Bonn, Germany
| | - Monika Warmuth-Metz
- Institute of Diagnostic and Interventional Neuroradiology, University Hospital Wuerzburg, Würzburg, Germany
| | - Rolf Kortmann
- Department of Radiation Oncology, University of Leipzig, Leipzig, Germany
| | - Beate Timmermann
- Department of Radiation Oncology, University of Leipzig, Leipzig, Germany
| | - Christine Haberler
- Department of Neurology, Division of Neuropathology and Neurochemistry, Medical University of Vienna, Austria
| | - Stefan Rutkowski
- Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ulrich Schüller
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Research Institute Children’s Cancer Center Hamburg, Hamburg, Germany
| |
Collapse
|
5
|
Rameh V, Löbel U, D'Arco F, Bhatia A, Mankad K, Poussaint TY, Alves CA. Cortically Based Brain Tumors in Children: A Decision-Tree Approach in the Radiology Reading Room. AJNR Am J Neuroradiol 2025; 46:11-23. [PMID: 39181692 PMCID: PMC11735440 DOI: 10.3174/ajnr.a8477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/13/2024] [Indexed: 08/27/2024]
Abstract
Cortically based brain tumors in children constitute a unique set of tumors with variably aggressive biologic behavior. Because radiologists play an integral role on the multidisciplinary medical team, a clinically useful and easy-to-follow flow chart for the differential diagnoses of these complex brain tumors is essential. This proposed algorithm tree provides the latest insights into the typical imaging characteristics and epidemiologic data that differentiate the tumor entities, taking into perspective the 2021 World Health Organization's classification and highlighting classic as well as newly identified pathologic subtypes by using current molecular understanding.
Collapse
Affiliation(s)
- V Rameh
- From the Department of Radiology (V.R., T.Y.P., C.A.A.), Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - U Löbel
- Department of Radiology (U.L., F.D., K.M.), Great Ormond Street Hospital for Children, National Health Service Foundation Trust, London, UK
| | - F D'Arco
- Department of Radiology (U.L., F.D., K.M.), Great Ormond Street Hospital for Children, National Health Service Foundation Trust, London, UK
| | - A Bhatia
- Department of Radiology (A.B.), Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania
| | - K Mankad
- Department of Radiology (U.L., F.D., K.M.), Great Ormond Street Hospital for Children, National Health Service Foundation Trust, London, UK
| | - T Y Poussaint
- From the Department of Radiology (V.R., T.Y.P., C.A.A.), Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - C A Alves
- From the Department of Radiology (V.R., T.Y.P., C.A.A.), Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
6
|
Okonechnikov K, Ghasemi DR, Schrimpf D, Tonn S, Mynarek M, Koster J, Milde T, Zheng T, Sievers P, Sahm F, Jones DTW, von Deimling A, Pfister SM, Kool M, Pajtler KW, Korshunov A. Biglycan-driven risk stratification in ZFTA-RELA fusion supratentorial ependymomas through transcriptome profiling. Acta Neuropathol Commun 2025; 13:4. [PMID: 39762990 PMCID: PMC11706152 DOI: 10.1186/s40478-024-01921-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 12/23/2024] [Indexed: 01/11/2025] Open
Abstract
Recent genomic studies have allowed the subdivision of intracranial ependymomas into molecularly distinct groups with highly specific clinical features and outcomes. The majority of supratentorial ependymomas (ST-EPN) harbor ZFTA-RELA fusions which were designated, in general, as an intermediate risk tumor variant. However, molecular prognosticators within ST-EPN ZFTA-RELA have not been determined yet. Here, we performed methylation-based DNA profiling and transcriptome RNA sequencing analysis of 80 ST-EPN ZFTA-RELA investigating the clinical significance of various molecular patterns. The principal types of ZFTA-RELA fusions, based on breakpoint location, demonstrated no significant correlations with clinical outcomes. Multigene analysis disclosed 1892 survival-associated genes, and a metagene set of 100 genes subdivided ST-EPN ZFTA-RELA into favorable and unfavorable transcriptome subtypes composed of different cell subpopulations as detected by deconvolution analysis. BGN (biglycan) was identified as the top-ranked survival-associated gene and high BGN expression levels were associated with poor survival (Hazard Ratio 17.85 for PFS and 45.48 for OS; log-rank; p-value < 0.01). Furthermore, BGN immunopositivity was identified as a strong prognostic indicator of poor survival in ST-EPN, and this finding was confirmed in an independent validation set of 56 samples. Our results indicate that integrating BGN expression (at mRNA and/or protein level) into risk stratification models may improve ST-EPN ZFTA-RELA outcome prediction. Therefore, gene and/or protein expression analyses for this molecular marker could be adopted for ST-EPN ZFTA-RELA prognostication and may help assign patients to optimal therapies in prospective clinical trials.
Collapse
Affiliation(s)
- Konstantin Okonechnikov
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neuro-Oncology (B062), German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - David R Ghasemi
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neuro-Oncology (B062), German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Mildred Scheel Cancer Career Center HaTriCS4, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Research Institute Children's Cancer Center, Hamburg, Germany
- Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Daniel Schrimpf
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology (B300), German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Svenja Tonn
- Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Martin Mynarek
- Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Mildred Scheel Cancer Career Center HaTriCS4, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jan Koster
- Center for Experimental and Molecular Medicine, Amsterdam University Medical Centers, University of Amsterdam and Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Till Milde
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
- Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Tuyu Zheng
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neuro-Oncology (B062), German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Philipp Sievers
- Clinical Cooperation Unit Neuropathology (B300), German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Felix Sahm
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology (B300), German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany
| | - David T W Jones
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Glioma Research (B360), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Andreas von Deimling
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology (B300), German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Stefan M Pfister
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neuro-Oncology (B062), German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Marcel Kool
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neuro-Oncology (B062), German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Princess Máxima Center for Pediatric Oncology, Utrecht, 3584CS, The Netherlands
| | - Kristian W Pajtler
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neuro-Oncology (B062), German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Andrey Korshunov
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.
- Clinical Cooperation Unit Neuropathology (B300), German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), National Center for Tumor Diseases (NCT), Heidelberg, Germany.
- Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany.
- Clinical Cooperation Unit Neuropathology (B300), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.
| |
Collapse
|
7
|
Perrod V, Levy R, Tauziède-Espariat A, Roux CJ, Beccaria K, Blauwblomme T, Grill J, Dufour C, Guerrini-Rousseau L, Abbou S, Bolle S, Roux A, Pallud J, Provost C, Oppenheim C, Varlet P, Boddaert N, Dangouloff-Ros V. Supra-tentorial Ependymomas with ZFTA Fusion, YAP1 Fusion, and Astroblastomas, MN1-altered: Characteristic Imaging Features. Clin Neuroradiol 2024; 34:939-950. [PMID: 39093426 DOI: 10.1007/s00062-024-01444-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 07/08/2024] [Indexed: 08/04/2024]
Abstract
PURPOSE Supratentorial (ST) ependymoma subgroups are defined by two different fusions with different prognoses. Astroblastomas, MN1-altered, have ependymal-like histopathologic features and represent a differential diagnosis in children. We hypothesized that ZFTA-fused ependymoma and YAP1-fused ependymoma on the one hand, and astroblastoma, MN1-altered, on the other hand, show different MRI characteristics. METHODS We retrospectively analyzed the preoperative imaging of 45 patients with ST ependymoma or astroblastoma between January 2000 and September 2020, blinded to histomolecular grouping. Several characteristics, such as location, tumor volume, calcifications, solid/cystic component, and signal enhancement or diffusion were evaluated. We compared imaging characteristics according to their molecular subtype (ZFTA-fused, YAP1-fused, and astroblastoma, MN1-altered). RESULTS Thirty-nine patients were classified as having an ependymoma, 35 with a ZFTA fusion and four with a YAP1 fusion, and six as having an astroblastoma, MN1-altered. YAP1-fused ependymomas were more likely to involve at least 3 lobes than ZFTA-fused ependymomas. Astroblastomas were located in the frontal lobe in 100% of the tumors versus 49% of the ependymomas. Cerebral blood flow by arterial spin labeling was higher in astroblastomas than in ependymomas. There were no differences in the other characteristics between the molecular groups. All the tumors showed common features: intra-axial extra-ventricular tumors, very frequent contrast enhancement (39/43, 91%), a cystic/necrotic component (41/45, 91%), restricted diffusion (32/36, 89%), calcifications (15/18, 83%), and peri-tumoral edema (38/44, 86%). CONCLUSION The distinction between ST ependymoma subtypes and astroblastomas can be guided by several imaging features. These tumors share common imaging features that may help to differentiate ST ependymomas and astroblastomas from other pediatric ST tumors.
Collapse
Affiliation(s)
- Victoire Perrod
- Pediatric Radiology Department, AP-HP, Hôpital Universitaire Necker-Enfants Malades, 75015, Paris, France
- INSERM U1299, Université Paris Cité, 75015, Paris, France
- UMR 1163, Institut Imagine, Université Paris Cité, 75015, Paris, France
| | - Raphael Levy
- Pediatric Radiology Department, AP-HP, Hôpital Universitaire Necker-Enfants Malades, 75015, Paris, France
- INSERM U1299, Université Paris Cité, 75015, Paris, France
- UMR 1163, Institut Imagine, Université Paris Cité, 75015, Paris, France
| | | | - Charles-Joris Roux
- Pediatric Radiology Department, AP-HP, Hôpital Universitaire Necker-Enfants Malades, 75015, Paris, France
- INSERM U1299, Université Paris Cité, 75015, Paris, France
- UMR 1163, Institut Imagine, Université Paris Cité, 75015, Paris, France
| | - Kevin Beccaria
- Pediatric Neurosurgery Department, AP-HP, Hôpital Universitaire Necker-Enfants Malades and Université Paris Cité, 75015, Paris, France
| | - Thomas Blauwblomme
- Pediatric Neurosurgery Department, AP-HP, Hôpital Universitaire Necker-Enfants Malades and Université Paris Cité, 75015, Paris, France
| | - Jacques Grill
- Department of Pediatric and Adolescent Oncology, Gustave Roussy, 114 rue Edouard Vaillant, 94805, Villejuif, France
| | - Christelle Dufour
- Department of Pediatric and Adolescent Oncology, Gustave Roussy, 114 rue Edouard Vaillant, 94805, Villejuif, France
| | - Léa Guerrini-Rousseau
- Department of Pediatric and Adolescent Oncology, Gustave Roussy, 114 rue Edouard Vaillant, 94805, Villejuif, France
| | - Samuel Abbou
- Department of Pediatric and Adolescent Oncology, Gustave Roussy, 114 rue Edouard Vaillant, 94805, Villejuif, France
| | - Stéphanie Bolle
- Department of Radiotherapy Oncology, Gustave Roussy, 114 rue Edouard Vaillant, 94805, Villejuif, France
| | - Alexandre Roux
- Neurosurgery Department, GHU Paris, Université Paris Cité, 1 rue Cabanis, 75014, Paris, France
| | - Johan Pallud
- Neurosurgery Department, GHU Paris, Université Paris Cité, 1 rue Cabanis, 75014, Paris, France
| | - Corentin Provost
- Neuroradiology Department, GHU Paris, Université Paris Cité, 1 rue Cabanis, 75014, Paris, France
| | - Catherine Oppenheim
- Neuroradiology Department, GHU Paris, Université Paris Cité, 1 rue Cabanis, 75014, Paris, France
| | - Pascale Varlet
- Neuropathology Department, GHU Paris, Université Paris Cité, 1 rue Cabanis, 75014, Paris, France
| | - Nathalie Boddaert
- Pediatric Radiology Department, AP-HP, Hôpital Universitaire Necker-Enfants Malades, 75015, Paris, France
- INSERM U1299, Université Paris Cité, 75015, Paris, France
- UMR 1163, Institut Imagine, Université Paris Cité, 75015, Paris, France
| | - Volodia Dangouloff-Ros
- Pediatric Radiology Department, AP-HP, Hôpital Universitaire Necker-Enfants Malades, 75015, Paris, France.
- INSERM U1299, Université Paris Cité, 75015, Paris, France.
- UMR 1163, Institut Imagine, Université Paris Cité, 75015, Paris, France.
- Assistance-Publique Hôpitaux de Paris, Department of Pediatric Radiology, Hôpital Universitaire Necker-Enfants Malades, 149 rue de Sèvres, 75015, Paris, France.
| |
Collapse
|
8
|
Soni N, Ora M, Bathla G, Desai A, Gupta V, Agarwal A. Ependymal Tumors: Overview of the Recent World Health Organization Histopathologic and Genetic Updates with an Imaging Characteristic. AJNR Am J Neuroradiol 2024; 45:1624-1634. [PMID: 38844368 PMCID: PMC11543070 DOI: 10.3174/ajnr.a8237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 02/08/2024] [Indexed: 11/09/2024]
Abstract
The 2021 World Health Organization Classification of Tumors of the Central Nervous System (CNS5), introduced significant changes, impacting tumors ranging from glial to ependymal neoplasms. Ependymal tumors were previously classified and graded based on histopathology, which had limited clinical and prognostic utility. The updated CNS5 classification now divides ependymomas into 10 subgroups based on anatomic location (supratentorial, posterior fossa, and spinal compartment) and genomic markers. Supratentorial tumors are defined by zinc finger translocation associated (ZFTA) (formerly v-rel avian reticuloendotheliosis viral oncogene [RELA]), or yes-associated protein 1 (YAP1) fusion; posterior fossa tumors are classified into groups A (PFA) and B (PFB), spinal ependymomas are defined by MYCN amplification. Subependymomas are present across all these anatomic compartments. The new classification kept an open category of "not elsewhere classified" or "not otherwise specified" if no pathogenic gene fusion is identified or if the molecular diagnosis is not feasible. Although there is significant overlap in the imaging findings of these tumors, a neuroradiologist needs to be familiar with updated CNS5 classification to understand tumor behavior, for example, the higher tendency for tumor recurrence along the dural flap for ZFTA fusion-positive ependymomas. On imaging, supratentorial ZFTA-fused ependymomas are preferentially located in the cerebral cortex, carrying predominant cystic components. YAP1-MAMLD1-fused ependymomas are intra- or periventricular with prominent multinodular solid components and have significantly better prognosis than ZFTA-fused counterparts. PFA ependymomas are aggressive paramedian masses with frequent calcification, seen in young children, originating from the lateral part of the fourth ventricular roof. PFB ependymomas are usually midline, noncalcified solid-cystic masses seen in adolescents and young adults arising from the fourth ventricular floor. PFA has a poorer prognosis, higher recurrence, and higher metastatic rate than PFB. Myxopapillary spinal ependymomas are now considered grade II due to high recurrence rates. Spinal-MYCN ependymomas are aggressive tumors with frequent leptomeningeal spread, relapse, and poor prognosis. Subependymomas are noninvasive, intraventricular, slow-growing benign tumors with an excellent prognosis. Currently, the molecular classification does not enhance the clinicopathologic understanding of subependymoma and myxopapillary categories. However, given the molecular advancements, this will likely change in the future. This review provides an updated molecular classification of ependymoma, discusses the individual imaging characteristics, and briefly outlines the latest targeted molecular therapies.
