1
|
Tan YH, Wang KCW, Chin IL, Sanderson RW, Li J, Kennedy BF, Noble PB, Choi YS. Stiffness Mediated-Mechanosensation of Airway Smooth Muscle Cells on Linear Stiffness Gradient Hydrogels. Adv Healthc Mater 2024; 13:e2304254. [PMID: 38593989 DOI: 10.1002/adhm.202304254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/28/2024] [Indexed: 04/11/2024]
Abstract
In obstructive airway diseases such as asthma and chronic obstructive pulmonary disease (COPD), the extracellular matrix (ECM) protein amount and composition of the airway smooth muscle (ASM) is often remodelled, likely altering tissue stiffness. The underlying mechanism of how human ASM cell (hASMC) mechanosenses the aberrant microenvironment is not well understood. Physiological stiffnesses of the ASM were measured by uniaxial compression tester using porcine ASM layers under 0, 5 and 10% longitudinal stretch above in situ length. Linear stiffness gradient hydrogels (230 kPa range) were fabricated and functionalized with ECM proteins, collagen I (ColI), fibronectin (Fn) and laminin (Ln), to recapitulate the above-measured range of stiffnesses. Overall, hASMC mechanosensation exhibited a clear correlation with the underlying hydrogel stiffness. Cell size, nuclear size and contractile marker alpha-smooth muscle actin (αSMA) expression showed a strong correlation to substrate stiffness. Mechanosensation, assessed by Lamin-A intensity and nuc/cyto YAP, exhibited stiffness-mediated behaviour only on ColI and Fn-coated hydrogels. Inhibition studies using blebbistatin or Y27632 attenuated most mechanotransduction-derived cell morphological responses, αSMA and Lamin-A expression and nuc/cyto YAP (blebbistatin only). This study highlights the interplay and complexities between stiffness and ECM protein type on hASMC mechanosensation, relevant to airway remodelling in obstructive airway diseases.
Collapse
Affiliation(s)
- Yong Hwee Tan
- School of Human Sciences, The University of Western Australia, Perth, WA, 6009, Australia
| | - Kimberley C W Wang
- School of Human Sciences, The University of Western Australia, Perth, WA, 6009, Australia
- Telethon Kids Institute, The University of Western Australia, Nedlands, WA, 6009, Australia
| | - Ian L Chin
- School of Human Sciences, The University of Western Australia, Perth, WA, 6009, Australia
| | - Rowan W Sanderson
- BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and Centre for Medical Research, The University of Western Australia, Perth, WA, 6009, Australia
- Department of Electrical, Electronic & Computer Engineering, School of Engineering, The University of Western Australia, Perth, WA, 6009, Australia
| | - Jiayue Li
- BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and Centre for Medical Research, The University of Western Australia, Perth, WA, 6009, Australia
- Department of Electrical, Electronic & Computer Engineering, School of Engineering, The University of Western Australia, Perth, WA, 6009, Australia
| | - Brendan F Kennedy
- BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and Centre for Medical Research, The University of Western Australia, Perth, WA, 6009, Australia
- Department of Electrical, Electronic & Computer Engineering, School of Engineering, The University of Western Australia, Perth, WA, 6009, Australia
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, Grudziadzka 5, Torun, 87-100, Poland
| | - Peter B Noble
- School of Human Sciences, The University of Western Australia, Perth, WA, 6009, Australia
| | - Yu Suk Choi
- School of Human Sciences, The University of Western Australia, Perth, WA, 6009, Australia
| |
Collapse
|
2
|
Calzetta L, Page C, Matera MG, Cazzola M, Rogliani P. Use of human airway smooth muscle in vitro and ex vivo to investigate drugs for the treatment of chronic obstructive respiratory disorders. Br J Pharmacol 2024; 181:610-639. [PMID: 37859567 DOI: 10.1111/bph.16272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/21/2023] Open
Abstract
