1
|
Liebing A, Rabe P, Krumbholz P, Zieschang C, Bischof F, Schulz A, Billig S, Birkemeyer C, Pillaiyar T, Garcia‐Marcos M, Kraft R, Stäubert C. Succinate receptor 1 signaling mutually depends on subcellular localization and cellular metabolism. FEBS J 2025; 292:2017-2050. [PMID: 39838520 PMCID: PMC12001207 DOI: 10.1111/febs.17407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/08/2024] [Accepted: 01/09/2025] [Indexed: 01/23/2025]
Abstract
Succinate is a pivotal tricarboxylic acid cycle metabolite but also specifically activates the Gi- and Gq-coupled succinate receptor 1 (SUCNR1). Contradictory roles of succinate and succinate-SUCNR1 signaling include reports about its anti- or pro-inflammatory effects. The link between cellular metabolism and localization-dependent SUCNR1 signaling qualifies as a potential cause for the reported conflicts. To systematically address this connection, we used a diverse set of methods, including several bioluminescence resonance energy transfer-based biosensors, dynamic mass redistribution measurements, second messenger and kinase phosphorylation assays, calcium imaging, and metabolic analyses. Different cellular metabolic states were mimicked using glucose (Glc) or glutamine (Gln) as available energy substrates to provoke differential endogenous succinate (SUC) production. We show that SUCNR1 signaling, localization, and metabolism are mutually dependent, with SUCNR1 showing distinct spatial and energy substrate-dependent Gi and Gq protein activation. We found that Gln-consumption associated with a higher rate of oxidative phosphorylation causes increased extracellular SUC concentrations, accompanied by a higher rate of SUCNR1 internalization, reduced miniGq protein recruitment to the plasma membrane, and lower Ca2+ signals. In Glc, under basal conditions, SUCNR1 causes stronger Gq than Gi protein activation, while the opposite is true upon stimulation with an agonist. In addition, SUCNR1 specifically interacts with miniG proteins in endosomal compartments. In THP-1 cells, polarized to M2-like macrophages, endogenous SUCNR1-mediated Gi signaling stimulates glycolysis, while Gq signaling inhibits the glycolytic rate. Our results suggest that the metabolic context determines spatially dependent SUCNR1 signaling, which in turn modulates cellular energy homeostasis and mediates adaptations to changes in SUC concentrations.
Collapse
Affiliation(s)
| | - Philipp Rabe
- Rudolf Schönheimer Institute of Biochemistry, Medical FacultyLeipzig UniversityGermany
| | - Petra Krumbholz
- Rudolf Schönheimer Institute of Biochemistry, Medical FacultyLeipzig UniversityGermany
| | - Christian Zieschang
- Rudolf Schönheimer Institute of Biochemistry, Medical FacultyLeipzig UniversityGermany
| | - Franziska Bischof
- Rudolf Schönheimer Institute of Biochemistry, Medical FacultyLeipzig UniversityGermany
| | - Angela Schulz
- Rudolf Schönheimer Institute of Biochemistry, Medical FacultyLeipzig UniversityGermany
| | - Susan Billig
- Research Group of Mass Spectrometry, Institute of Analytical ChemistryLeipzig UniversityGermany
| | - Claudia Birkemeyer
- Research Group of Mass Spectrometry, Institute of Analytical ChemistryLeipzig UniversityGermany
- German Center for Integrative Biodiversity Research (iDiv) Halle‐Leipzig‐JenaGermany
| | - Thanigaimalai Pillaiyar
- Institute of Pharmacy, Pharmaceutical/Medicinal Chemistry and Tübingen Center for Academic Drug DiscoveryEberhard Karls University TübingenGermany
| | - Mikel Garcia‐Marcos
- Department of Biochemistry & Cell Biology, Chobanian & Avedisian School of MedicineBoston UniversityMAUSA
- Department of BiologyBoston University College of Arts & SciencesMAUSA
| | - Robert Kraft
- Carl Ludwig Institute for Physiology, Medical FacultyLeipzig UniversityGermany
| | - Claudia Stäubert
- Rudolf Schönheimer Institute of Biochemistry, Medical FacultyLeipzig UniversityGermany
| |
Collapse
|
2
|