Collapse
Affiliation(s)
- Neetu Soni
- From the Department of Radiology, Mayo Clinic (N.S., G.B., A.D., V.G., A.A.), Jacksonville, Florida
| | - Manish Ora
- Department of Nuclear Medicine (M.O.), Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Girish Bathla
- From the Department of Radiology, Mayo Clinic (N.S., G.B., A.D., V.G., A.A.), Jacksonville, Florida
| | - Amit Desai
- From the Department of Radiology, Mayo Clinic (N.S., G.B., A.D., V.G., A.A.), Jacksonville, Florida
| | - Vivek Gupta
- From the Department of Radiology, Mayo Clinic (N.S., G.B., A.D., V.G., A.A.), Jacksonville, Florida
| | - Amit Agarwal
- From the Department of Radiology, Mayo Clinic (N.S., G.B., A.D., V.G., A.A.), Jacksonville, Florida
| |
Collapse
|
9
|
Ahmed M, Sieben A, Van Genechten T, Libbrecht S, Gilis N, De Praeter M, Fricx C, Calò P, Van Campenhout C, D’Haene N, Witte OD, Kempen LCV, Lammens M, Salmon I, Lebrun L. Rare Oncogenic Fusions in Pediatric Central Nervous System Tumors: A Case Series and Literature Review. Cancers (Basel) 2024; 16:3344. [PMID: 39409964 PMCID: PMC11475864 DOI: 10.3390/cancers16193344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
Background and Objectives: Central Nervous System (CNS) pediatric tumors represent the most common solid tumors in children with a wide variability in terms of survival and therapeutic response. By contrast to their adult counterpart, the mutational landscape of pediatric CNS tumors is characterized by oncogenic fusions rather than multiple mutated genes. CNS pediatric tumors associated with oncogenic fusions represent a complex landscape of tumors with wide radiological, morphological and clinical heterogeneity. In the fifth CNS WHO classification, there are few pediatric CNS tumors for which diagnosis is based on a single oncogenic fusion. This work aims to provide an overview of the impact of rare oncogenic fusions (NTRK, ROS, ALK, MET, FGFR, RAF, MN1, BCOR and CIC genes) on pathogenesis, histological phenotype, diagnostics and theranostics in pediatric CNS tumors. We report four cases of pediatric CNS tumors associated with NTRK (n = 2), ROS (n = 1) and FGFR3 (n = 1) oncogenic fusion genes as a proof of concept. Cases presentation and literature review: The literature review and the cohort that we described here underline that most of these rare oncogenic fusions are not specific to a single morpho-molecular entity. Even within tumors harboring the same oncogenic fusions, a wide range of morphological, molecular and epigenetic entities can be observed. Conclusions: These findings highlight the need for caution when applying the fifth CNS WHO classification, as the vast majority of these fusions are not yet incorporated in the diagnosis, including grade evaluation and DNA methylation classification.
Collapse
Affiliation(s)
- Melek Ahmed
- Division of Pathology, Antwerp University Hospital (UZA), 2650 Edegem, Belgium
| | - Anne Sieben
- Division of Pathology, Antwerp University Hospital (UZA), 2650 Edegem, Belgium
- Instituut Born Bunge (IBB), 2610 Wilrijk, Belgium
| | - Toon Van Genechten
- Division of Pediatric Oncology and Hematology, Antwerp University Hospital (UZA), 2650 Edegem, Belgium
- Center for Cell Therapy and Regenerative Medicine, Antwerp University Hospital (UZA), 2650 Edegem, Belgium
| | - Sasha Libbrecht
- Division of Pathology, Antwerp University Hospital (UZA), 2650 Edegem, Belgium
| | - Nathalie Gilis
- Department of Neurosurgery, Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (HUB), CUB Hôpital Erasme, Erasme University Hospital, 1070 Brussels, Belgium
| | - Mania De Praeter
- Division of Neurosurgery, Antwerp University Hospital (UZA), 2650 Edegem, Belgium
| | - Christophe Fricx
- Department of Pediatrics, Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (HUB), CUB Hôpital Erasme, Erasme University Hospital, 1070 Brussels, Belgium
| | - Pierluigi Calò
- Department of Pediatric Oncology and Hematology, Hôpital Universitaire des Enfants Reine Fabiola (HUDERF), 1020 Brussels, Belgium
| | - Claude Van Campenhout
- Department of Pathology, Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (HUB), CUB Hôpital Erasme, Erasme University Hospital, 1070 Brussels, Belgium
| | - Nicky D’Haene
- Department of Pathology, Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (HUB), CUB Hôpital Erasme, Erasme University Hospital, 1070 Brussels, Belgium
| | - Olivier De Witte
- Department of Neurosurgery, Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (HUB), CUB Hôpital Erasme, Erasme University Hospital, 1070 Brussels, Belgium
| | - Léon C. Van Kempen
- Division of Pathology, Antwerp University Hospital (UZA), 2650 Edegem, Belgium
| | - Martin Lammens
- Division of Pathology, Antwerp University Hospital (UZA), 2650 Edegem, Belgium
| | - Isabelle Salmon
- DIAPath, Center for Microscopy and Molecular Imaging (CMMI), Université Libre de Bruxelles (ULB), 6041 Gosselies, Belgium
- Department of Pathology, Centre Universitaire Inter Regional d’Expertise en Anatomie Pathologique Hospitaliere (CurePath), 6040 Charleroi, Belgium
| | - Laetitia Lebrun
- Department of Pathology, Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (HUB), CUB Hôpital Erasme, Erasme University Hospital, 1070 Brussels, Belgium
| |
Collapse
|
10
|
Henriques V, Soares JG, Costa JA. YAP1 fusion-positive supratentorial ependymoma in an infant: clinical, imaging and therapeutic considerations for a rare entity. BMJ Case Rep 2024; 17:e261022. [PMID: 39038871 DOI: 10.1136/bcr-2024-261022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024] Open
Affiliation(s)
- Victor Henriques
- Neurosurgery Department, Coimbra Hospital and University Centre, Coimbra, Portugal
| | - José Gustavo Soares
- Neurosurgery Department, Coimbra Hospital and University Centre, Coimbra, Portugal
| | - José Augusto Costa
- Neurosurgery Department, Coimbra Hospital and University Centre, Coimbra, Portugal
| |
Collapse
|
11
|
Cuoco JA, Williams S, Klein BJ, Borowicz VM, Ho H, Stump MS, Rogers CM. Astroblastoma With a Novel YAP1::BEND2 Fusion: A Case Report. J Pediatr Hematol Oncol 2024; 46:e313-e316. [PMID: 38857191 DOI: 10.1097/mph.0000000000002885] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 04/23/2024] [Indexed: 06/12/2024]
Abstract
In the most recent fifth edition of the World Health Organization Classification of Tumors of the Central Nervous System, astroblastoma has been defined by molecular rearrangements involving the MN1 gene, with common partners being BEND2 or CXXC5 . Accordingly, this tumor entity is now known as "astroblastoma, MN1 -altered." However, gliomas with EWSR1::BEND2 fusions, devoid of MN1 fusion alterations, have recently been shown to exhibit astroblastoma-like histomorphologic features and reside in a distinct epigenetic subgroup based on DNA methylation studies similar to high-grade neuroepithelial tumor with MN1 alteration, which includes astroblastoma, MN1 altered tumors. This new epigenetically distinct subtype of astroblastoma containing EWSR1::BEND2 fusions lacks the required MN1 alteration and, thus, does not satisfy the current molecular classification of these lesions. Here, we describe a case of glioma with histologic features and DNA methylation profiling consistent with astroblastoma with a novel YAP1: : BEND2 fusion. This case and others further expand the molecular findings observable in astroblastoma-like tumors outside the constraints of MN1 alteration. Such cases of astroblastoma with EWSR1::BEND2 and YAP1::BEND2 fusions challenge the current molecular classification of astroblastoma based solely on an MN1 alteration.
Collapse
Affiliation(s)
- Joshua A Cuoco
- Virginia Tech Carilion School of Medicine, 2 Riverside Circle
- Department of Neurosurgery
- School of Neuroscience, Virginia Polytechnic Institute and State University, 635 Prices Fork Road, Blacksburg, VA
| | - Serina Williams
- Virginia Tech Carilion School of Medicine, 2 Riverside Circle
| | - Brendan J Klein
- Virginia Tech Carilion School of Medicine, 2 Riverside Circle
- Department of Neurosurgery
- School of Neuroscience, Virginia Polytechnic Institute and State University, 635 Prices Fork Road, Blacksburg, VA
| | - Violet M Borowicz
- Virginia Tech Carilion School of Medicine, 2 Riverside Circle
- Department of Pediatric Hematology Oncology
| | - Hao Ho
- NeoGenomics Laboratories, Inc, 31 Columbia, Aliso Viejo, CA
| | - Michael S Stump
- Virginia Tech Carilion School of Medicine, 2 Riverside Circle
- Department of Pathology, Carilion Clinic, 1906 Belleview Ave, Roanoke
| | - Cara M Rogers
- Virginia Tech Carilion School of Medicine, 2 Riverside Circle
- Department of Neurosurgery
- School of Neuroscience, Virginia Polytechnic Institute and State University, 635 Prices Fork Road, Blacksburg, VA
| |
Collapse
|
12
|
Kiang KM, Ahad L, Zhong X, Lu QR. Biomolecular condensates: hubs of Hippo-YAP/TAZ signaling in cancer. Trends Cell Biol 2024; 34:566-577. [PMID: 38806345 DOI: 10.1016/j.tcb.2024.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 04/14/2024] [Accepted: 04/30/2024] [Indexed: 05/30/2024]
Abstract
Biomolecular condensates, the membraneless cellular compartments formed by liquid-liquid phase separation (LLPS), represent an important mechanism for physiological and tumorigenic processes. Recent studies have advanced our understanding of how these condensates formed in the cytoplasm or nucleus regulate Hippo signaling, a central player in organogenesis and tumorigenesis. Here, we review recent findings on the dynamic formation and function of biomolecular condensates in regulating the Hippo-yes-associated protein (YAP)/transcription coactivator with PDZ-binding motif (TAZ) signaling pathway under physiological and pathological processes. We further discuss how the nuclear condensates of YAP- or TAZ-fusion oncoproteins compartmentalize crucial transcriptional co-activators and alter chromatin architecture to promote oncogenic programs. Finally, we highlight key questions regarding how these findings may pave the way for novel therapeutics to target cancer.
Collapse
Affiliation(s)
- Karrie M Kiang
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Surgery, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong
| | - Leena Ahad
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Xiaowen Zhong
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Q Richard Lu
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| |
Collapse
|
13
|
Loreto Palacio P, Pan X, Jones D, Otero JJ. Exploring a distinct FGFR2::DLG5 rearrangement in a low-grade neuroepithelial tumor: A case report and mini-review of protein fusions in brain tumors. J Neuropathol Exp Neurol 2024; 83:567-578. [PMID: 38833313 DOI: 10.1093/jnen/nlae040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024] Open
Abstract
We report the novel clinical presentation of a primary brain neoplasm in a 30-year-old man with a mass-like area in the anteromedial temporal lobe. Histopathological analysis revealed a low-grade neuroepithelial tumor with cytologically abnormal neurons and atypical glial cells within the cerebral cortex. Molecular analysis showed a previously undescribed FGFR2::DLG5 rearrangement. We discuss the clinical significance and molecular implications of this fusion event, shedding light on its potential impact on tumor development and patient prognosis. Additionally, an extensive review places the finding in this case in the context of protein fusions in brain tumors in general and highlights their diverse manifestations, underlying molecular mechanisms, and therapeutic implications.
Collapse
Affiliation(s)
- Paola Loreto Palacio
- Abigail Wexner Center Research Institute, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Xiaokang Pan
- James Molecular Laboratory, James Cancer Hospital, Columbus, Ohio, USA
| | - Dan Jones
- The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA
| | - José Javier Otero
- Neuropathology Division, Pathology Department, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| |
Collapse
|
14
|
Tauziède-Espariat A, Nicaise Y, Sievers P, Sahm F, von Deimling A, Guillemot D, Pierron G, Duchesne M, Edjlali M, Dangouloff-Ros V, Boddaert N, Roux A, Dezamis E, Hasty L, Lhermitte B, Hirsch E, Hirsch MPV, Ardellier FD, Karnoub MA, Csanyi M, Maurage CA, Mokhtari K, Bielle F, Rigau V, Roujeau T, Abad M, Klein S, Bernier M, Horodyckid C, Adam C, Brandal P, Niehusmann P, Vannod-Michel Q, Provost C, de Champfleur NM, Nichelli L, Métais A, Mariet C, Chrétien F, Blauwblomme T, Beccaria K, Pallud J, Puget S, Uro-Coste E, Varlet P. CNS tumors with PLAGL1-fusion: beyond ZFTA and YAP1 in the genetic spectrum of supratentorial ependymomas. Acta Neuropathol Commun 2024; 12:55. [PMID: 38581034 PMCID: PMC10998316 DOI: 10.1186/s40478-023-01695-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 11/22/2023] [Indexed: 04/07/2024] Open
Abstract
A novel methylation class, "neuroepithelial tumor, with PLAGL1 fusion" (NET-PLAGL1), has recently been described, based on epigenetic features, as a supratentorial pediatric brain tumor with recurrent histopathological features suggesting an ependymal differentiation. Because of the recent identification of this neoplastic entity, few histopathological, radiological and clinical data are available. Herein, we present a detailed series of nine cases of PLAGL1-fused supratentorial tumors, reclassified from a series of supratentorial ependymomas, non-ZFTA/non-YAP1 fusion-positive and subependymomas of the young. This study included extensive clinical, radiological, histopathological, ultrastructural, immunohistochemical, genetic and epigenetic (DNA methylation profiling) data for characterization. An important aim of this work was to evaluate the sensitivity and specificity of a novel fluorescent in situ hybridization (FISH) targeting the PLAGL1 gene. Using histopathology, immunohistochemistry and electron microscopy, we confirmed the ependymal differentiation of this new neoplastic entity. Indeed, the cases histopathologically presented as "mixed subependymomas-ependymomas" with well-circumscribed tumors exhibiting a diffuse immunoreactivity for GFAP, without expression of Olig2 or SOX10. Ultrastructurally, they also harbored features reminiscent of ependymal differentiation, such as cilia. Different gene partners were fused with PLAGL1: FOXO1, EWSR1 and for the first time MAML2. The PLAGL1 FISH presented a 100% sensitivity and specificity according to RNA sequencing and DNA methylation profiling results. This cohort of supratentorial PLAGL1-fused tumors highlights: 1/ the ependymal cell origin of this new neoplastic entity; 2/ benefit of looking for a PLAGL1 fusion in supratentorial cases of non-ZFTA/non-YAP1 ependymomas; and 3/ the usefulness of PLAGL1 FISH.