Isolated airway smooth muscle has been extensively investigated since 1840 to understand the pharmacology of airway diseases. There has often been poor predictability from murine experiments to drugs evaluated in patients with asthma or chronic obstructive pulmonary disease (COPD). However, the use of isolated human airways represents a sensible strategy to optimise the development of innovative molecules for the treatment of respiratory diseases. This review aims to provide updated evidence on the current uses of isolated human airways in validated in vitro methods to investigate drugs in development for the treatment of chronic obstructive respiratory disorders. This review also provides historical notes on the pioneering pharmacological research on isolated human airway tissues, the key differences between human and animal airways, as well as the pivotal differences between human medium bronchi and small airways. Experiments carried out with isolated human bronchial tissues in vitro and ex vivo replicate many of the main anatomical, pathophysiological, mechanical and immunological characteristics of patients with asthma or COPD. In vitro models of asthma and COPD using isolated human airways can provide information that is directly translatable into humans with obstructive lung diseases. Regardless of the technique used to investigate drugs for the treatment of chronic obstructive respiratory disorders (i.e., isolated organ bath systems, videomicroscopy and wire myography), the most limiting factors to produce high-quality and repeatable data remain closely tied to the manual skills of the researcher conducting experiments and the availability of suitable tissue.
Collapse
Affiliation(s)
- Luigino Calzetta
- Department of Medicine and Surgery, Respiratory Disease and Lung Function Unit, University of Parma, Parma, Italy
| | - Clive Page
- Pulmonary Pharmacology Unit, Institute of Pharmaceutical Science, King's College London, London, UK
| | - Maria Gabriella Matera
- Unit of Pharmacology, Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Mario Cazzola
- Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Paola Rogliani
- Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy
| |
Collapse
|
3
|
Effect of Extracellular Matrix Stiffness on Candesartan Efficacy in Anti-Fibrosis and Antioxidation. Antioxidants (Basel) 2023; 12:antiox12030679. [PMID: 36978927 PMCID: PMC10044920 DOI: 10.3390/antiox12030679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/03/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
Myocardial fibrosis progression and imbalanced redox state are closely associated with increased extracellular matrix (ECM) stiffness. Candesartan (CAN), an angiotensin II (Ang II) receptor inhibitor, has shown promising anti-fibrosis and antioxidant efficacy in previous cardiovascular disease studies. However, the effect of ECM stiffness on CAN efficacy remains elusive. In this study, we constructed rat models with three different degrees of myocardial fibrosis and treated them with CAN, and then characterized the stiffness, cardiac function, and NADPH oxidase-2 (NOX2) expression of the myocardial tissues. Based on the obtained stiffness of myocardial tissues, we used polyacrylamide (PA) gels with three different stiffness to mimic the ECM stiffness of cardiac fibroblasts (CFs) at the early, middle, and late stages of myocardial fibrosis as the cell culture substrates and then constructed CFs mechanical microenvironment models. We studied the effects of PA gel stiffness on the migration, proliferation, and activation of CFs without and with CAN treatment, and characterized the reactive oxygen species (ROS) and glutathione (GSH) levels of CFs using fluorometry and scanning electrochemical microscopy (SECM). We found that CAN has the best amelioration efficacy in the cardiac function and NOX2 levels in rats with medium-stiffness myocardial tissue, and the most obvious anti-fibrosis and antioxidant efficacy in CFs on the medium-stiffness PA gels. Our work proves the effect of ECM stiffness on CAN efficacy in myocardial anti-fibrosis and antioxidants for the first time, and the results demonstrate that the effect of ECM stiffness on drug efficacy should also be considered in the treatment of cardiovascular diseases.