Liebing AD, Krumbholz P, Stäubert C. Protocol to characterize G i/o and G s protein-coupled receptors in transiently transfected cells using ELISA and cAMP measurements. STAR Protoc 2023; 4:102120. [PMID: 36853674 PMCID: PMC9958081 DOI: 10.1016/j.xpro.2023.102120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/03/2023] [Accepted: 01/31/2023] [Indexed: 02/16/2023] Open
Abstract
Activation of Gs or Gi/o protein-coupled receptors (GPCRs) leads to changes of intracellular cyclic adenosine monophosphate (cAMP) levels. This protocol describes steps for cloning HA- and FLAG-tagged GPCRs, transient transfection of CHO-K1 or HEK293-T cells, and determination of basal and ligand-induced changes in intracellular cAMP levels. We detail enzyme-linked immunosorbent assays to determine relative GPCR plasma membrane and total expression levels. For complete details on the use and execution of this protocol, please refer to Schulze et al. (2022).1.
Collapse
Affiliation(s)
- Aenne-Dorothea Liebing
- Rudolf-Schönheimer Institute for Biochemistry, Faculty of Medicine, Leipzig University, Johannisallee 30, 04103 Leipzig, Germany
| | - Petra Krumbholz
- Rudolf-Schönheimer Institute for Biochemistry, Faculty of Medicine, Leipzig University, Johannisallee 30, 04103 Leipzig, Germany
| | - Claudia Stäubert
- Rudolf-Schönheimer Institute for Biochemistry, Faculty of Medicine, Leipzig University, Johannisallee 30, 04103 Leipzig, Germany.
| |
Collapse
|
3
|
Rabe P, Gehmlich M, Peters A, Krumbholz P, Nordström A, Stäubert C. Combining metabolic phenotype determination with metabolomics and transcriptional analyses to reveal pathways regulated by hydroxycarboxylic acid receptor 2. Discov Oncol 2022; 13:47. [PMID: 35697980 PMCID: PMC9192902 DOI: 10.1007/s12672-022-00503-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/20/2022] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND The adaptation of cellular metabolism is considered a hallmark of cancer. Oncogenic signaling pathways support tumorigenesis and cancer progression through the induction of certain metabolic phenotypes associated with altered regulation of key metabolic enzymes. Hydroxycarboxylic acid receptor 2 (HCA2) is a G protein-coupled receptor previously shown to act as a tumor suppressor. Here, we aimed to unveil the connection between cellular metabolism and HCA2 in BT-474 cells. Moreover, we intend to clarify how well this metabolic phenotype is reflected in transcriptional changes and metabolite levels as determined by global metabolomics analyses. METHODS We performed both, siRNA mediated knockdown of HCA2 and stimulation with the HCA2-specific agonist monomethyl fumarate. Seahorse technology was used to determine the role of HCA2 in BT-474 breast cancer cell metabolism and its potential to induce a switch in the metabolic phenotype in the presence of different energy substrates. Changes in the mRNA expression of metabolic enzymes were detected with real-time quantitative PCR (RT-qPCR). Untargeted liquid chromatography-mass spectrometry (LC-MS) metabolic profiling was used to determine changes in metabolite levels. RESULTS Knockdown or stimulation of HCA2 induced changes in the metabolic phenotype of BT474 cells dependent on the availability of energy substrates. The presence of HCA2 was associated with increased glycolytic flux with no fatty acids available. This was reflected in the increased mRNA expression of the glycolytic enzymes PFKFB4 and PKM2, which are known to promote the Warburg effect and have been described as prognostic markers in different types of cancer. With exogenous palmitate present, HCA2 caused elevated fatty acid oxidation and likely lipolysis. The increase in lipolysis was also detectable at the transcriptional level of ATGL and the metabolite levels of palmitic and stearic acid. CONCLUSIONS We combined metabolic phenotype determination with metabolomics and transcriptional analyses and identified HCA2 as a regulator of glycolytic flux and fatty acid metabolism in BT-474 breast cancer cells. Thus, HCA2, for which agonists are already widely used to treat diseases such as psoriasis or hyperlipidemia, may prove useful as a target in combination cancer therapy.