Collapse
Affiliation(s)
- Arnault Tauziède-Espariat
- Department of Neuropathology, GHU Paris-Psychiatrie Et Neurosciences, Sainte-Anne Hospital, 1, Rue Cabanis, 75014, Paris, France.
| | - Yvan Nicaise
- Department of Pathology, Toulouse University Hospital, Toulouse, France
- Cancer Research Center of Toulouse (CRCT), INSERM U1037, Toulouse, France
| | - Philipp Sievers
- Department of Neuropathology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center DKFZ, German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
| | - Felix Sahm
- Department of Neuropathology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center DKFZ, German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
| | - Andreas von Deimling
- Department of Neuropathology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center DKFZ, German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
| | - Delphine Guillemot
- Paris-Sciences-Lettres, Curie Institute Research Center, INSERMU830, Paris, France
- Laboratory of Somatic Genetics, Curie Institute Hospital, Paris, France
| | - Gaëlle Pierron
- Paris-Sciences-Lettres, Curie Institute Research Center, INSERMU830, Paris, France
- Laboratory of Somatic Genetics, Curie Institute Hospital, Paris, France
| | - Mathilde Duchesne
- Department of Pathology, Dupuytren University Hospital, Limoges, France
| | - Myriam Edjlali
- Radiology Department, AP-HP, Raymond Poincaré Hospital, 92380, Garches, France
| | - Volodia Dangouloff-Ros
- Pediatric Radiology Department, AP-HP, Hôpital Universitaire Necker-Enfants Malades, France, and Université de Paris, INSERM ERL UA10, INSERM U1163, Institut Imagine, F-75015, Paris, France
| | - Nathalie Boddaert
- Pediatric Radiology Department, AP-HP, Hôpital Universitaire Necker-Enfants Malades, France, and Université de Paris, INSERM ERL UA10, INSERM U1163, Institut Imagine, F-75015, Paris, France
| | - Alexandre Roux
- Department of Neurosurgery, GHU Paris-Psychiatrie Et Neurosciences, Sainte-Anne Hospital, Paris, France
| | - Edouard Dezamis
- Department of Neurosurgery, GHU Paris-Psychiatrie Et Neurosciences, Sainte-Anne Hospital, Paris, France
| | - Lauren Hasty
- Department of Neuropathology, GHU Paris-Psychiatrie Et Neurosciences, Sainte-Anne Hospital, 1, Rue Cabanis, 75014, Paris, France
| | - Benoît Lhermitte
- Department of Pathology, Strasbourg Hospital, Strasbourg, France
| | - Edouard Hirsch
- Department of Neurology, Strasbourg Hospital, Strasbourg, France
| | | | - François-Daniel Ardellier
- Radiology 2 Department, Strasbourg University Hospital, Hautepierre Hospital, Strasbourg, France
- Engineering Science, Computer Science and Imaging Laboratory (ICube), Integrative Multimodal Imaging in Healthcare, UMR 7357, University of Strasbourg-CNRS, Strasbourg, France
| | - Mélodie-Anne Karnoub
- Department of Pediatric Neurosurgery, Lille University Hospital, 59000, Lille, France
| | - Marie Csanyi
- Institute of Pathology, Centre de Biologie Pathologie, Lille University Hospital, 59000, Lille, France
| | - Claude-Alain Maurage
- Institute of Pathology, Centre de Biologie Pathologie, Lille University Hospital, 59000, Lille, France
| | - Karima Mokhtari
- Sorbonne Université, AP-HP, Institut du Cerveau - Paris Brain Institute - ICM, Inserm,, CNRS, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Service de Neuropathologie, 75013, Paris, France
| | - Franck Bielle
- Sorbonne Université, AP-HP, Institut du Cerveau - Paris Brain Institute - ICM, Inserm,, CNRS, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Service de Neuropathologie, 75013, Paris, France
| | - Valérie Rigau
- Department of Pathology, Gui de Chauliac Hospital, 34295, Montpellier, France
| | - Thomas Roujeau
- Department of Neurosurgery, Gui de Chauliac Hospital, 34295, Montpellier, France
| | - Marine Abad
- Department of Pathology, Jean Minjoz Hospital, Besançon, France
| | - Sébastien Klein
- Department of Pediatric Oncology, Jean Minjoz Hospital, Besançon, France
| | | | | | - Clovis Adam
- Department of Pathology, Bicêtre Hospital, 94275, Le Kremlin-Bicêtre, France
| | - Petter Brandal
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, Oslo University Hospital, Oslo, Norway
- Department of Oncology, Oslo University Hospital-The Norwegian Radium Hospital, Oslo, Norway
| | - Pitt Niehusmann
- Devision of Cancer Medicine, Oslo University Hospital, Oslo, Norway
- Department of Pathology, Oslo University Hospital, Oslo, Norway
| | | | - Corentin Provost
- Department of Radiology, GHU-Paris-Psychiatrie Et Neurosciences, Hôpital Sainte Anne, 75014, Paris, France
| | | | - Lucia Nichelli
- Department of Neuroradiology, Sorbonne Université, AP-HP, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, 75013, Paris, France
| | - Alice Métais
- Department of Neuropathology, GHU Paris-Psychiatrie Et Neurosciences, Sainte-Anne Hospital, 1, Rue Cabanis, 75014, Paris, France
- Institute of Psychiatry and Neuroscience of Paris (IPNP), Université Paris Cité, INSERM U1266, Imabrain Team, 75014, Paris, France
| | - Cassandra Mariet
- Department of Neuropathology, GHU Paris-Psychiatrie Et Neurosciences, Sainte-Anne Hospital, 1, Rue Cabanis, 75014, Paris, France
| | - Fabrice Chrétien
- Department of Neuropathology, GHU Paris-Psychiatrie Et Neurosciences, Sainte-Anne Hospital, 1, Rue Cabanis, 75014, Paris, France
- Institute of Psychiatry and Neuroscience of Paris (IPNP), Université Paris Cité, INSERM U1266, Imabrain Team, 75014, Paris, France
| | - Thomas Blauwblomme
- Department of Pediatric Neurosurgery, Necker Hospital, APHP, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Kévin Beccaria
- Department of Pediatric Neurosurgery, Necker Hospital, APHP, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Johan Pallud
- Department of Neurosurgery, GHU Paris-Psychiatrie Et Neurosciences, Sainte-Anne Hospital, Paris, France
- Institute of Psychiatry and Neuroscience of Paris (IPNP), Université Paris Cité, INSERM U1266, Imabrain Team, 75014, Paris, France
| | - Stéphanie Puget
- Department of Neurosurgery, La Martinique Hospital, Fort-de-France, France
| | - Emmanuelle Uro-Coste
- Department of Pathology, Toulouse University Hospital, Toulouse, France
- Cancer Research Center of Toulouse (CRCT), INSERM U1037, Toulouse, France
- Université Paul Sabatier, Toulouse III, Toulouse, France
| | - Pascale Varlet
- Department of Neuropathology, GHU Paris-Psychiatrie Et Neurosciences, Sainte-Anne Hospital, 1, Rue Cabanis, 75014, Paris, France
- Institute of Psychiatry and Neuroscience of Paris (IPNP), Université Paris Cité, INSERM U1266, Imabrain Team, 75014, Paris, France
| |
Collapse
|
15
|
d’Amati A, Bargiacchi L, Rossi S, Carai A, Bertero L, Barresi V, Errico ME, Buccoliero AM, Asioli S, Marucci G, Del Baldo G, Mastronuzzi A, Miele E, D’Antonio F, Schiavello E, Biassoni V, Massimino M, Gessi M, Antonelli M, Gianno F. Pediatric CNS tumors and 2021 WHO classification: what do oncologists need from pathologists? Front Mol Neurosci 2024; 17:1268038. [PMID: 38544524 PMCID: PMC10966132 DOI: 10.3389/fnmol.2024.1268038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 02/23/2024] [Indexed: 05/14/2024] Open
Abstract
The fifth edition of the WHO Classification of Tumors of the Central Nervous System (CNS), published in 2021, established new approaches to both CNS tumor nomenclature and grading, emphasizing the importance of integrated diagnoses and layered reports. This edition increased the role of molecular diagnostics in CNS tumor classification while still relying on other established approaches such as histology and immunohistochemistry. Moreover, it introduced new tumor types and subtypes based on novel diagnostic technologies such as DNA methylome profiling. Over the past decade, molecular techniques identified numerous key genetic alterations in CSN tumors, with important implications regarding the understanding of pathogenesis but also for prognosis and the development and application of effective molecularly targeted therapies. This review summarizes the major changes in the 2021 fifth edition classification of pediatric CNS tumors, highlighting for each entity the molecular alterations and other information that are relevant for diagnostic, prognostic, or therapeutic purposes and that patients' and oncologists' need from a pathology report.
Collapse
Affiliation(s)
- Antonio d’Amati
- Unit of Anatomical Pathology, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari “Aldo Moro”, Bari, Italy
- Unit of Human Anatomy and Histology, Department of Translational Biomedicine and Neuroscience (DiBraiN), University of Bari “Aldo Moro”, Bari, Italy
- Unit of Anatomical Pathology, Department of Radiology, Oncology and Anatomical Pathology, University La Sapienza, Rome, Italy
- Neuropathology Unit, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Università Cattolica S. Cuore, Roma, Italy
| | - Lavinia Bargiacchi
- Unit of Anatomical Pathology, Department of Radiology, Oncology and Anatomical Pathology, University La Sapienza, Rome, Italy
| | - Sabrina Rossi
- Pathology Unit, Department of Laboratories, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Andrea Carai
- Department of Neuroscience and Neurorehabilitation, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Luca Bertero
- Pathology Unit, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Valeria Barresi
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Maria Elena Errico
- Department of Pathology, AORN Santobono Pausilipon, Pediatric Hospital, Naples, Italy
| | | | - Sofia Asioli
- Department of Biomedical and Neuromotor Sciences (DIBINEM), Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Gianluca Marucci
- Neuropathology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Giada Del Baldo
- Department of Paediatric Haematology/Oncology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Angela Mastronuzzi
- Department of Paediatric Haematology/Oncology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Evelina Miele
- Department of Paediatric Haematology/Oncology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Federica D’Antonio
- Department of Paediatric Haematology/Oncology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Elisabetta Schiavello
- Pediatric Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Veronica Biassoni
- Pediatric Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Maura Massimino
- Pediatric Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Marco Gessi
- Neuropathology Unit, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Università Cattolica S. Cuore, Roma, Italy
| | - Manila Antonelli
- Unit of Anatomical Pathology, Department of Radiology, Oncology and Anatomical Pathology, University La Sapienza, Rome, Italy
- IRCCS Neuromed, Pozzilli, Isernia, Italy
| | - Francesca Gianno
- Unit of Anatomical Pathology, Department of Radiology, Oncology and Anatomical Pathology, University La Sapienza, Rome, Italy
- IRCCS Neuromed, Pozzilli, Isernia, Italy
| |
Collapse
|
16
|
Hatanaka EA, Breunig JJ. In vitro and in vivo modeling systems of supratentorial ependymomas. Front Oncol 2024; 14:1360358. [PMID: 38469231 PMCID: PMC10925685 DOI: 10.3389/fonc.2024.1360358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/05/2024] [Indexed: 03/13/2024] Open
Abstract
Ependymomas are rare brain tumors that can occur in both children and adults. Subdivided by the tumors' initial location, ependymomas develop in the central nervous system in the supratentorial or infratentorial/posterior fossa region, or the spinal cord. Supratentorial ependymomas (ST-EPNs) are predominantly characterized by common driver gene fusions such as ZFTA and YAP1 fusions. Some variants of ST-EPNs carry a high overall survival rate. In poorly responding ST-EPN variants, high levels of inter- and intratumoral heterogeneity, limited therapeutic strategies, and tumor recurrence are among the reasons for poor patient outcomes with other ST-EPN subtypes. Thus, modeling these molecular profiles is key in further studying tumorigenesis. Due to the scarcity of patient samples, the development of preclinical in vitro and in vivo models that recapitulate patient tumors is imperative when testing therapeutic approaches for this rare cancer. In this review, we will survey ST-EPN modeling systems, addressing the strengths and limitations, application for therapeutic targeting, and current literature findings.
Collapse
Affiliation(s)
- Emily A. Hatanaka
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Joshua J. Breunig
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Center for Neural Sciences in Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
17
|
Wagner MW, Jabehdar Maralani P, Bennett J, Nobre L, Lim-Fat MJ, Dirks P, Laughlin S, Tabori U, Ramaswamy V, Hawkins C, Ertl-Wagner BB. Brain Tumor Imaging in Adolescents and Young Adults: 2021 WHO Updates for Molecular-based Tumor Types. Radiology 2024; 310:e230777. [PMID: 38349246 DOI: 10.1148/radiol.230777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
Published in 2021, the fifth edition of the World Health Organization (WHO) classification of tumors of the central nervous system (CNS) introduced new molecular criteria for tumor types that commonly occur in either pediatric or adult age groups. Adolescents and young adults (AYAs) are at the intersection of adult and pediatric care, and both pediatric-type and adult-type CNS tumors occur at that age. Mortality rates for AYAs with CNS tumors have increased by 0.6% per year for males and 1% per year for females from 2007 to 2016. To best serve patients, it is crucial that both pediatric and adult radiologists who interpret neuroimages are familiar with the various pediatric- and adult-type brain tumors and their typical imaging morphologic characteristics. Gliomas account for approximately 80% of all malignant CNS tumors in the AYA age group, with the most common types observed being diffuse astrocytic and glioneuronal tumors. Ependymomas and medulloblastomas also occur in the AYA population but are seen less frequently. Importantly, biologic behavior and progression of distinct molecular subgroups of brain tumors differ across ages. This review discusses newly added or revised gliomas in the fifth edition of the CNS WHO classification, as well as other CNS tumor types common in the AYA population.