Collapse
|
4
|
Boucher M, Dufour-Mailhot A, Tremblay-Pitre S, Khadangi F, Rojas-Ruiz A, Henry C, Bossé Y. In mice of both sexes, repeated contractions of smooth muscle in vivo greatly enhance the response of peripheral airways to methacholine. Respir Physiol Neurobiol 2022; 304:103938. [PMID: 35716869 DOI: 10.1016/j.resp.2022.103938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/10/2022] [Accepted: 06/12/2022] [Indexed: 10/18/2022]
Abstract
BALB/c mice from both sexes underwent one of two nebulized methacholine challenges that were preceded by a period of 20 min either with or without tone induced by repeated contractions of the airway smooth muscle. Impedance was monitored throughout and the constant phase model was used to dissociate the impact of tone on conducting airways (RN - Newtonian resistance) versus the lung periphery (G and H - tissue resistance and elastance). The effect of tone on smooth muscle contractility was also tested on excised tracheas. While tone markedly potentiated the methacholine-induced gains in H and G in both sexes, the gain in RN was only potentiated in males. The contractility of female and male tracheas was also potentiated by tone. Inversely, the methacholine-induced gain in hysteresivity (G/H) was mitigated by tone in both sexes. Therefore, the tone-induced muscle hypercontractility impacts predominantly the lung periphery in vivo, but also promotes further airway narrowing in males while protecting against narrowing heterogeneity in both sexes.
Collapse
Affiliation(s)
- Magali Boucher
- Institut Universitaire de Cardiologie et de Pneumologie de Québec - Université Laval, Québec, Canada
| | - Alexis Dufour-Mailhot
- Institut Universitaire de Cardiologie et de Pneumologie de Québec - Université Laval, Québec, Canada
| | - Sophie Tremblay-Pitre
- Institut Universitaire de Cardiologie et de Pneumologie de Québec - Université Laval, Québec, Canada
| | - Fatemeh Khadangi
- Institut Universitaire de Cardiologie et de Pneumologie de Québec - Université Laval, Québec, Canada
| | - Andrés Rojas-Ruiz
- Institut Universitaire de Cardiologie et de Pneumologie de Québec - Université Laval, Québec, Canada
| | - Cyndi Henry
- Institut Universitaire de Cardiologie et de Pneumologie de Québec - Université Laval, Québec, Canada
| | - Ynuk Bossé
- Institut Universitaire de Cardiologie et de Pneumologie de Québec - Université Laval, Québec, Canada.
| |
Collapse
|
5
|
Wang L, Chitano P, Seow CY. Mechanopharmacology of Rho-kinase antagonism in airway smooth muscle and potential new therapy for asthma. Pharmacol Res 2020; 159:104995. [PMID: 32534100 DOI: 10.1016/j.phrs.2020.104995] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 05/20/2020] [Accepted: 06/03/2020] [Indexed: 02/06/2023]
Abstract
The principle of mechanopharmacology of airway smooth muscle (ASM) is based on the premise that physical agitation, such as pressure oscillation applied to an airway, is able to induce bronchodilation by reducing contractility and softening the cytoskeleton of ASM. Although the underlying mechanism is not entirely clear, there is evidence to suggest that large-amplitude stretches are able to disrupt the actomyosin interaction in the crossbridge cycle and weaken the cytoskeleton in ASM cells. Rho-kinase is known to enhance force generation and strengthen structural integrity of the cytoskeleton during smooth muscle activation and plays a key role in the maintenance of force during prolonged muscle contractions. Synergy in relaxation has been observed when the muscle is subject to oscillatory length change while Rho-kinase is pharmacologically inhibited. In this review, inhibition of Rho-kinase coupled to therapeutic pressure oscillation applied to the airways is explored as a combination treatment for asthma.