Collapse
Affiliation(s)
- Philipp Rabe
- Rudolf Schönheimer Institute of Biochemistry, Faculty of Medicine, Leipzig University, Johannisallee 30, 04103, Leipzig, Germany
| | - Mareike Gehmlich
- Rudolf Schönheimer Institute of Biochemistry, Faculty of Medicine, Leipzig University, Johannisallee 30, 04103, Leipzig, Germany
| | - Anna Peters
- Rudolf Schönheimer Institute of Biochemistry, Faculty of Medicine, Leipzig University, Johannisallee 30, 04103, Leipzig, Germany
| | - Petra Krumbholz
- Rudolf Schönheimer Institute of Biochemistry, Faculty of Medicine, Leipzig University, Johannisallee 30, 04103, Leipzig, Germany
| | - Anders Nordström
- Swedish Metabolomics Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Linnaeus väg 6, 901 87, Umeå, Sweden
| | - Claudia Stäubert
- Rudolf Schönheimer Institute of Biochemistry, Faculty of Medicine, Leipzig University, Johannisallee 30, 04103, Leipzig, Germany.
| |
Collapse
|
4
|
Rabe P, Liebing AD, Krumbholz P, Kraft R, Stäubert C. Succinate receptor 1 inhibits mitochondrial respiration in cancer cells addicted to glutamine. Cancer Lett 2022; 526:91-102. [PMID: 34813893 DOI: 10.1016/j.canlet.2021.11.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/05/2021] [Accepted: 11/17/2021] [Indexed: 12/22/2022]
Abstract
Cancer cells display metabolic alterations to meet the bioenergetic demands for their high proliferation rates. Succinate is a central metabolite of the tricarboxylic acid (TCA) cycle, but was also shown to act as an oncometabolite and to specifically activate the succinate receptor 1 (SUCNR1), which is expressed in several types of cancer. However, functional studies focusing on the connection between SUCNR1 and cancer cell metabolism are still lacking. In the present study, we analyzed the role of SUCNR1 for cancer cell metabolism and survival applying different signal transduction, metabolic and imaging analyses. We chose a gastric, a lung and a pancreatic cancer cell line for which our data revealed functional expression of SUCNR1. Further, presence of glutamine (Gln) caused high respiratory rates and elevated expression of SUCNR1. Knockdown of SUCNR1 resulted in a significant increase of mitochondrial respiration and superoxide production accompanied by an increase in TCA cycle throughput and a reduction of cancer cell survival in the analyzed cancer cell lines. Combination of SUCNR1 knockdown and treatment with the chemotherapeutics cisplatin and gemcitabine further increased cancer cell death. In summary, our data implicates that SUCNR1 is crucial for Gln-addicted cancer cells by limiting TCA cycle throughput, mitochondrial respiration and the production of reactive oxygen species, highlighting its potential as a pharmacological target for cancer treatment.