Collapse
Affiliation(s)
- Matthias W Wagner
- From the Division of Neuroradiology, Department of Diagnostic Imaging (M.W.W., S.L., B.B.E.W.), Division of Hematology/Oncology (J.B., L.N., U.T., V.R.), Department of Paediatric Laboratory Medicine, Division of Pathology (C.H.), Division of Neurosurgery (P.D.), and Division of Pediatric Neuroradiology (M.W.W.), The Hospital for Sick Children, 555 University Ave, Toronto, ON, Canada M5G 1X8; Neurosciences & Mental Health Research Program, SickKids Research Institute, Toronto, Canada (M.W.W., B.B.E.W.); Department of Medical Imaging, University of Toronto, Toronto, Canada (M.W.W., P.J.M., B.B.E.W.); Department of Diagnostic and Interventional Neuroradiology, University Hospital Augsburg, Augsburg, Germany (M.W.W.); Divisions of Neuroradiology (P.J.M.) and Neurooncology (M.J.L.F.), Sunnybrook Health Science Centre, Toronto, Canada; and Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, Canada (J.B.)
| | - Pejman Jabehdar Maralani
- From the Division of Neuroradiology, Department of Diagnostic Imaging (M.W.W., S.L., B.B.E.W.), Division of Hematology/Oncology (J.B., L.N., U.T., V.R.), Department of Paediatric Laboratory Medicine, Division of Pathology (C.H.), Division of Neurosurgery (P.D.), and Division of Pediatric Neuroradiology (M.W.W.), The Hospital for Sick Children, 555 University Ave, Toronto, ON, Canada M5G 1X8; Neurosciences & Mental Health Research Program, SickKids Research Institute, Toronto, Canada (M.W.W., B.B.E.W.); Department of Medical Imaging, University of Toronto, Toronto, Canada (M.W.W., P.J.M., B.B.E.W.); Department of Diagnostic and Interventional Neuroradiology, University Hospital Augsburg, Augsburg, Germany (M.W.W.); Divisions of Neuroradiology (P.J.M.) and Neurooncology (M.J.L.F.), Sunnybrook Health Science Centre, Toronto, Canada; and Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, Canada (J.B.)
| | - Julie Bennett
- From the Division of Neuroradiology, Department of Diagnostic Imaging (M.W.W., S.L., B.B.E.W.), Division of Hematology/Oncology (J.B., L.N., U.T., V.R.), Department of Paediatric Laboratory Medicine, Division of Pathology (C.H.), Division of Neurosurgery (P.D.), and Division of Pediatric Neuroradiology (M.W.W.), The Hospital for Sick Children, 555 University Ave, Toronto, ON, Canada M5G 1X8; Neurosciences & Mental Health Research Program, SickKids Research Institute, Toronto, Canada (M.W.W., B.B.E.W.); Department of Medical Imaging, University of Toronto, Toronto, Canada (M.W.W., P.J.M., B.B.E.W.); Department of Diagnostic and Interventional Neuroradiology, University Hospital Augsburg, Augsburg, Germany (M.W.W.); Divisions of Neuroradiology (P.J.M.) and Neurooncology (M.J.L.F.), Sunnybrook Health Science Centre, Toronto, Canada; and Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, Canada (J.B.)
| | - Liana Nobre
- From the Division of Neuroradiology, Department of Diagnostic Imaging (M.W.W., S.L., B.B.E.W.), Division of Hematology/Oncology (J.B., L.N., U.T., V.R.), Department of Paediatric Laboratory Medicine, Division of Pathology (C.H.), Division of Neurosurgery (P.D.), and Division of Pediatric Neuroradiology (M.W.W.), The Hospital for Sick Children, 555 University Ave, Toronto, ON, Canada M5G 1X8; Neurosciences & Mental Health Research Program, SickKids Research Institute, Toronto, Canada (M.W.W., B.B.E.W.); Department of Medical Imaging, University of Toronto, Toronto, Canada (M.W.W., P.J.M., B.B.E.W.); Department of Diagnostic and Interventional Neuroradiology, University Hospital Augsburg, Augsburg, Germany (M.W.W.); Divisions of Neuroradiology (P.J.M.) and Neurooncology (M.J.L.F.), Sunnybrook Health Science Centre, Toronto, Canada; and Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, Canada (J.B.)
| | - Mary Jane Lim-Fat
- From the Division of Neuroradiology, Department of Diagnostic Imaging (M.W.W., S.L., B.B.E.W.), Division of Hematology/Oncology (J.B., L.N., U.T., V.R.), Department of Paediatric Laboratory Medicine, Division of Pathology (C.H.), Division of Neurosurgery (P.D.), and Division of Pediatric Neuroradiology (M.W.W.), The Hospital for Sick Children, 555 University Ave, Toronto, ON, Canada M5G 1X8; Neurosciences & Mental Health Research Program, SickKids Research Institute, Toronto, Canada (M.W.W., B.B.E.W.); Department of Medical Imaging, University of Toronto, Toronto, Canada (M.W.W., P.J.M., B.B.E.W.); Department of Diagnostic and Interventional Neuroradiology, University Hospital Augsburg, Augsburg, Germany (M.W.W.); Divisions of Neuroradiology (P.J.M.) and Neurooncology (M.J.L.F.), Sunnybrook Health Science Centre, Toronto, Canada; and Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, Canada (J.B.)
| | - Peter Dirks
- From the Division of Neuroradiology, Department of Diagnostic Imaging (M.W.W., S.L., B.B.E.W.), Division of Hematology/Oncology (J.B., L.N., U.T., V.R.), Department of Paediatric Laboratory Medicine, Division of Pathology (C.H.), Division of Neurosurgery (P.D.), and Division of Pediatric Neuroradiology (M.W.W.), The Hospital for Sick Children, 555 University Ave, Toronto, ON, Canada M5G 1X8; Neurosciences & Mental Health Research Program, SickKids Research Institute, Toronto, Canada (M.W.W., B.B.E.W.); Department of Medical Imaging, University of Toronto, Toronto, Canada (M.W.W., P.J.M., B.B.E.W.); Department of Diagnostic and Interventional Neuroradiology, University Hospital Augsburg, Augsburg, Germany (M.W.W.); Divisions of Neuroradiology (P.J.M.) and Neurooncology (M.J.L.F.), Sunnybrook Health Science Centre, Toronto, Canada; and Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, Canada (J.B.)
| | - Suzanne Laughlin
- From the Division of Neuroradiology, Department of Diagnostic Imaging (M.W.W., S.L., B.B.E.W.), Division of Hematology/Oncology (J.B., L.N., U.T., V.R.), Department of Paediatric Laboratory Medicine, Division of Pathology (C.H.), Division of Neurosurgery (P.D.), and Division of Pediatric Neuroradiology (M.W.W.), The Hospital for Sick Children, 555 University Ave, Toronto, ON, Canada M5G 1X8; Neurosciences & Mental Health Research Program, SickKids Research Institute, Toronto, Canada (M.W.W., B.B.E.W.); Department of Medical Imaging, University of Toronto, Toronto, Canada (M.W.W., P.J.M., B.B.E.W.); Department of Diagnostic and Interventional Neuroradiology, University Hospital Augsburg, Augsburg, Germany (M.W.W.); Divisions of Neuroradiology (P.J.M.) and Neurooncology (M.J.L.F.), Sunnybrook Health Science Centre, Toronto, Canada; and Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, Canada (J.B.)
| | - Uri Tabori
- From the Division of Neuroradiology, Department of Diagnostic Imaging (M.W.W., S.L., B.B.E.W.), Division of Hematology/Oncology (J.B., L.N., U.T., V.R.), Department of Paediatric Laboratory Medicine, Division of Pathology (C.H.), Division of Neurosurgery (P.D.), and Division of Pediatric Neuroradiology (M.W.W.), The Hospital for Sick Children, 555 University Ave, Toronto, ON, Canada M5G 1X8; Neurosciences & Mental Health Research Program, SickKids Research Institute, Toronto, Canada (M.W.W., B.B.E.W.); Department of Medical Imaging, University of Toronto, Toronto, Canada (M.W.W., P.J.M., B.B.E.W.); Department of Diagnostic and Interventional Neuroradiology, University Hospital Augsburg, Augsburg, Germany (M.W.W.); Divisions of Neuroradiology (P.J.M.) and Neurooncology (M.J.L.F.), Sunnybrook Health Science Centre, Toronto, Canada; and Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, Canada (J.B.)
| | - Vijay Ramaswamy
- From the Division of Neuroradiology, Department of Diagnostic Imaging (M.W.W., S.L., B.B.E.W.), Division of Hematology/Oncology (J.B., L.N., U.T., V.R.), Department of Paediatric Laboratory Medicine, Division of Pathology (C.H.), Division of Neurosurgery (P.D.), and Division of Pediatric Neuroradiology (M.W.W.), The Hospital for Sick Children, 555 University Ave, Toronto, ON, Canada M5G 1X8; Neurosciences & Mental Health Research Program, SickKids Research Institute, Toronto, Canada (M.W.W., B.B.E.W.); Department of Medical Imaging, University of Toronto, Toronto, Canada (M.W.W., P.J.M., B.B.E.W.); Department of Diagnostic and Interventional Neuroradiology, University Hospital Augsburg, Augsburg, Germany (M.W.W.); Divisions of Neuroradiology (P.J.M.) and Neurooncology (M.J.L.F.), Sunnybrook Health Science Centre, Toronto, Canada; and Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, Canada (J.B.)
| | - Cynthia Hawkins
- From the Division of Neuroradiology, Department of Diagnostic Imaging (M.W.W., S.L., B.B.E.W.), Division of Hematology/Oncology (J.B., L.N., U.T., V.R.), Department of Paediatric Laboratory Medicine, Division of Pathology (C.H.), Division of Neurosurgery (P.D.), and Division of Pediatric Neuroradiology (M.W.W.), The Hospital for Sick Children, 555 University Ave, Toronto, ON, Canada M5G 1X8; Neurosciences & Mental Health Research Program, SickKids Research Institute, Toronto, Canada (M.W.W., B.B.E.W.); Department of Medical Imaging, University of Toronto, Toronto, Canada (M.W.W., P.J.M., B.B.E.W.); Department of Diagnostic and Interventional Neuroradiology, University Hospital Augsburg, Augsburg, Germany (M.W.W.); Divisions of Neuroradiology (P.J.M.) and Neurooncology (M.J.L.F.), Sunnybrook Health Science Centre, Toronto, Canada; and Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, Canada (J.B.)
| | - Birgit B Ertl-Wagner
- From the Division of Neuroradiology, Department of Diagnostic Imaging (M.W.W., S.L., B.B.E.W.), Division of Hematology/Oncology (J.B., L.N., U.T., V.R.), Department of Paediatric Laboratory Medicine, Division of Pathology (C.H.), Division of Neurosurgery (P.D.), and Division of Pediatric Neuroradiology (M.W.W.), The Hospital for Sick Children, 555 University Ave, Toronto, ON, Canada M5G 1X8; Neurosciences & Mental Health Research Program, SickKids Research Institute, Toronto, Canada (M.W.W., B.B.E.W.); Department of Medical Imaging, University of Toronto, Toronto, Canada (M.W.W., P.J.M., B.B.E.W.); Department of Diagnostic and Interventional Neuroradiology, University Hospital Augsburg, Augsburg, Germany (M.W.W.); Divisions of Neuroradiology (P.J.M.) and Neurooncology (M.J.L.F.), Sunnybrook Health Science Centre, Toronto, Canada; and Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, Canada (J.B.)
| |
Collapse
|
18
|
Lopes Abath Neto O, Furtado Freitas L, Quezado M, Abdullaev Z, Aldape K. YAP1 fusion-positive ependymoma presenting in an adult with a pigmented phenotype and association with superficial siderosis. FREE NEUROPATHOLOGY 2024; 5:23. [PMID: 39398344 PMCID: PMC11467751 DOI: 10.17879/freeneuropathology-2024-5817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 09/23/2024] [Indexed: 10/15/2024]
Affiliation(s)
- Osorio Lopes Abath Neto
- Department of Pathology, University of Iowa Hospitals and Clinics, 200 Hawkins Dr, Iowa City, IA 52242, USA
| | - Leonardo Furtado Freitas
- Department of Radiology, University of Iowa Hospitals and Clinics, 200 Hawkins Dr, Iowa City, IA 52242, USA
| | - Martha Quezado
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 10 Center Dr., Room 2S235, Bethesda, MD, 20892, USA
| | - Zied Abdullaev
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 10 Center Dr., Room 2S235, Bethesda, MD, 20892, USA
| | - Kenneth Aldape
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 10 Center Dr., Room 2S235, Bethesda, MD, 20892, USA
| |
Collapse
|
19
|
Jünger ST, Zschernack V, Messing-Jünger M, Timmermann B, Pietsch T. Ependymoma from Benign to Highly Aggressive Diseases: A Review. Adv Tech Stand Neurosurg 2024; 50:31-62. [PMID: 38592527 DOI: 10.1007/978-3-031-53578-9_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Ependymomas comprise biologically distinct tumor types with respect to age distribution, (epi)genetics, localization, and prognosis. Multimodal risk-stratification, including histopathological and molecular features, is essential in these biologically defined tumor types. Gross total resection (GTR), achieved with intraoperative monitoring and neuronavigation, and if necessary, second-look surgery, is the most effective treatment. Adjuvant radiation therapy is mandatory in high-risk tumors and in case of residual tumor. There is yet growing evidence that some ependymal tumors may be cured by surgery alone. To date, the role of chemotherapy is unclear and subject of current studies.Even though standard therapy can achieve reasonable survival rates for the majority of ependymoma patients, long-term follow-up still reveals a high probability of relapse in certain biological entities.With increasing knowledge of biologically distinct tumor types, risk-adapted adjuvant therapy gains importance. Beyond initial tumor control, and avoidance of therapy-induced morbidity for low-risk patients, intensified treatment for high-risk patients comprises another challenge. With identification of specific risk features regarding molecular alterations, targeted therapy may represent an option for individualized treatment modalities in the future.
Collapse
Affiliation(s)
- Stephanie T Jünger
- Department of Neuropathology, DGNN Brain Tumor Reference Center, University of Bonn Medical Center, Bonn, Germany.
- Center for Neurosurgery, Department of General Neurosurgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.
| | - Valentina Zschernack
- Department of Neuropathology, DGNN Brain Tumor Reference Center, University of Bonn Medical Center, Bonn, Germany
| | | | - Beate Timmermann
- Department of Particle Therapy, University Hospital Essen, West German Proton Therapy Center Essen (WPE), West German Cancer Center (WTZ), Germany, German Cancer Consortium, Essen, Germany
| | - Torsten Pietsch
- Department of Neuropathology, DGNN Brain Tumor Reference Center, University of Bonn Medical Center, Bonn, Germany
| |
Collapse
|
20
|
Tauziède-Espariat A, Tartar A, Mehdi L, Pucelle N, Lacombe J, Berthaud C, Brigot E, Massé J, Métais A, Benzakoun J, Hasty L, Chrétien F, Varlet P. [Contributions and limitations of FISH analysis for the diagnosis of central nervous system tumors according to the 2021 WHO classification: Feedback from Sainte-Anne Hospital's Department of Neuropathology]. Ann Pathol 2023; 43:443-451. [PMID: 37385935 DOI: 10.1016/j.annpat.2023.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 05/31/2023] [Accepted: 06/08/2023] [Indexed: 07/01/2023]
Abstract
The fifth edition of the World Health Organization (WHO) Classification of Tumors of the Central Nervous System has identified many new tumor types and has established, for the first time, essential and desirable diagnostic criteria for each of them. Among these, genetic alterations play an important role associated with morphology. For the first time, epigenetic data can also constitute essential and/or desirable criteria. These genetic abnormalities can be fusions, deletions or gains/amplifications and can thus be detected by fluorescence in situ hybridization techniques. The purpose of this article is to present the advantages and limitations of this technique in reference to its specific use within neuro-oncopathology in light of the 2021 WHO classification.