Collapse
Affiliation(s)
- Lu Wang
- The Centre for Heart Lung Innovation, St. Paul's Hospital, University of British Columbia, Canada.
| | - Pasquale Chitano
- The Centre for Heart Lung Innovation, St. Paul's Hospital, University of British Columbia, Canada
| | - Chun Y Seow
- The Centre for Heart Lung Innovation, St. Paul's Hospital, University of British Columbia, Canada
| |
Collapse
|
6
|
Ram-Mohan S, Bai Y, Schaible N, Ehrlicher AJ, Cook DP, Suki B, Stoltz DA, Solway J, Ai X, Krishnan R. Tissue traction microscopy to quantify muscle contraction within precision-cut lung slices. Am J Physiol Lung Cell Mol Physiol 2020; 318:L323-L330. [PMID: 31774304 PMCID: PMC7052683 DOI: 10.1152/ajplung.00297.2019] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 11/20/2019] [Accepted: 11/22/2019] [Indexed: 02/06/2023] Open
Abstract
In asthma, acute bronchospasm is driven by contractile forces of airway smooth muscle (ASM). These forces can be imaged in the cultured ASM cell or assessed in the muscle strip and the tracheal/bronchial ring, but in each case, the ASM is studied in isolation from the native airway milieu. Here, we introduce a novel platform called tissue traction microscopy (TTM) to measure ASM contractile force within porcine and human precision-cut lung slices (PCLS). Compared with the conventional measurements of lumen area changes in PCLS, TTM measurements of ASM force changes are 1) more sensitive to bronchoconstrictor stimuli, 2) less variable across airways, and 3) provide spatial information. Notably, within every human airway, TTM measurements revealed local regions of high ASM contraction that we call "stress hotspots". As an acute response to cyclic stretch, these hotspots promptly decreased but eventually recovered in magnitude, spatial location, and orientation, consistent with local ASM fluidization and resolidification. By enabling direct and precise measurements of ASM force, TTM should accelerate preclinical studies of airway reactivity.
Collapse
Affiliation(s)
- Sumati Ram-Mohan
- Center for Vascular Biology Research, Department of Emergency Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Yan Bai
- Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Niccole Schaible
- Center for Vascular Biology Research, Department of Emergency Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Allen J Ehrlicher
- Department of Bioengineering, McGill University, Montreal, Quebec, Canada
| | - Daniel P Cook
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa
| | - Bela Suki
- Biomedical Engineering Department, Boston University, Boston, Massachusetts
| | - David A Stoltz
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa
| | - Julian Solway
- Department of Medicine, University of Chicago, Chicago, Illinois
| | - Xingbin Ai
- Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Ramaswamy Krishnan
- Center for Vascular Biology Research, Department of Emergency Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| |
Collapse
|
7
|
Noble PB, Kowlessur D, Larcombe AN, Donovan GM, Wang KCW. Mechanical Abnormalities of the Airway Wall in Adult Mice After Intrauterine Growth Restriction. Front Physiol 2019; 10:1073. [PMID: 31507442 PMCID: PMC6716216 DOI: 10.3389/fphys.2019.01073] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 08/05/2019] [Indexed: 11/19/2022] Open
Abstract
Developmental abnormalities of airways may impact susceptibility to asthma in later life. We used a maternal hypoxia-induced mouse model of intrauterine growth restriction (IUGR) to examine changes in mechanical properties of the airway wall. Pregnant BALB/c mice were housed under hypoxic conditions (10.5% O2) from gestational day (GD) 11 to GD 17.5 (IUGR; term, GD 21). Following hypoxic exposure, mice were returned to a normoxic environment (21% O2). A control group of pregnant mice were housed under normoxic conditions throughout pregnancy. At 8 weeks postnatal age, offspring were euthanized and a tracheasectomy performed. Tracheal segments were studied in organ baths to measure active airway smooth muscle (ASM) stress to carbachol and assess passive mechanical properties (stiffness) from stress-strain curves. In a separate group of anesthetized offspring, the forced oscillation technique was used to examine airway mechanics from relative changes in airway conductance during slow inflation and deflation between 0 and 20 cmH2O transrespiratory pressure. From predicted radius-pressure loops, storage and loss moduli and hysteresivity were calculated. IUGR offspring were lighter at birth (p < 0.05) and remained lighter at 8 weeks of age (p < 0.05) compared with Controls. Maximal stress was reduced in male IUGR offspring compared with Controls (p < 0.05), but not in females. Sensitivity to contractile agonist was not affected by IUGR or sex. Compared with the Control group, airways from IUGR animals were stiffer in vitro (p < 0.05). In vivo, airway hysteresivity (p < 0.05) was increased in the IUGR group, but there was no difference in storage or loss moduli between groups. In summary, the effects of IUGR persist to the mature airway wall, where there are clear abnormalities to ASM contractile properties and passive wall mechanics. We propose that mechanical abnormalities of the airway wall acquired through disrupted fetal growth impact susceptibility to disease.