Collapse
Affiliation(s)
- Philipp Rabe
- Rudolf Schönheimer Institute of Biochemistry, Faculty of Medicine, Leipzig University, Johannisallee 30, 04103, Leipzig, Germany
| | - Aenne-Dorothea Liebing
- Rudolf Schönheimer Institute of Biochemistry, Faculty of Medicine, Leipzig University, Johannisallee 30, 04103, Leipzig, Germany
| | - Petra Krumbholz
- Rudolf Schönheimer Institute of Biochemistry, Faculty of Medicine, Leipzig University, Johannisallee 30, 04103, Leipzig, Germany
| | - Robert Kraft
- Carl Ludwig Institute for Physiology, Faculty of Medicine, Leipzig University, Liebigstraße 27, 04103, Leipzig, Germany
| | - Claudia Stäubert
- Rudolf Schönheimer Institute of Biochemistry, Faculty of Medicine, Leipzig University, Johannisallee 30, 04103, Leipzig, Germany.
| |
Collapse
|
5
|
Homuth G, Lietzow J, Schanze N, Golchert J, Köhrle J. Endocrine, Metabolic and Pharmacological Effects of Thyronamines (TAM), Thyroacetic Acids (TA) and Thyroid Hormone Metabolites (THM) - Evidence from in vitro, Cellular, Experimental Animal and Human Studies. Exp Clin Endocrinol Diabetes 2020; 128:401-413. [PMID: 32450582 DOI: 10.1055/a-1139-9200] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Thyroid hormone metabolites (THM) with few or no iodine substituents such as 3,5-T2, the thyronamines 3-T1AM and T0AM, and their oxidation products, the thyroacetic acids (TA) formed by monoamine oxidases, have recently attracted major interest due to their metabolic actions which are in part distinct from those of the classical thyromimetic hormone T3, the major ligand of T3 receptors. This review compiles and discusses in vitro effects of 3,5-T2, TAM and TA reported for thyrocytes, pancreatic islets and hepatocytes as well as findings from in vivo studies in mouse models after single or repeated administration of pharmacological doses of these agents. Comparison of the 3,5-T2 effects on the transcriptome with not yet published proteome data in livers of obese mice on high fat diet indicate a distinct anti-steatotic effect of this THM. Furthermore, uptake, metabolism, and cellular actions via various receptors such as trace amine-associated receptors (TAAR), alpha-adrenergic, GPCR and T3 receptors are discussed. Studies on postulated pathways of biosynthesis of 3-T1AM, its effects on the HPT-axis and thyroid gland as well as insulin secretion are reviewed. 3-T1AM also acts on hepatocytes and interferes with TRPM8-dependent signaling in human cell lines related to the eye compartment. Human studies are presented which address potential biosynthesis routes of 3,5-T2 and 3-T1AM from THM precursors, especially T3. The current state of diagnostic analytics of these minor THM in human blood is portrayed comparing and critically discussing the still divergent findings based on classical immunoassay and recently developed liquid-chromatography/mass- spectrometry methods, which allow quantification of the thyronome spectrum from one single small volume serum sample. The clinical perspectives of use and potential abuse of these biologically active THM is addressed.
Collapse
Affiliation(s)
- Georg Homuth
- Department of Functional Genomics, University Medicine Greifswald, Interfaculty Institute for Genetics and Functional Genomics, Greifswald, Germany
| | - Julika Lietzow
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany Institut für Experimentelle Endokrinologie, Berlin, Germany
| | - Nancy Schanze
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany Institut für Experimentelle Endokrinologie, Berlin, Germany
| | - Janine Golchert
- Department of Functional Genomics, University Medicine Greifswald, Interfaculty Institute for Genetics and Functional Genomics, Greifswald, Germany
| | - Josef Köhrle
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany Institut für Experimentelle Endokrinologie, Berlin, Germany
| |
Collapse
|
6
|
Peters A, Krumbholz P, Jäger E, Heintz-Buschart A, Çakir MV, Rothemund S, Gaudl A, Ceglarek U, Schöneberg T, Stäubert C. Metabolites of lactic acid bacteria present in fermented foods are highly potent agonists of human hydroxycarboxylic acid receptor 3. PLoS Genet 2019; 15:e1008145. [PMID: 31120900 PMCID: PMC6532841 DOI: 10.1371/journal.pgen.1008145] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 04/10/2019] [Indexed: 02/02/2023] Open