Collapse
Affiliation(s)
- Arnault Tauziède-Espariat
- Service de neuropathologie, GHU de Paris-psychiatrie et neurosciences, centre hospitalier Sainte-Anne, 1, rue Cabanis, 75014 Paris, France.
| | - Amélie Tartar
- Service de neuropathologie, GHU de Paris-psychiatrie et neurosciences, centre hospitalier Sainte-Anne, 1, rue Cabanis, 75014 Paris, France
| | - Leïla Mehdi
- Service de neuropathologie, GHU de Paris-psychiatrie et neurosciences, centre hospitalier Sainte-Anne, 1, rue Cabanis, 75014 Paris, France
| | - Noémie Pucelle
- Service de neuropathologie, GHU de Paris-psychiatrie et neurosciences, centre hospitalier Sainte-Anne, 1, rue Cabanis, 75014 Paris, France
| | - Joëlle Lacombe
- Service de neuropathologie, GHU de Paris-psychiatrie et neurosciences, centre hospitalier Sainte-Anne, 1, rue Cabanis, 75014 Paris, France
| | - Charlotte Berthaud
- Service de neuropathologie, GHU de Paris-psychiatrie et neurosciences, centre hospitalier Sainte-Anne, 1, rue Cabanis, 75014 Paris, France
| | - Enola Brigot
- Service de neuropathologie, GHU de Paris-psychiatrie et neurosciences, centre hospitalier Sainte-Anne, 1, rue Cabanis, 75014 Paris, France
| | - Joëlle Massé
- Service de neuropathologie, GHU de Paris-psychiatrie et neurosciences, centre hospitalier Sainte-Anne, 1, rue Cabanis, 75014 Paris, France
| | - Alice Métais
- Service de neuropathologie, GHU de Paris-psychiatrie et neurosciences, centre hospitalier Sainte-Anne, 1, rue Cabanis, 75014 Paris, France
| | - Joseph Benzakoun
- Service de neuroradiologie, GHU de Paris-psychiatrie et neurosciences, centre hospitalier Sainte-Anne, 75014 Paris, France
| | - Lauren Hasty
- Service de neuropathologie, GHU de Paris-psychiatrie et neurosciences, centre hospitalier Sainte-Anne, 1, rue Cabanis, 75014 Paris, France
| | - Fabrice Chrétien
- Service de neuropathologie, GHU de Paris-psychiatrie et neurosciences, centre hospitalier Sainte-Anne, 1, rue Cabanis, 75014 Paris, France
| | - Pascale Varlet
- Service de neuropathologie, GHU de Paris-psychiatrie et neurosciences, centre hospitalier Sainte-Anne, 1, rue Cabanis, 75014 Paris, France
| |
Collapse
|
21
|
Sahm F, Brandner S, Bertero L, Capper D, French PJ, Figarella-Branger D, Giangaspero F, Haberler C, Hegi ME, Kristensen BW, Kurian KM, Preusser M, Tops BBJ, van den Bent M, Wick W, Reifenberger G, Wesseling P. Molecular diagnostic tools for the World Health Organization (WHO) 2021 classification of gliomas, glioneuronal and neuronal tumors; an EANO guideline. Neuro Oncol 2023; 25:1731-1749. [PMID: 37279174 PMCID: PMC10547522 DOI: 10.1093/neuonc/noad100] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Indexed: 06/08/2023] Open
Abstract
In the 5th edition of the WHO CNS tumor classification (CNS5, 2021), multiple molecular characteristics became essential diagnostic criteria for many additional CNS tumor types. For those tumors, an integrated, "histomolecular" diagnosis is required. A variety of approaches exists for determining the status of the underlying molecular markers. The present guideline focuses on the methods that can be used for assessment of the currently most informative diagnostic and prognostic molecular markers for the diagnosis of gliomas, glioneuronal and neuronal tumors. The main characteristics of the molecular methods are systematically discussed, followed by recommendations and information on available evidence levels for diagnostic measures. The recommendations cover DNA and RNA next-generation-sequencing, methylome profiling, and select assays for single/limited target analyses, including immunohistochemistry. Additionally, because of its importance as a predictive marker in IDH-wildtype glioblastomas, tools for the analysis of MGMT promoter methylation status are covered. A structured overview of the different assays with their characteristics, especially their advantages and limitations, is provided, and requirements for input material and reporting of results are clarified. General aspects of molecular diagnostic testing regarding clinical relevance, accessibility, cost, implementation, regulatory, and ethical aspects are discussed as well. Finally, we provide an outlook on new developments in the landscape of molecular testing technologies in neuro-oncology.
Collapse
Affiliation(s)
- Felix Sahm
- Department of Neuropathology, University Hospital Heidelberg, Heidelberg, Germany
- CCU Neuropathology, German Concortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sebastian Brandner
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology and Division of Neuropathology, The National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, UK
| | - Luca Bertero
- Pathology Unit, Department of Medical Sciences, University of Turin, Turin, Italy
| | - David Capper
- Department of Neuropathology, Charité, Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Cancer Consortium (DKTK), Partner Site Berlin, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Pim J French
- Department of Neurology, Brain Tumor Center at Erasmus MC Cancer Center, 3015 GD Rotterdam, The Netherlands
| | - Dominique Figarella-Branger
- Aix-Marseille University, APHM, CNRS, INP, Institute Neurophysiopathol, CHU Timone, Service d’Anatomie Pathologique et de Neuropathologie, Marseille, France
| | - Felice Giangaspero
- Department of Radiological, Oncological and Anatomo-Pathological Sciences, University Sapienza of Rome, Rome, Italy
| | - Christine Haberler
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Austria
| | - Monika E Hegi
- Neuroscience Research Center and Neurosurgery, Lausanne University Hospital and University of Lausanne, Switzerland
| | - Bjarne W Kristensen
- Department of Clinical Medicine and Biotech Research and Innovation Center (BRIC), University of Copenhagen, Denmark
- Department of Pathology, The Bartholin Institute, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | | | - Matthias Preusser
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Austria
| | - Bastiaan B J Tops
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Martin van den Bent
- The Brain Tumor Center at Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Wolfgang Wick
- Department of Neurology and Neurooncology Program, National Center for Tumor Diseases, Heidelberg University Hospital
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Guido Reifenberger
- Institute of Neuropathology, Heinrich Heine University, Medical Faculty, and University Hospital Düsseldorf, and German Cancer Consortium (DKTK), Partner Site Essen/Düsseldorf, Düsseldorf, Germany
| | - Pieter Wesseling
- Department of Pathology, Amsterdam University Medical Centers, Amsterdam, The Netherlands
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands (P.W.)
| |
Collapse
|
22
|
de Sousa GR, Salomão KB, Nagano LFP, Riemondy KA, Chagas PS, Veronez LC, Saggioro FP, Marie SKN, Yunes JA, Cardinalli IA, Brandalise SR, de Paula Queiroz RG, Scrideli CA, Donson AM, Foreman NK, Tone LG, Valera ET. Identification of HDAC4 as a potential therapeutic target and prognostic biomarker for ZFTA-fused ependymomas. Cancer Gene Ther 2023; 30:1105-1113. [PMID: 37041276 DOI: 10.1038/s41417-023-00616-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/21/2023] [Accepted: 03/28/2023] [Indexed: 04/13/2023]
Abstract
Members of the HDAC family are predictive biomarkers and regulate the tumorigenesis in several cancers. However, the role of these genes in the biology of intracranial ependymomas (EPNs) remains unexplored. Here, an analysis of eighteen HDACs genes in an EPN transcriptomic dataset, revealed significantly higher levels of HDAC4 in supratentorial ZFTA fusion (ST-ZFTA) compared with ST-YAP1 fusion and posterior fossa EPNs, while HDAC7 and SIRT2 were downregulated in ST-ZFTA. HDAC4 was also overexpressed in ST-ZFTA as measured by single-cell RNA-Seq, quantitative real time-polymerase chain reaction, and immunohistochemistry. Survival analyses showed a significantly worse outcome for EPNs with higher HDAC4 and SIRT1 mRNA levels. Ontology enrichment analysis showed an HDAC4-high signature consistent with viral processes while collagen-containing extracellular matrix and cell-cell junction were enriched in those with an HDAC4-low signature. Immune gene analysis demonstrated a correlation between HDAC4 expression and low levels of NK resting cells. Several small molecules compounds targeting HDAC4 and ABCG2, were predicted by in silico analysis to be effective against HDAC4-high ZFTA. Our results provide novel insights into the biology of the HDAC family in intracranial ependymomas and reveal HDAC4 as a prognostic marker and potential therapeutic target in ST-ZFTA.
Collapse
Affiliation(s)
- Graziella R de Sousa
- Department of Genetics, Ribeirão Preto Medical School, 3900, Bandeirantes Avenue, Ribeirão Preto, SP, 14049-900, Brazil.
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
| | - Karina B Salomão
- Department of Pediatrics, Ribeirão Preto Medical School, 3900, Bandeirantes Avenue, Ribeirão Preto, SP, 14049-900, Brazil
| | - Luis F P Nagano
- Department of Genetics, Ribeirão Preto Medical School, 3900, Bandeirantes Avenue, Ribeirão Preto, SP, 14049-900, Brazil
| | - Kent A Riemondy
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Pablo S Chagas
- Department of Genetics, Ribeirão Preto Medical School, 3900, Bandeirantes Avenue, Ribeirão Preto, SP, 14049-900, Brazil
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Luciana C Veronez
- Department of Pediatrics, Ribeirão Preto Medical School, 3900, Bandeirantes Avenue, Ribeirão Preto, SP, 14049-900, Brazil
| | - Fabiano P Saggioro
- Department of Pathology, Ribeirão Preto Medical School, 3900, Bandeirantes Avenue, Ribeirão Preto, SP, 14049-900, Brazil
| | - Suely K N Marie
- Laboratory of Molecular and Cellular Biology (LIM 15), Department of Neurology, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, 01246-903, SP, Brazil
| | | | | | | | - Rosane G de Paula Queiroz
- Department of Pediatrics, Ribeirão Preto Medical School, 3900, Bandeirantes Avenue, Ribeirão Preto, SP, 14049-900, Brazil
| | - Carlos A Scrideli
- Department of Genetics, Ribeirão Preto Medical School, 3900, Bandeirantes Avenue, Ribeirão Preto, SP, 14049-900, Brazil
- Department of Pediatrics, Ribeirão Preto Medical School, 3900, Bandeirantes Avenue, Ribeirão Preto, SP, 14049-900, Brazil
| | - Andrew M Donson
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children's Hospital Colorado, Aurora, CO, 80045, USA
| | - Nicholas K Foreman
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children's Hospital Colorado, Aurora, CO, 80045, USA
| | - Luiz G Tone
- Department of Genetics, Ribeirão Preto Medical School, 3900, Bandeirantes Avenue, Ribeirão Preto, SP, 14049-900, Brazil
- Department of Pediatrics, Ribeirão Preto Medical School, 3900, Bandeirantes Avenue, Ribeirão Preto, SP, 14049-900, Brazil
| | - Elvis T Valera
- Department of Pediatrics, Ribeirão Preto Medical School, 3900, Bandeirantes Avenue, Ribeirão Preto, SP, 14049-900, Brazil
| |
Collapse
|
23
|
Yamaguchi J, Ohka F, Motomura K, Saito R. Latest classification of ependymoma in the molecular era and advances in its treatment: a review. Jpn J Clin Oncol 2023; 53:653-663. [PMID: 37288489 DOI: 10.1093/jjco/hyad056] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/19/2023] [Indexed: 06/09/2023] Open
Abstract
Ependymoma is a rare central nervous system (CNS) tumour occurring in all age groups and is one of the most common paediatric malignant brain tumours. Unlike other malignant brain tumours, ependymomas have few identified point mutations and genetic and epigenetic features. With advances in molecular understanding, the latest 2021 World Health Organization (WHO) classification of CNS tumours divided ependymomas into 10 diagnostic categories based on the histology, molecular information and location; this accurately reflected the prognosis and biology of this tumour. Although maximal surgical resection followed by radiotherapy is considered the standard treatment method, and chemotherapy is considered ineffective, the validation of the role of these treatment modalities continues. Although the rarity and long-term clinical course of ependymoma make designing and conducting prospective clinical trials challenging, knowledge is steadily accumulating and progress is being made. Much of the clinical knowledge obtained from clinical trials to date was based on the previous histology-based WHO classifications, and the addition of new molecular information may lead to more complex treatment strategies. Therefore, this review presents the latest findings on the molecular classification of ependymomas and advances in its treatment.
Collapse
Affiliation(s)
- Junya Yamaguchi
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Fumiharu Ohka
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kazuya Motomura
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Ryuta Saito
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
24
|
Damodharan S, Puccetti D. Pediatric Central Nervous System Tumor Overview and Emerging Treatment Considerations. Brain Sci 2023; 13:1106. [PMID: 37509034 PMCID: PMC10377074 DOI: 10.3390/brainsci13071106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
Pediatric central nervous system (CNS) tumors are the most common solid tumor in children, with the majority being glial in origin. These tumors are classified by the World Health Organization (WHO) as either being low grade (WHO grade 1 and 2) or high grade (WHO grade 3 and 4). Our knowledge of the molecular landscape of pediatric brain tumors has advanced over the last decade, which has led to newer categorizations along with an expansion of therapeutic targets and options. In this review, we will give an overview of common CNS tumors seen in children along with a focus on treatment options and future considerations.
Collapse
Affiliation(s)
- Sudarshawn Damodharan
- Department of Pediatrics, Division of Pediatric Hematology, Oncology and Bone Marrow Transplant, University of Wisconsin School of Medicine & Public Health, Madison, WI 53792, USA
| | - Diane Puccetti
- Department of Pediatrics, Division of Pediatric Hematology, Oncology and Bone Marrow Transplant, University of Wisconsin School of Medicine & Public Health, Madison, WI 53792, USA
| |
Collapse
|
25
|
Pinto SN, Chiang J, Qaddoumi I, Livingston D, Bag A. Pediatric diencephalic tumors: a constellation of entities and management modalities. Front Oncol 2023; 13:1180267. [PMID: 37519792 PMCID: PMC10374860 DOI: 10.3389/fonc.2023.1180267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 06/27/2023] [Indexed: 08/01/2023] Open
Abstract
The diencephalon is a complex midline structure consisting of the hypothalamus, neurohypophysis, subthalamus, thalamus, epithalamus, and pineal body. Tumors arising from each of these diencephalic components differ significantly in terms of biology and prognosis. The aim of this comprehensive review is to describe the epidemiology, clinical symptoms, imaging, histology, and molecular markers in the context of the 2021 WHO classification of central nervous system neoplasms. We will also discuss the current management of each of these tumors.
Collapse
Affiliation(s)
- Soniya N. Pinto
- Department of Diagnostic Imaging, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Jason Chiang
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Ibrahim Qaddoumi
- Departments of Global Pediatric Medicine, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - David Livingston
- Department of Radiology, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Asim Bag
- Department of Diagnostic Imaging, St. Jude Children’s Research Hospital, Memphis, TN, United States
| |
Collapse
|
26
|
Guerin JB, Kaufmann TJ, Eckel LJ, Morris JM, Vaubel RA, Giannini C, Johnson DR. A Radiologist's Guide to the 2021 WHO Central Nervous System Tumor Classification: Part 2-Newly Described and Revised Tumor Types. Radiology 2023; 307:e221885. [PMID: 37191486 DOI: 10.1148/radiol.221885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The fifth edition of the World Health Organization classification of tumors of the central nervous system (CNS), published in 2021, introduces major shifts in the classification of brain and spine tumors. These changes were necessitated by rapidly increasing knowledge of CNS tumor biology and therapies, much of which is based on molecular methods in tumor diagnosis. The growing complexity of CNS tumor genetics has required reorganization of tumor groups and acknowledgment of new tumor entities. For radiologists interpreting neuroimaging studies, proficiency with these updates is critical in providing excellent patient care. This review will focus on new or revised CNS tumor types and subtypes, beyond infiltrating glioma (described in part 1 of this series), with an emphasis on imaging features.