Collapse
Affiliation(s)
- Peter B Noble
- School of Human Sciences, University of Western Australia, Perth, WA, Australia
| | - Darshinee Kowlessur
- School of Human Sciences, University of Western Australia, Perth, WA, Australia.,Telethon Kids Institute, University of Western Australia, Perth, WA, Australia
| | - Alexander N Larcombe
- Telethon Kids Institute, University of Western Australia, Perth, WA, Australia.,School of Public Health, Curtin University, Perth, WA, Australia
| | - Graham M Donovan
- Department of Mathematics, University of Auckland, Auckland, New Zealand
| | - Kimberley C W Wang
- School of Human Sciences, University of Western Australia, Perth, WA, Australia.,Telethon Kids Institute, University of Western Australia, Perth, WA, Australia
| |
Collapse
|
8
|
Noble PB, Kowlessur D, Larcombe AN, Donovan GM, Wang KCW. Mechanical Abnormalities of the Airway Wall in Adult Mice After Intrauterine Growth Restriction. Front Physiol 2019. [PMID: 31507442 PMCID: PMC6716216 DOI: 10.3389/fphys.2019.01073,+10.3389/fpls.2019.01073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Developmental abnormalities of airways may impact susceptibility to asthma in later life. We used a maternal hypoxia-induced mouse model of intrauterine growth restriction (IUGR) to examine changes in mechanical properties of the airway wall. Pregnant BALB/c mice were housed under hypoxic conditions (10.5% O2) from gestational day (GD) 11 to GD 17.5 (IUGR; term, GD 21). Following hypoxic exposure, mice were returned to a normoxic environment (21% O2). A control group of pregnant mice were housed under normoxic conditions throughout pregnancy. At 8 weeks postnatal age, offspring were euthanized and a tracheasectomy performed. Tracheal segments were studied in organ baths to measure active airway smooth muscle (ASM) stress to carbachol and assess passive mechanical properties (stiffness) from stress-strain curves. In a separate group of anesthetized offspring, the forced oscillation technique was used to examine airway mechanics from relative changes in airway conductance during slow inflation and deflation between 0 and 20 cmH2O transrespiratory pressure. From predicted radius-pressure loops, storage and loss moduli and hysteresivity were calculated. IUGR offspring were lighter at birth (p < 0.05) and remained lighter at 8 weeks of age (p < 0.05) compared with Controls. Maximal stress was reduced in male IUGR offspring compared with Controls (p < 0.05), but not in females. Sensitivity to contractile agonist was not affected by IUGR or sex. Compared with the Control group, airways from IUGR animals were stiffer in vitro (p < 0.05). In vivo, airway hysteresivity (p < 0.05) was increased in the IUGR group, but there was no difference in storage or loss moduli between groups. In summary, the effects of IUGR persist to the mature airway wall, where there are clear abnormalities to ASM contractile properties and passive wall mechanics. We propose that mechanical abnormalities of the airway wall acquired through disrupted fetal growth impact susceptibility to disease.