Abstract
The interplay of microbiota and the human host is physiologically crucial in health and diseases. The beneficial effects of lactic acid bacteria (LAB), permanently colonizing the human intestine or transiently obtained from food, have been extensively reported. However, the molecular understanding of how LAB modulate human physiology is still limited. G protein-coupled receptors for hydroxycarboxylic acids (HCAR) are regulators of immune functions and energy homeostasis under changing metabolic and dietary conditions. Most mammals have two HCAR (HCA1, HCA2) but humans and other hominids contain a third member (HCA3) in their genomes. A plausible hypothesis why HCA3 function was advantageous in hominid evolution was lacking. Here, we used a combination of evolutionary, analytical and functional methods to unravel the role of HCA3in vitro and in vivo. The functional studies included different pharmacological assays, analyses of human monocytes and pharmacokinetic measurements in human. We report the discovery of the interaction of D-phenyllactic acid (D-PLA) and the human host through highly potent activation of HCA3. D-PLA is an anti-bacterial metabolite found in high concentrations in LAB-fermented food such as Sauerkraut. We demonstrate that D-PLA from such alimentary sources is well absorbed from the human gut leading to high plasma and urine levels and triggers pertussis toxin-sensitive migration of primary human monocytes in an HCA3-dependent manner. We provide evolutionary, analytical and functional evidence supporting the hypothesis that HCA3 was consolidated in hominids as a new signaling system for LAB-derived metabolites. Although it has been known for 15 years that HCA3 is present in humans and other hominids but absent in all other mammals, no study so far aimed to understand why HCA3 was functionally preserved during evolution. Here, we take advantage of evolutionary analyses which we combine with functional assays of hominid HCA3 orthologs. In search for a reasonable scenario explaining the accumulated amino acid changes in HCA3 of hominids we discovered D-phenyllactic acid (D-PLA), a metabolite produced by lactic acid bacteria (LAB), as the so far most potent agonist specifically activating HCA3. Further, oral ingestion of Sauerkraut, known to contain high levels of D-PLA, caused subsequent plasma concentrations sufficient to activate HCA3. Our data interpreted in an evolutionary context suggests that the availability of a new food repertoire under changed ecological conditions triggered the fixation of HCA3 which took over new functions in hominids. These findings are particularly important because they unveiled HCA3, which is not only expressed in various immune cells but also adipocytes, lung and skin, as a player that transfers signals of LAB-derived metabolites into a physiological response in humans. This opens up new directions towards the understanding of the versatile beneficial effects of LAB and their metabolites for humans.
Collapse
Affiliation(s)
- Anna Peters
- Rudolf Schönheimer Institute of Biochemistry, Faculty of Medicine, Leipzig University, Leipzig, Germany
| | - Petra Krumbholz
- Rudolf Schönheimer Institute of Biochemistry, Faculty of Medicine, Leipzig University, Leipzig, Germany
| | - Elisabeth Jäger
- Department of Internal Medicine, Division of Rheumatology, Leipzig University, Leipzig, Germany
| | - Anna Heintz-Buschart
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Helmholtz-Centre for Environmental Research GmbH - UFZ, Department of Soil Ecology, Halle (Saale), Germany
| | - Mehmet Volkan Çakir
- Rudolf Schönheimer Institute of Biochemistry, Faculty of Medicine, Leipzig University, Leipzig, Germany
| | - Sven Rothemund
- Core Unit Peptide-Technologies, Leipzig University, Leipzig, Germany
| | - Alexander Gaudl
- Institute for Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany
| | - Uta Ceglarek
- Institute for Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany
| | - Torsten Schöneberg
- Rudolf Schönheimer Institute of Biochemistry, Faculty of Medicine, Leipzig University, Leipzig, Germany
| | - Claudia Stäubert
- Rudolf Schönheimer Institute of Biochemistry, Faculty of Medicine, Leipzig University, Leipzig, Germany
- * E-mail:
| |
Collapse
|