Collapse
Affiliation(s)
- Julie B Guerin
- From the Departments of Radiology (J.B.G., T.J.K., L.J.E., J.M.M., D.R.J.), Laboratory Medicine and Pathology (R.A.V., C.G.), and Neurology (D.R.J.), Mayo Clinic, 200 First St SW, Rochester, MN 55905; and Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy (C.G.)
| | - Timothy J Kaufmann
- From the Departments of Radiology (J.B.G., T.J.K., L.J.E., J.M.M., D.R.J.), Laboratory Medicine and Pathology (R.A.V., C.G.), and Neurology (D.R.J.), Mayo Clinic, 200 First St SW, Rochester, MN 55905; and Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy (C.G.)
| | - Laurence J Eckel
- From the Departments of Radiology (J.B.G., T.J.K., L.J.E., J.M.M., D.R.J.), Laboratory Medicine and Pathology (R.A.V., C.G.), and Neurology (D.R.J.), Mayo Clinic, 200 First St SW, Rochester, MN 55905; and Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy (C.G.)
| | - Jonathan M Morris
- From the Departments of Radiology (J.B.G., T.J.K., L.J.E., J.M.M., D.R.J.), Laboratory Medicine and Pathology (R.A.V., C.G.), and Neurology (D.R.J.), Mayo Clinic, 200 First St SW, Rochester, MN 55905; and Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy (C.G.)
| | - Rachael A Vaubel
- From the Departments of Radiology (J.B.G., T.J.K., L.J.E., J.M.M., D.R.J.), Laboratory Medicine and Pathology (R.A.V., C.G.), and Neurology (D.R.J.), Mayo Clinic, 200 First St SW, Rochester, MN 55905; and Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy (C.G.)
| | - Caterina Giannini
- From the Departments of Radiology (J.B.G., T.J.K., L.J.E., J.M.M., D.R.J.), Laboratory Medicine and Pathology (R.A.V., C.G.), and Neurology (D.R.J.), Mayo Clinic, 200 First St SW, Rochester, MN 55905; and Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy (C.G.)
| | - Derek R Johnson
- From the Departments of Radiology (J.B.G., T.J.K., L.J.E., J.M.M., D.R.J.), Laboratory Medicine and Pathology (R.A.V., C.G.), and Neurology (D.R.J.), Mayo Clinic, 200 First St SW, Rochester, MN 55905; and Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy (C.G.)
| |
Collapse
|
27
|
Mu W, Dahmoush H. Classification and neuroimaging of ependymal tumors. Front Pediatr 2023; 11:1181211. [PMID: 37287627 PMCID: PMC10242666 DOI: 10.3389/fped.2023.1181211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 04/14/2023] [Indexed: 06/09/2023] Open
Abstract
Ependymal tumors arise from the ependymal cell remnants of the cerebral ventricles, the central canal of the spinal cord, or the filum terminale or conus medullaris, although most pediatric supratentorial ependymomas do not exhibit clear communication or abutment of the ventricles. In this article, we discuss the classification, imaging characteristics, and clinical settings of these tumors. The WHO 2021 classification system has categorized ependymal tumors based on histopathologic and molecular features and location, in which they are grouped as supratentorial, posterior fossa (PF), and spinal. The supratentorial tumors are defined by either the ZFTA (formerly RELA) fusion or the YAP1 fusion. Posterior fossa tumors are divided into group A and group B based on methylation. On imaging, supratentorial and infratentorial ependymomas may arise from the ventricles and commonly contain calcifications and cystic components, with variable hemorrhage and heterogeneous enhancement. Spinal ependymomas are defined by MYCN amplification. These tumors are less commonly calcified and may present with the "cap sign," with T2 hypointensity due to hemosiderin deposition. Myxopapillary ependymoma and subependymoma remain tumor subtypes, with no change related to molecular classification as this does not provide additional clinical utility. Myxopapillary ependymomas are intradural and extramedullary tumors at the filum terminale and/or conus medullaris and may also present the cap sign. Subependymomas are homogeneous when small and may be heterogeneous and contain calcifications when larger. These tumors typically do not demonstrate enhancement. Clinical presentation and prognosis vary depending on tumor location and type. Knowledge of the updated WHO classification of the central nervous system in conjunction with imaging features is critical for accurate diagnosis and treatment.
Collapse
Affiliation(s)
- Weiya Mu
- Department of Radiology, Stanford Health Care, Stanford, CA, United States
| | - Hisham Dahmoush
- Department of Radiology, Lucile Packard Children’s Hospital, Stanford, CA, United States
| |
Collapse
|
28
|
Obrecht D, Mynarek M, Stickan-Verfürth M, Bison B, Schüller U, Pajtler K, Hagel C, Thomale UW, Fleischhack G, Timmermann B, Rutkowski S. [Pediatric Intracranial Ependymoma - Recommendations for First-Line Treatment from the German HIT-MED study group]. KLINISCHE PADIATRIE 2023; 235:167-177. [PMID: 37172610 DOI: 10.1055/a-2070-7572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Biological subtypes of ependymoma (EPN) have been introduced by the recent WHO classification and appear to have great impact on the clinical course, but have not yet found their way into clinical risk stratification. Further, the overall unfavorable prognosis underlines the fact that current therapeutic strategies need further evaluation for improvement. To date, there is no international consensus regarding first-line treatment for children with intracranial EPN. Extent of resection is known to be the most important clinical risk factor, leading to the consensus that consequent evaluation for re-surgery of postoperative residual tumor needs to have highest priority. Furthermore, efficacy of local irradiation is unquestioned and recommended for patients aged>1 year. In contrast, efficacy of chemotherapy is still under discussion. The European trial SIOP Ependymoma II aims at evaluating efficacy of different chemotherapy elements, leading to the recommendation to include German patients. The BIOMECA study, as biological accompanying study, aims at identifying new prognostic parameters. These results might help to develop targeted therapies for unfavorable biological subtypes. For patient who are not qualified for inclusion into the interventional strata, the HIT-MED Guidance 5.2 provides specific recommendations. This article is meant as an overview of national guidelines regarding diagnostics and treatment as well as of treatment according to the SIOP Ependymoma II trial protocol.
Collapse
Affiliation(s)
- Denise Obrecht
- Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Martin Mynarek
- Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Martina Stickan-Verfürth
- Department of Particle Therapy, West German Proton Therapy Centre Essen (WPE), University Hospital Essen, Essen, Germany
| | - Brigitte Bison
- Diagnostic and Interventional Neuroradiology, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | - Ulrich Schüller
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Research Institute Children's Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kristian Pajtler
- Hopp Children's Cancer Center Heidelberg (KiTZ), University Hospital Heidelberg, Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), University Hospital Heidelberg, Heidelberg, Germany
- Department of Pediatric Oncology, Hematology and Immunology, University Hospital Heidelberg, Heidelberg, Germany
| | - Christian Hagel
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ulrich-Wilhelm Thomale
- Department of Neurosurgery, Section of pediatric Neurosurgery, Charité Universitätsmedizin Berlin, Berlin, Germany
| | | | - Beate Timmermann
- Department of Particle Therapy, West German Proton Therapy Centre Essen (WPE), University Hospital Essen, Essen, Germany
| | - Stefan Rutkowski
- Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
29
|
Changes to pediatric brain tumors in 2021 World Health Organization classification of tumors of the central nervous system. Pediatr Radiol 2023; 53:523-543. [PMID: 36348014 DOI: 10.1007/s00247-022-05546-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 09/12/2022] [Accepted: 10/25/2022] [Indexed: 11/11/2022]
Abstract
New tumor types are continuously being described with advances in molecular testing and genomic analysis resulting in better prognostics, new targeted therapy options and improved patient outcomes. As a result of these advances, pathological classification of tumors is periodically updated with new editions of the World Health Organization (WHO) Classification of Tumors books. In 2021, WHO Classification of Tumors of the Central Nervous System, 5th edition (CNS5), was published with major changes in pediatric brain tumors officially recognized including pediatric gliomas being separated from adult gliomas, ependymomas being categorized based on anatomical compartment and many new tumor types, most of them seen in children. Additional general changes, such as tumor grading now being done within tumor types rather than across entities and changes in definition of glioblastoma, are also relevant to pediatric neuro-oncology practice. The purpose of this manuscript is to highlight the major changes in pediatric brain tumors in CNS5 most relevant to radiologists. Additionally, brief descriptions of newly recognized entities will be presented with a focus on imaging findings.
Collapse
|
30
|
Lehman NL. Early ependymal tumor with MN1-BEND2 fusion: a mostly cerebral tumor of female children with a good prognosis that is distinct from classical astroblastoma. J Neurooncol 2023; 161:425-439. [PMID: 36604386 PMCID: PMC9992034 DOI: 10.1007/s11060-022-04222-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 12/19/2022] [Indexed: 01/07/2023]
Abstract
PURPOSE Review of the clinicopathologic and genetic features of early ependymal tumor with MN1-BEND2 fusion (EET MN1-BEND2), classical astroblastomas, and recently described related pediatric CNS tumors. I also briefly review general mechanisms of gene expression silencing by DNA methylation and chromatin remodeling, and genomic DNA methylation profiling as a powerful new tool for CNS tumor classification. METHODS Literature review and illustration of tumor histopathologic features and prenatal gene expression timelines. RESULTS Astroblastoma, originally descried by Bailey and Cushing in 1926, has been an enigmatic tumor. Whether they are of ependymal or astrocytic derivation was argued for decades. Recent genetic evidence supports existence of both ependymal and astrocytic astroblastoma-like tumors. Studies have shown that tumors exhibiting astroblastoma-like histology can be classified into discrete entities based on their genomic DNA methylation profiles, gene expression, and in some cases, the presence of unique gene fusions. One such tumor, EET MN1-BEND2 occurs mostly in female children, and has an overall very good prognosis with surgical management. It contains a gene fusion comprised of portions of the MN1 gene at chromosomal location 22q12.1 and the BEND2 gene at Xp22.13. Other emerging pediatric CNS tumor entities demonstrating ependymal or astroblastoma-like histological features also harbor gene fusions involving chromosome X, 11q22 and 22q12 breakpoint regions. CONCLUSIONS Genomic DNA profiling has facilitated discovery of several new CNS tumor entities, however, traditional methods, such as immunohistochemistry, DNA or RNA sequencing, and cytogenetic studies, including fluorescence in situ hybridization, remain necessary for their accurate biological classification and diagnosis.
Collapse
Affiliation(s)
- Norman L Lehman
- Departments of Pathology and Laboratory Medicine, Biochemistry and Molecular Genetics, and the Brown Cancer Center, University of Louisville, 505 S Hancock St, Louisville, KY, 40202, USA.
| |
Collapse
|
31
|
Nuclear condensates in YAP1-driven ependymoma. Nat Cell Biol 2023; 25:211-213. [PMID: 36732630 DOI: 10.1038/s41556-022-01081-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
32
|
Nuclear condensates of YAP fusion proteins alter transcription to drive ependymoma tumourigenesis. Nat Cell Biol 2023; 25:323-336. [PMID: 36732631 DOI: 10.1038/s41556-022-01069-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 12/01/2022] [Indexed: 02/04/2023]
Abstract
Nuclear localization of HIPPO-YAP fusion proteins has been implicated in supratentorial ependymoma development. Here, unexpectedly, we find that liquid-liquid phase separation, rather than nuclear localization, of recurrent patient-derived YAP fusions, YAP-MAMLD1 and C11ORF95-YAP, underlies ependymoma tumourigenesis from neural progenitor cells. Mutagenesis and chimaera assays demonstrate that an intrinsically disordered region promotes oligomerization of the YAP fusions into nuclear, puncta-like, membrane-less condensates. Oligomerization and nuclear condensates induced by YAP fusion with a coiled-coil domain of transcriptional activator GCN4 also promote ependymoma formation. YAP-MAMLD1 concentrates transcription factors and co-activators, including BRD4, MED1 and TEAD, in condensates while excluding transcriptional repressive PRC2, and induces long-range enhancer-promoter interactions that promote transcription and oncogenic programmes. Blocking condensate-mediated transcriptional co-activator activity inhibits tumourigenesis, indicating a critical role of liquid phase separation for YAP fusion oncogenic activity in ependymoma. YAP fusions containing the intrinsically disordered region features are common in human tumours, suggesting that nuclear condensates could be targeted to treat YAP-fusion-induced cancers.
Collapse
|
33
|
Bertero L, Ricci AA, Tampieri C, Cassoni P, Modena P. Ependymomas. Pathologica 2022; 114:436-446. [PMID: 36534422 PMCID: PMC9763977 DOI: 10.32074/1591-951x-817] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 10/25/2022] [Indexed: 12/23/2022] Open
Abstract
Ependymal neoplasms are a heterogenous group of neoplasms arising from the progenitors of the cells lining the ventricular system and the spinal central canal. During the last few years, significant novel data concerning oncogenesis, molecular characteristics and clinical correlations of these tumours have been collected, with a strong relevance for their pathological classification. The recently published 5th edition of WHO Classification of Central Nervous System Tumours integrates this novel knowledge and represents a substantial update compared to the previous edition. Concerning supratentorial ependymomas, the previous RELA fusion-positive ependymoma has been renamed into ZFTA fusion-positive and the novel YAP1 fusion-positive ependymoma subtype has been added. Posterior fossa ependymomas should now be allocated either to the Type A or Type B subtypes based on molecular profiling or using the H3 K27me3 immunohistochemical surrogate. Regarding spinal ependymomas, a novel subtype has been added based on a distinctive molecular trait, presence of MYCN amplification, and on the unfavourable outcome. Finally, myxopapillary ependymoma is now classified as a grade 2 tumour in accordance with its overall prognosis which mirrors that of conventional spinal ependymomas. The aim of this review is to present these changes and summarize the current diagnostic framework of ependymal tumours, according to the most recent updates.