Collapse
Affiliation(s)
- Peter B. Noble
- School of Human Sciences, University of Western Australia, Perth, WA, Australia
| | - Darshinee Kowlessur
- School of Human Sciences, University of Western Australia, Perth, WA, Australia,Telethon Kids Institute, University of Western Australia, Perth, WA, Australia
| | - Alexander N. Larcombe
- Telethon Kids Institute, University of Western Australia, Perth, WA, Australia,School of Public Health, Curtin University, Perth, WA, Australia
| | - Graham M. Donovan
- Department of Mathematics, University of Auckland, Auckland, New Zealand
| | - Kimberley C. W. Wang
- School of Human Sciences, University of Western Australia, Perth, WA, Australia,Telethon Kids Institute, University of Western Australia, Perth, WA, Australia,*Correspondence: Kimberley C. W. Wang,
| |
Collapse
|
9
|
Noble PB, Kowlessur D, Larcombe AN, Donovan GM, Wang KCW. Mechanical Abnormalities of the Airway Wall in Adult Mice After Intrauterine Growth Restriction. Front Physiol 2019. [PMID: 31507442 DOI: 10.3389/fphys.2019.01073, 10.3389/fpls.2019.01073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Developmental abnormalities of airways may impact susceptibility to asthma in later life. We used a maternal hypoxia-induced mouse model of intrauterine growth restriction (IUGR) to examine changes in mechanical properties of the airway wall. Pregnant BALB/c mice were housed under hypoxic conditions (10.5% O2) from gestational day (GD) 11 to GD 17.5 (IUGR; term, GD 21). Following hypoxic exposure, mice were returned to a normoxic environment (21% O2). A control group of pregnant mice were housed under normoxic conditions throughout pregnancy. At 8 weeks postnatal age, offspring were euthanized and a tracheasectomy performed. Tracheal segments were studied in organ baths to measure active airway smooth muscle (ASM) stress to carbachol and assess passive mechanical properties (stiffness) from stress-strain curves. In a separate group of anesthetized offspring, the forced oscillation technique was used to examine airway mechanics from relative changes in airway conductance during slow inflation and deflation between 0 and 20 cmH2O transrespiratory pressure. From predicted radius-pressure loops, storage and loss moduli and hysteresivity were calculated. IUGR offspring were lighter at birth (p < 0.05) and remained lighter at 8 weeks of age (p < 0.05) compared with Controls. Maximal stress was reduced in male IUGR offspring compared with Controls (p < 0.05), but not in females. Sensitivity to contractile agonist was not affected by IUGR or sex. Compared with the Control group, airways from IUGR animals were stiffer in vitro (p < 0.05). In vivo, airway hysteresivity (p < 0.05) was increased in the IUGR group, but there was no difference in storage or loss moduli between groups. In summary, the effects of IUGR persist to the mature airway wall, where there are clear abnormalities to ASM contractile properties and passive wall mechanics. We propose that mechanical abnormalities of the airway wall acquired through disrupted fetal growth impact susceptibility to disease.
Collapse
Affiliation(s)
- Peter B Noble
- School of Human Sciences, University of Western Australia, Perth, WA, Australia
| | - Darshinee Kowlessur
- School of Human Sciences, University of Western Australia, Perth, WA, Australia.,Telethon Kids Institute, University of Western Australia, Perth, WA, Australia
| | - Alexander N Larcombe
- Telethon Kids Institute, University of Western Australia, Perth, WA, Australia.,School of Public Health, Curtin University, Perth, WA, Australia
| | - Graham M Donovan
- Department of Mathematics, University of Auckland, Auckland, New Zealand
| | - Kimberley C W Wang
- School of Human Sciences, University of Western Australia, Perth, WA, Australia.,Telethon Kids Institute, University of Western Australia, Perth, WA, Australia
| |
Collapse
|
10
|
Wang L, Chitano P, Paré PD, Seow CY. Mechanopharmacology and Synergistic Relaxation of Airway Smooth Muscle. ACTA ACUST UNITED AC 2019; 2:0110041-110047. [PMID: 32328573 PMCID: PMC7164492 DOI: 10.1115/1.4042477] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 12/20/2018] [Indexed: 12/02/2022]
Abstract
Asthmatic airways are stiffer than normal. We have shown that the cytoskeletal passive stiffness of airway smooth muscle (ASM) can be regulated by intracellular signaling pathways, especially those associated with Rho kinase (ROCK). We have also shown that an oscillatory strain reduces the passive stiffness of ASM and its ability to generate force. Here, we investigated the combined effect of inhibiting the ASM contraction with β2 agonist and decreasing the ASM cytoskeletal stiffness with ROCK inhibitor and/or force oscillation (FO) on the relaxation of contracted ASM. We hypothesize that the ASM relaxation can be synergistically enhanced by the combination of these interventions, because drug-induced softening of the cytoskeleton enhances the FO-induced relaxation and vice versa. Sheep tracheal strips were isotonically contracted to acetylcholine (3 × 10−5 M). At the plateau of shortening, β2 agonist salbutamol (10−7 M), ROCK inhibitor H1152 (10−7 M), and FO (square wave, 1 Hz, amplitude 6% maximal active force) were applied either alone or in combination. After adjusting for nonspecific time-dependent variation, relengthening by individual interventions with low-dose salbutamol or H1152, or small amplitude FO was not significantly different from zero. However, significant relengthening was observed in all combination treatments. The relengthening was greater than the mathematical sum of relengthening caused by individual treatments thereby demonstrating synergistic relaxation. The ASM stiffness did not change with salbutamol or H1152 treatments, but was lower with FO in combination with H1152. The results suggest that the mechanopharmacological treatment can be an effective therapy for asthma.
Collapse
Affiliation(s)
- Lu Wang
- Respiratory Division, Department of Medicine; Centre for Heart Lung Innovation, St. Paul's Hospital, University of British Columbia, Vancouver, BC V6Z 1Y6, Canada e-mail:
| | - Pasquale Chitano
- Department of Pathology and Laboratory Medicine, Centre for Heart Lung Innovation, St. Paul's Hospital, University of British Columbia, Vancouver, BC V6Z 1Y6, Canada
| | - Peter D Paré
- Respiratory Division, Department of Medicine; Centre for Heart Lung Innovation, St. Paul's Hospital, University of British Columbia, Vancouver, BC V6Z 1Y6, Canada
| | - Chun Y Seow
- Department of Pathology and Laboratory Medicine, Centre for Heart Lung Innovation, St. Paul's Hospital, University of British Columbia, Vancouver, BC V6Z 1Y6, Canada
| |
Collapse
|
11
|
Wang KCW, Chang AY, Pillow JJ, Suki B, Noble PB. Transition From Phasic to Tonic Contractility in Airway Smooth Muscle After Birth: An Experimental and Computational Modeling Study. ACTA ACUST UNITED AC 2019; 2. [PMID: 31001605 DOI: 10.1115/1.4042312] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Fetal airway smooth muscle (ASM) exhibits phasic contractile behavior, which transitions to a more sustained "tonic" contraction after birth. The timing and underlying mechanisms of ASM transition from a phasic to a tonic contractile phenotype are yet to be established. We characterized phasic ASM contraction in preterm (128 day gestation), term (~150 day gestation), 1-4 month, 1 yr, and adult sheep (5yr). Spontaneous phasic activity was measured in bronchial segments as amplitude, frequency, and intensity. The mechanism of phasic ASM contraction was investigated further with a computational model of ASM force development and lumen narrowing. The computational model comprised a two-dimensional cylindrical geometry of a network of contractile units and the activation of neighboring cells was dependent on the strength of coupling between cells. As expected, phasic contractions were most prominent in fetal airways and decreased with advancing age, to a level similar to the level in the 1-4 month lambs. Computational predictions demonstrated phasic contraction through the generation of a wave of activation events, the magnitude of which is determined by the number of active cells and the strength of cell-cell interactions. Decreases in phasic contraction with advancing age were simulated by reducing cell-cell coupling. Results show that phasic activity is suppressed rapidly after birth, then sustained at a lower intensity from the preweaning phase until adulthood in an ovine developmental model. Cell-cell coupling is proposed as a key determinant of phasic ASM contraction and if reduced could explain the observed maturational changes.