Collapse
Affiliation(s)
- Luca Bertero
- Pathology Unit, Department of Medical Sciences, University of Turin, Turin, Italy,Correspondence Luca Bertero Pathology Unit, Dept. Medical Sciences, University of Turin, via Santena 7, 10126 Torino, Italy Tel.: +390116336181 E-mail:
| | - Alessia Andrea Ricci
- Pathology Unit, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Cristian Tampieri
- Pathology Unit, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Paola Cassoni
- Pathology Unit, Department of Medical Sciences, University of Turin, Turin, Italy
| | | |
Collapse
|
34
|
Reddy S, Flores A, Lee S, Shetty A, Shah D, Heck KA, Jalali A, Mandel JJ, Patel AJ. EWSR1-PATZ1 Fusion Gene in Ependymoma: A Report of Two Adult Cases and Systematic Review of Literature. JCO Precis Oncol 2022; 6:e2200312. [PMID: 36480780 DOI: 10.1200/po.22.00312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Sandesh Reddy
- Department of Neurological Surgery, Baylor College of Medicine, Houston, TX
| | - Alex Flores
- Department of Neurological Surgery, Baylor College of Medicine, Houston, TX
| | - Sungho Lee
- Department of Neurological Surgery, Baylor College of Medicine, Houston, TX
| | - Arya Shetty
- Department of Neurological Surgery, Baylor College of Medicine, Houston, TX
| | - Darsh Shah
- Department of Neurological Surgery, Dell Medical School, Austin, TX
| | - Kent A Heck
- Department of Pathology, Baylor College of Medicine, Houston, TX
| | - Ali Jalali
- Department of Neurological Surgery, Baylor College of Medicine, Houston, TX
| | - Jacob J Mandel
- Department of Neurology, Baylor College of Medicine, Houston, TX
| | - Akash J Patel
- Department of Neurological Surgery, Baylor College of Medicine, Houston, TX.,Department of Otolaryngology-Head and Neck Surgery, Baylor College of Medicine, Houston, TX.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX
| |
Collapse
|
35
|
A novel YAP1-MAML2 fusion in an adult supra-tentorial ependymoma, YAP1-fused. Brain Tumor Pathol 2022; 39:240-242. [PMID: 35598201 DOI: 10.1007/s10014-022-00439-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/17/2022] [Indexed: 12/16/2022]
|
36
|
Tietze A, Mankad K, Lequin MH, Ivarsson L, Mirsky D, Jaju A, Kool M, Hoff KV, Bison B, Löbel U. Imaging Characteristics of CNS Neuroblastoma- FOXR2: A Retrospective and Multi-Institutional Description of 25 Cases. AJNR Am J Neuroradiol 2022; 43:1476-1480. [PMID: 36137662 PMCID: PMC9575542 DOI: 10.3174/ajnr.a7644] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 07/27/2022] [Indexed: 01/26/2023]
Abstract
BACKGROUND AND PURPOSE The 5th edition of the World Health Organization Classification of CNS tumors defines the CNS neuroblastoma FOXR2 in the group of embryonal tumors. Published clinical outcomes tend to suggest a favorable outcome after resection, craniospinal irradiation, and chemotherapy. This multicenter study aimed to describe imaging features of CNS neuroblastoma-FOXR2, which have been poorly characterized thus far. MATERIALS AND METHODS On the basis of a previously published cohort of tumors molecularly classified as CNS neuroblastoma-FOXR2, patients with available imaging data were identified. The imaging features on preoperative MR imaging and CT data were recorded by 8 experienced pediatric neuroradiologists in consensus review meetings. RESULTS Twenty-five patients were evaluated (13 girls; median age, 4.5 years). The tumors were often large (mean, 115 [ SD, 83] mL), showed no (24%) or limited (60%) perilesional edema, demonstrated heterogeneous enhancement, were often calcified and/or hemorrhagic (52%), were always T2WI-hyperintense to GM, and commonly had cystic and/or necrotic components (96%). The mean ADC values were low (687.8 [SD 136.3] × 10-6 mm2/s). The tumors were always supratentorial. Metastases were infrequent (20%) and, when present, were of nodular appearance and leptomeningeal. CONCLUSIONS In our cohort, CNS neuroblastoma FOXR2 tumors showed imaging features suggesting high-grade malignancy and, at the same time, showed characteristics of less aggressive behavior. There are important differential diagnoses, but the results of this study may assist in considering this diagnosis preoperatively.
Collapse
Affiliation(s)
- A Tietze
- From the Institute of Neuroradiology (A.T.)
| | - K Mankad
- Department of Radiology (K.M., U.L.), Great Ormond Street Hospital, London, UK
| | - M H Lequin
- Department of Radiology (M.H.L.), University Medical Center Utrecht, Utrecht, the Netherlands
| | - L Ivarsson
- Department of Pediatric Radiology (L.I.), Queen Silvias Children's Hospital, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - D Mirsky
- Department of Pediatric Radiology and Imaging (D.M.), Children's Hospital Colorado, Denver, Colorado
| | - A Jaju
- Department of Medical Imaging (A.J.), Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois
| | - M Kool
- Hopp Children's Cancer Center (M.K.), Heidelberg, Germany
- Division of Pediatric Neurooncology (M.K.), German Cancer Research Center and German Cancer Consortium, Heidelberg, Germany
- Princess Máxima Center for Pediatric Oncology (M.K.), Utrecht, the Netherlands
| | - K V Hoff
- Department of Pediatric Oncology and Hematology (K.V.H.), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - B Bison
- Department of Neuroradiology (B.B.), University Hospital Augsburg, Ausburg, Germany
| | - U Löbel
- Department of Radiology (K.M., U.L.), Great Ormond Street Hospital, London, UK
| |
Collapse
|
37
|
Lindsay HB, Massimino M, Avula S, Stivaros S, Grundy R, Metrock K, Bhatia A, Fernández-Teijeiro A, Chiapparini L, Bennett J, Wright K, Hoffman LM, Smith A, Pajtler KW, Poussaint TY, Warren KE, Foreman NK, Mirsky DM. Response assessment in paediatric intracranial ependymoma: recommendations from the Response Assessment in Pediatric Neuro-Oncology (RAPNO) working group. Lancet Oncol 2022; 23:e393-e401. [DOI: 10.1016/s1470-2045(22)00222-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/31/2022] [Accepted: 04/05/2022] [Indexed: 10/16/2022]
|
38
|
2021 WHO classification of tumours of the central nervous system: a review for the neuroradiologist. Neuroradiology 2022; 64:1919-1950. [DOI: 10.1007/s00234-022-03008-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 07/01/2022] [Indexed: 10/17/2022]
|
39
|
Kurokawa R, Kurokawa M, Baba A, Ota Y, Pinarbasi E, Camelo-Piragua S, Capizzano AA, Liao E, Srinivasan A, Moritani T. Major Changes in 2021 World Health Organization Classification of Central Nervous System Tumors. Radiographics 2022; 42:1474-1493. [PMID: 35802502 DOI: 10.1148/rg.210236] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The World Health Organization (WHO) published the fifth edition of the WHO Classification of Tumors of the Central Nervous System (WHO CNS5) in 2021, as an update of the WHO central nervous system (CNS) classification system published in 2016. WHO CNS5 was drafted on the basis of recommendations from the Consortium to Inform Molecular and Practical Approaches to CNS Tumor Taxonomy (cIMPACT-NOW) and expounds the classification scheme of the previous edition, which emphasized the importance of genetic and molecular changes in the characteristics of CNS tumors. Multiple newly recognized tumor types, including those for which there is limited knowledge regarding neuroimaging features, are detailed in WHO CNS5. The authors describe the major changes introduced in WHO CNS5, including revisions to tumor nomenclature. For example, WHO grade IV tumors in the fourth edition are equivalent to CNS WHO grade 4 tumors in the fifth edition, and diffuse midline glioma, H3 K27M-mutant, is equivalent to midline glioma, H3 K27-altered. With regard to tumor typing, isocitrate dehydrogenase (IDH)-mutant glioblastoma has been modified to IDH-mutant astrocytoma. In tumor grading, IDH-mutant astrocytomas are now graded according to the presence or absence of homozygous CDKN2A/B deletion. Moreover, the molecular mechanisms of tumorigenesis, as well as the clinical characteristics and imaging features of the tumor types newly recognized in WHO CNS5, are summarized. Given that WHO CNS5 has become the foundation for daily practice, radiologists need to be familiar with this new edition of the WHO CNS tumor classification system. Online supplemental material and the slide presentation from the RSNA Annual Meeting are available for this article. ©RSNA, 2022.
Collapse
Affiliation(s)
- Ryo Kurokawa
- From the Division of Neuroradiology, Department of Radiology (R.K., M.K., A.B., Y.O., A.A.C., E.L., A.S., T.M.) and Department of Pathology (E.P., S.C.P.), Michigan Medicine, University of Michigan, 1500 E Medical Center Dr, UH B2, Ann Arbor, MI 48109; and Department of Radiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan (R.K., M.K.)
| | - Mariko Kurokawa
- From the Division of Neuroradiology, Department of Radiology (R.K., M.K., A.B., Y.O., A.A.C., E.L., A.S., T.M.) and Department of Pathology (E.P., S.C.P.), Michigan Medicine, University of Michigan, 1500 E Medical Center Dr, UH B2, Ann Arbor, MI 48109; and Department of Radiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan (R.K., M.K.)
| | - Akira Baba
- From the Division of Neuroradiology, Department of Radiology (R.K., M.K., A.B., Y.O., A.A.C., E.L., A.S., T.M.) and Department of Pathology (E.P., S.C.P.), Michigan Medicine, University of Michigan, 1500 E Medical Center Dr, UH B2, Ann Arbor, MI 48109; and Department of Radiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan (R.K., M.K.)
| | - Yoshiaki Ota
- From the Division of Neuroradiology, Department of Radiology (R.K., M.K., A.B., Y.O., A.A.C., E.L., A.S., T.M.) and Department of Pathology (E.P., S.C.P.), Michigan Medicine, University of Michigan, 1500 E Medical Center Dr, UH B2, Ann Arbor, MI 48109; and Department of Radiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan (R.K., M.K.)
| | - Emile Pinarbasi
- From the Division of Neuroradiology, Department of Radiology (R.K., M.K., A.B., Y.O., A.A.C., E.L., A.S., T.M.) and Department of Pathology (E.P., S.C.P.), Michigan Medicine, University of Michigan, 1500 E Medical Center Dr, UH B2, Ann Arbor, MI 48109; and Department of Radiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan (R.K., M.K.)
| | - Sandra Camelo-Piragua
- From the Division of Neuroradiology, Department of Radiology (R.K., M.K., A.B., Y.O., A.A.C., E.L., A.S., T.M.) and Department of Pathology (E.P., S.C.P.), Michigan Medicine, University of Michigan, 1500 E Medical Center Dr, UH B2, Ann Arbor, MI 48109; and Department of Radiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan (R.K., M.K.)
| | - Aristides A Capizzano
- From the Division of Neuroradiology, Department of Radiology (R.K., M.K., A.B., Y.O., A.A.C., E.L., A.S., T.M.) and Department of Pathology (E.P., S.C.P.), Michigan Medicine, University of Michigan, 1500 E Medical Center Dr, UH B2, Ann Arbor, MI 48109; and Department of Radiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan (R.K., M.K.)
| | - Eric Liao
- From the Division of Neuroradiology, Department of Radiology (R.K., M.K., A.B., Y.O., A.A.C., E.L., A.S., T.M.) and Department of Pathology (E.P., S.C.P.), Michigan Medicine, University of Michigan, 1500 E Medical Center Dr, UH B2, Ann Arbor, MI 48109; and Department of Radiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan (R.K., M.K.)
| | - Ashok Srinivasan
- From the Division of Neuroradiology, Department of Radiology (R.K., M.K., A.B., Y.O., A.A.C., E.L., A.S., T.M.) and Department of Pathology (E.P., S.C.P.), Michigan Medicine, University of Michigan, 1500 E Medical Center Dr, UH B2, Ann Arbor, MI 48109; and Department of Radiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan (R.K., M.K.)
| | - Toshio Moritani
- From the Division of Neuroradiology, Department of Radiology (R.K., M.K., A.B., Y.O., A.A.C., E.L., A.S., T.M.) and Department of Pathology (E.P., S.C.P.), Michigan Medicine, University of Michigan, 1500 E Medical Center Dr, UH B2, Ann Arbor, MI 48109; and Department of Radiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan (R.K., M.K.)
| |
Collapse
|
40
|
Kresbach C, Neyazi S, Schüller U. Updates in the classification of ependymal neoplasms: The 2021 WHO Classification and beyond. Brain Pathol 2022; 32:e13068. [PMID: 35307892 PMCID: PMC9245931 DOI: 10.1111/bpa.13068] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/16/2022] [Accepted: 02/25/2022] [Indexed: 01/23/2023] Open
Abstract
Ependymal neoplasms occur at all ages and encompass multiple tumor types and subtypes that develop in the supratentorial compartment, the posterior fossa, or the spinal cord. Clinically, ependymomas represent a very heterogeneous group of tumors from rather benign subependymomas to very aggressive and often deadly childhood ependymomas of the posterior fossa. Newly identified biological markers and classification schemes, e. g. based on global DNA methylation profiling, have led to the definition of 10 types of ependymal tumors and an improved prediction of patients' outcome by applying the new classification system. While the exact genetic basis for several ependymoma types still remains unclear, the knowledge about ependymoma driving events has significantly increased within the last decade and contributed to a classification based on molecular characteristics and localization rather than histological features alone. Convincing evidence is now pointing towards gene fusions involving ZFTA or YAP1 causing the development of supratentorial ependymomas. Also, H3, EZHIP, or TERT mutations have been detected in a fraction of infratentorial ependymal tumors. Finally, MYCN amplifications have recently been identified in spinal ependymomas, in addition to the previously known mutations in NF2. This review summarizes how recent findings regarding biology, molecular tumor typing, and clinical outcome have impacted the classification of ependymomas as suggested by the updated 2021 WHO CNS tumor classification system. We focus on changes compared to the previous classification of 2016 and discuss how a formal grading could evolve in the future and guide clinicians to treat ependymoma patients.
Collapse
Affiliation(s)
- Catena Kresbach
- Department of Pediatric Hematology and OncologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
- Research Institute Children’s Cancer Center HamburgHamburgGermany
- Institute of NeuropathologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Sina Neyazi
- Department of Pediatric Hematology and OncologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
- Research Institute Children’s Cancer Center HamburgHamburgGermany
| | - Ulrich Schüller
- Department of Pediatric Hematology and OncologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
- Research Institute Children’s Cancer Center HamburgHamburgGermany
- Institute of NeuropathologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| |
Collapse
|
41
|
Abstract
PURPOSE OF REVIEW To review state of art and relevant advances in the molecular genetics and management of ependymomas of children and adults. RECENT FINDINGS Ependymomas may occur either in the brain or in the spinal cord. Compared with intracranial ependymomas, spinal ependymomas are less frequent and exhibit a better prognosis. The new WHO classification of CNS tumors of 2021 has subdivided ependymomas into different histomolecular subgroups with different outcome. The majority of studies have shown a major impact of extent of resection; thus, a complete resection must be performed, whenever possible, at first surgery or at reoperation. Conformal radiotherapy is recommended for grade 3 or incompletely resected grade II tumors. Proton therapy is increasingly employed especially in children to reduce the risk of neurocognitive and endocrine sequelae. Craniospinal irradiation is reserved for metastatic disease. Chemotherapy is not useful as primary treatment and is commonly employed as salvage treatment for patients failing surgery and radiotherapy. Standard treatments are still the mainstay of treatment: the discovery of new druggable pathways will hopefully increase the therapeutic armamentarium in the near future.
Collapse
Affiliation(s)
- Roberta Rudà
- Division of Neuro-Oncology, Department of Neuroscience “Rita Levi Montalcini”, University of Turin, Via Cherasco 15, 10126 Turin, Italy
| | - Francesco Bruno
- Division of Neuro-Oncology, Department of Neuroscience “Rita Levi Montalcini”, University of Turin, Via Cherasco 15, 10126 Turin, Italy
| | - Alessia Pellerino
- Division of Neuro-Oncology, Department of Neuroscience “Rita Levi Montalcini”, University of Turin, Via Cherasco 15, 10126 Turin, Italy
| | - Riccardo Soffietti
- Division of Neuro-Oncology, Department of Neuroscience “Rita Levi Montalcini”, University of Turin, Via Cherasco 15, 10126 Turin, Italy
| |
Collapse
|
42
|
Lutz K, Jünger ST, Messing-Jünger M. Essential Management of Pediatric Brain Tumors. CHILDREN 2022; 9:children9040498. [PMID: 35455542 PMCID: PMC9031600 DOI: 10.3390/children9040498] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/25/2022] [Accepted: 03/25/2022] [Indexed: 02/02/2023]
Abstract
Brain tumors are the most common solid tumors in children and are associated with high mortality. The most common childhood brain tumors are grouped as low-grade gliomas (LGG), high grade gliomas (HGG), ependymomas, and embryonal tumors, according to the World Health Organization (WHO). Advances in molecular genetics have led to a shift from pure histopathological diagnosis to integrated diagnosis. For the first time, these new criteria were included in the WHO classification published in 2016 and has been further updated in the 2021 edition. Integrated diagnosis is based on molecular genomic similarities of the tumor subclasses, and it can better explain the differences in clinical courses of previously histopathologically identical entities. Important advances have also been made in pediatric neuro-oncology. A growing understanding of the molecular-genetic background of tumorigenesis has improved the diagnostic accuracy. Re-stratification of treatment protocols and the development of targeted therapies will significantly affect overall survival and quality of life. For some pediatric tumors, these advances have significantly improved therapeutic management and prognosis in certain tumor subgroups. Some therapeutic approaches also have serious long-term consequences. Therefore, optimized treatments are greatly needed. Here, we discuss the importance of multidisciplinary collaboration and the role of (pediatric) neurosurgery by briefly describing the most common childhood brain tumors and their currently recognized molecular subgroups.
Collapse
Affiliation(s)
- Katharina Lutz
- Neurosurgery Department, Inselspital, 3010 Bern, Switzerland
- Pediatric Neurosurgery, Asklepios Children’s Hospital, 53757 Sankt Augustin, Germany;
- Correspondence:
| | - Stephanie T. Jünger
- Center for Neurosurgery, Department of General Neurosurgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany;
| | | |
Collapse
|
43
|
Roosen M, Odé Z, Bunt J, Kool M. The oncogenic fusion landscape in pediatric CNS neoplasms. Acta Neuropathol 2022; 143:427-451. [PMID: 35169893 PMCID: PMC8960661 DOI: 10.1007/s00401-022-02405-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/31/2022] [Accepted: 01/31/2022] [Indexed: 01/09/2023]
Abstract
Pediatric neoplasms in the central nervous system (CNS) are the leading cause of cancer-related deaths in children. Recent developments in molecular analyses have greatly contributed to a more accurate diagnosis and risk stratification of CNS tumors. Additionally, sequencing studies have identified various, often entity specific, tumor-driving events. In contrast to adult tumors, which often harbor multiple mutated oncogenic drivers, the number of mutated genes in pediatric cancers is much lower and many tumors can have a single oncogenic driver. Moreover, in children, much more than in adults, fusion proteins play an important role in driving tumorigenesis, and many different fusions have been identified as potential driver events in pediatric CNS neoplasms. However, a comprehensive overview of all the different reported oncogenic fusion proteins in pediatric CNS neoplasms is still lacking. A better understanding of the fusion proteins detected in these tumors and of the molecular mechanisms how these proteins drive tumorigenesis, could improve diagnosis and further benefit translational research into targeted therapies necessary to treat these distinct entities. In this review, we discuss the different oncogenic fusions reported in pediatric CNS neoplasms and their structure to create an overview of the variety of oncogenic fusion proteins to date, the tumor entities they occur in and their proposed mode of action.
Collapse
Affiliation(s)
- Mieke Roosen
- Princess Máxima Center for Pediatric Oncology, 3584CS, Utrecht, The Netherlands
| | - Zelda Odé
- Princess Máxima Center for Pediatric Oncology, 3584CS, Utrecht, The Netherlands
| | - Jens Bunt
- Princess Máxima Center for Pediatric Oncology, 3584CS, Utrecht, The Netherlands
| | - Marcel Kool
- Princess Máxima Center for Pediatric Oncology, 3584CS, Utrecht, The Netherlands.
- Hopp Children's Cancer Center (KiTZ), 69120, Heidelberg, Germany.
- Division of Pediatric Neurooncology, German Cancer Research Center DKFZ and German Cancer Consortium DKTK, 69120, Heidelberg, Germany.
| |
Collapse
|
44
|
Saleh AH, Samuel N, Juraschka K, Saleh MH, Taylor MD, Fehlings MG. The biology of ependymomas and emerging novel therapies. Nat Rev Cancer 2022; 22:208-222. [PMID: 35031778 DOI: 10.1038/s41568-021-00433-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/01/2021] [Indexed: 12/20/2022]
Abstract
Ependymomas are rare central nervous system tumours that can arise in the brain's supratentorial region or posterior fossa, or in the spinal cord. In 1924, Percival Bailey published the first comprehensive study of ependymomas. Since then, and especially over the past 10 years, our understanding of ependymomas has grown exponentially. In this Review, we discuss the evolution in knowledge regarding ependymoma subgroups and the resultant clinical implications. We also discuss key oncogenic and tumour suppressor signalling pathways that regulate tumour growth, the role of epigenetic dysregulation in the biology of ependymomas, and the various biological features of ependymoma tumorigenesis, including cell immortalization, stem cell-like properties, the tumour microenvironment and metastasis. We further review the limitations of current therapies such as relapse, radiation-induced cognitive deficits and chemotherapy resistance. Finally, we highlight next-generation therapies that are actively being explored, including tyrosine kinase inhibitors, telomerase inhibitors, anti-angiogenesis agents and immunotherapy.
Collapse
Affiliation(s)
- Amr H Saleh
- MD Program, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Nardin Samuel
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Kyle Juraschka
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Mohammad H Saleh
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Michael D Taylor
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
- Division of Neurosurgery, Department of Surgery, The Hospital for Sick Children, Toronto, ON, Canada
| | - Michael G Fehlings
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada.
- Division of Neurosurgery, University Health Network, Toronto Western Hospital, Toronto, ON, Canada.
- Krembil Neuroscience Centre, University Health Network, Toronto, ON, Canada.
| |
Collapse
|
45
|
Chinnam D, Gupta K, Kiran T, Saraswati A, Salunke P, Madan R, Kumar N, Radotra BD. Molecular subgrouping of ependymoma across three anatomic sites and their prognostic implications. Brain Tumor Pathol 2022; 39:151-161. [PMID: 35348910 DOI: 10.1007/s10014-022-00429-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/17/2022] [Indexed: 11/02/2022]
Abstract
The 2021 WHO classification stratifies ependymoma (EPN) into nine molecular subgroups according to the anatomic locations which outperforms histological grading. We aimed at molecularly reclassifying 200 EPN using immunohistochemistry (IHC) and sequencing for ZFTA fusions in supratentorial (ST) EPN. Further, we assessed the utility of L1CAM, cyclinD1, and p65 markers in identifying ZFTA fusion. Demographic profiles, histologic features, molecular subgroups and clinical outcome were retrospectively analyzed. IHC for L1CAM, cyclinD1, p65, H3K27me3, and H3K27M and sequencing for ZFTA fusion were performed. ZFTA fusions were identified in 44.8% ST EPN. p65 displayed the highest specificity (93.8%), while L1CAM had the highest sensitivity (92.3%) in detecting ZFTA fusions. The negative predictive value approached 96.6% and sensitivity improved to 96.2% with combinatorial IHC (L1CAM, cyclinD1, p65). H3K27me3 loss (PF-A) was noted in 65% PF EPN. Our results provide evidence that a combination of two of three (L1CAM, p65, and cyclinD1) can be used as surrogate markers for predicting fusion. ZFTA fusion, and its surrogate markers in ST, and H3K27me3 and younger age (< 5 years) in PF showed significant correlation with PFS and OS on univariate and Kaplan-Meier analysis. On multivariate analysis, H3K27me3 loss and younger age group are associated with poor clinical outcome.
Collapse
Affiliation(s)
- Dheeraj Chinnam
- Department of Pathology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Kirti Gupta
- Department of Histopathology, Post Graduate Institute of Medical Education and Research, Chandigarh, India.
| | - Tanvi Kiran
- Department of Community Medicine and School of Public Health, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Aastha Saraswati
- Department of Histopathology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Pravin Salunke
- Department of Neurosurgery, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Renu Madan
- Department of Radiotherapy, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Narendra Kumar
- Department of Radiotherapy, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Bishan Dass Radotra
- Department of Histopathology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
46
|
Rossi S, Barresi S, Colafati GS, Giovannoni I, Miele E, Alesi V, Cacchione A, Diomedi-Camassei F, Macari G, Antonelli M, Carboni A, Carai A, Mastronuzzi A, Giangaspero F, Gessi M, Alaggio R. Paediatric astroblastoma-like neuroepithelial tumour of the spinal cord with a MAMLD1-BEND2 rearrangement. Neuropathol Appl Neurobiol 2022; 48:e12814. [PMID: 35301744 DOI: 10.1111/nan.12814] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/20/2022] [Accepted: 02/26/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Sabrina Rossi
- Pathology Unit, Department of Laboratories, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Sabina Barresi
- Pathology Unit, Department of Laboratories, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | | | - Isabella Giovannoni
- Pathology Unit, Department of Laboratories, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Evelina Miele
- Department of Onco-Hematology, Cell Therapy, Gene Therapies and Hemopoietic Transplant, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Viola Alesi
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Antonella Cacchione
- Department of Onco-Hematology, Cell Therapy, Gene Therapies and Hemopoietic Transplant, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | | | | | - Manila Antonelli
- Department of Radiology, Oncology and Anatomic Pathology, University La Sapienza, Rome, Italy
| | - Alessia Carboni
- Neuroradiology Unit, Imaging Department, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Andrea Carai
- Neurosurgery Unit, Department of Neuroscience and Neurorehabilitation, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Angela Mastronuzzi
- Department of Onco-Hematology, Cell Therapy, Gene Therapies and Hemopoietic Transplant, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Felice Giangaspero
- Department of Radiology, Oncology and Anatomic Pathology, University La Sapienza, Rome, Italy.,IRCCS Neuromed, Pozzilli, Isernia, Italy
| | - Marco Gessi
- Neuropathology Unit, Pathology Division, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica S. Cuore, Rome, Italy
| | - Rita Alaggio
- Pathology Unit, Department of Laboratories, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| |
Collapse
|
47
|
The Hippo pathway in cancer: YAP/TAZ and TEAD as therapeutic targets in cancer. Clin Sci (Lond) 2022; 136:197-222. [PMID: 35119068 PMCID: PMC8819670 DOI: 10.1042/cs20201474] [Citation(s) in RCA: 156] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/05/2022] [Accepted: 01/18/2022] [Indexed: 02/07/2023]
Abstract
Tumorigenesis is a highly complex process, involving many interrelated and cross-acting signalling pathways. One such pathway that has garnered much attention in the field of cancer research over the last decade is the Hippo signalling pathway. Consisting of two antagonistic modules, the pathway plays an integral role in both tumour suppressive and oncogenic processes, generally via regulation of a diverse set of genes involved in a range of biological functions. This review discusses the history of the pathway within the context of cancer and explores some of the most recent discoveries as to how this critical transducer of cellular signalling can influence cancer progression. A special focus is on the various recent efforts to therapeutically target the key effectors of the pathway in both preclinical and clinical settings.
Collapse
|
48
|
Watal P, Patel RP, Chandra T. Pearls and Pitfalls of Imaging in Pediatric Brain Tumors. Semin Ultrasound CT MR 2022; 43:31-46. [PMID: 35164908 DOI: 10.1053/j.sult.2021.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The central nervous system (CNS) tumors constitute the most common type of solid tumors in the pediatric population. The cerebral and cerebellar parenchyma are the most common site of pediatric CNS neoplasms. Imaging plays an important role in detection, characterization, staging and prognostication of brain tumors. The focus of the current article is pediatric brain tumor imaging with emphasis on pearls and pitfalls of conventional and advanced imaging in various pediatric brain tumor subtypes. The article also elucidates changes in brain tumor terms and entities as applicable to pediatric patients, updated as per World Health Organization (WHO) 2016 classification of primary CNS tumors. This classification introduced the genetic and/or molecular information of primary CNS neoplasms as part of comprehensive tumor pathology report in the routine clinical workflow. The concepts from 2016 classification have been further refined based on current research, by the Consortium to Inform Molecular and Practical Approaches to CNS Tumor Taxonomy (cIMPACT-NOW) group and published in the form of updates. The updates serve as guidelines in the time interval between WHO updates and expect to be broadly adopted in the subsequent WHO classification. The current review covers most pediatric brain tumors except pituitary tumors, meningeal origin tumors, nerve sheath tumors and CNS lymphoma/leukemia.
Collapse
Affiliation(s)
- Pankaj Watal
- University of Central Florida College of Medicine and Nemours Children's Hospital, Orlando, FL.
| | - Rajan P Patel
- Section of Neuroradiology, Department of Diagnostic and Interventional Imaging The University of Texas Health Sciences Center at Houston, TX
| | - Tushar Chandra
- University of Central Florida College of Medicine and Nemours Children's Hospital, Orlando, FL
| |
Collapse
|
49
|
Gritsch S, Batchelor TT, Gonzalez Castro LN. Diagnostic, therapeutic, and prognostic implications of the 2021 World Health Organization classification of tumors of the central nervous system. Cancer 2022; 128:47-58. [PMID: 34633681 DOI: 10.1002/cncr.33918] [Citation(s) in RCA: 175] [Impact Index Per Article: 58.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 12/17/2022]
Abstract
The 2016 revised fourth edition of the World Health Organization (WHO) classification of central nervous system (CNS) tumors incorporated molecular features with histologic grading, revolutionizing how oncologists conceptualize primary brain and spinal cord tumors as well as providing new insights into their management and prognosis. The 2021 revised fifth edition of the WHO classification further integrates molecular alterations for CNS tumor categorization, updating current understanding of the pathophysiology of many of these disease entities. Here, the authors review changes in the new classification for the most common primary adult tumors-gliomas (including astrocytomas, oligodendrogliomas, and ependymomas) and meningiomas-highlighting the key genomic alterations for each group classification to help clinicians interpret them as they consider therapeutic options-including clinical trials and targeted therapies-and discuss the prognosis of these tumors with their patients. The revised, updated 2021 WHO classification also further integrates molecular alterations in the classification of pediatric CNS tumors, but those are not covered in the current review.
Collapse
Affiliation(s)
- Simon Gritsch
- Cancer Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Tracy T Batchelor
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - L Nicolas Gonzalez Castro
- Cancer Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
50
|
Abstract
Ependymomas (EPN) are commonly encountered brain tumors in the pediatric population. They may arise in the supratentorial compartment, posterior fossa and spinal cord. Histopathologic grading of EPN has always been challenging with poor interobserver reproducibility and lack of correlation between histologic grade and patient outcomes. Recent studies have highlighted that, despite histopathological similarities among variants of EPN at different anatomical sites, they possess site-specific genetic and epigenetic alterations, transcriptional profiles and DNA copy number variations. This has led to a molecular and location-based classification for EPN which has been adopted by the World Health Organization Classification of Central Nervous System Tumors and more accurately risk-stratifies patients than histopathologic grading alone. Given the complexity of this evolving field, the purpose of this paper is to offer a practical approach to the diagnosis of EPN, including the selection of the most appropriate molecular surrogate immunohistochemical stains, basic molecular studies and more sophisticated techniques if needed. The goal is to reach a rapid, sound diagnosis, providing essential information regarding prognosis and guiding clinical decision-making.
Collapse
Affiliation(s)
- Mariarita Santi
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.,Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Angela N Viaene
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.,Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Cynthia Hawkins
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.,Department of Pathology, The Hospital for Sick Children, Toronto, Ontario, Canada
| |
Collapse
|