Collapse
Affiliation(s)
- Kimberley C W Wang
- School of Human Sciences, The University of Western Australia, Crawley 6009, Western Australia, Australia
| | - Amy Y Chang
- School of Human Sciences, The University of Western Australia, Crawley 6009, Western Australia, Australia
| | - J Jane Pillow
- School of Human Sciences, The University of Western Australia, Crawley 6009, Western Australia, Australia
| | - Béla Suki
- Department of Biomedical Engineering, Boston University, Boston, MA 02215
| | - Peter B Noble
- School of Human Sciences, The University of Western Australia, Crawley 6009, Western Australia, Australia
| |
Collapse
|
12
|
Bossé Y. The Strain on Airway Smooth Muscle During a Deep Inspiration to Total Lung Capacity. JOURNAL OF ENGINEERING AND SCIENCE IN MEDICAL DIAGNOSTICS AND THERAPY 2019; 2:0108021-1080221. [PMID: 32328568 PMCID: PMC7164505 DOI: 10.1115/1.4042309] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 11/06/2018] [Indexed: 02/05/2023]
Abstract
The deep inspiration (DI) maneuver entices a great deal of interest because of its ability to temporarily ease the flow of air into the lungs. This salutary effect of a DI is proposed to be mediated, at least partially, by momentarily increasing the operating length of airway smooth muscle (ASM). Concerningly, this premise is largely derived from a growing body of in vitro studies investigating the effect of stretching ASM by different magnitudes on its contractility. The relevance of these in vitro findings remains uncertain, as the real range of strains ASM undergoes in vivo during a DI is somewhat elusive. In order to understand the regulation of ASM contractility by a DI and to infer on its putative contribution to the bronchodilator effect of a DI, it is imperative that in vitro studies incorporate levels of strains that are physiologically relevant. This review summarizes the methods that may be used in vivo in humans to estimate the strain experienced by ASM during a DI from functional residual capacity (FRC) to total lung capacity (TLC). The strengths and limitations of each method, as well as the potential confounders, are also discussed. A rough estimated range of ASM strains is provided for the purpose of guiding future in vitro studies that aim at quantifying the regulatory effect of DI on ASM contractility. However, it is emphasized that, owing to the many limitations and confounders, more studies will be needed to reach conclusive statements.
Collapse
Affiliation(s)
- Ynuk Bossé
- Université Laval, Faculty of Medicine, Department of Medicine, IUCPQ, M2694, Pavillon Mallet, Chemin Sainte-Foy, Québec, QC G1V 4G5, Canada e-mail:
| |
Collapse
|
13
|
Mailhot-Larouche S, Lortie K, Marsolais D, Flamand N, Bossé Y. An in vitro study examining the duration between deep inspirations on the rate of renarrowing. Respir Physiol Neurobiol 2017; 243:13-19. [PMID: 28487171 DOI: 10.1016/j.resp.2017.04.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 04/07/2017] [Accepted: 04/29/2017] [Indexed: 12/12/2022]
Abstract
The factors altering the bronchodilatory response to a deep inspiration (DI) in asthma are important to decipher. In this in vitro study, we investigated the effect of changing the duration between DIs on the rate of force recovery post-DI in guinea pig bronchi. The airway smooth muscle (ASM) within the main bronchi were submitted to length oscillation that simulated tidal breathing in different contractile states during 2, 5, 10 or 30min prior to a larger length excursion that simulated a DI. The contractile states of ASM were determined by adding either methacholine or isoproterenol. Irrespective of the contractile state, the duration between DIs neither affected the measured force during length oscillation nor the bronchodilator effect of DI. Contrastingly, the rate of force recovery post-DI in contracted state increased as the duration between DIs decreased. Similar results were obtained with contracted parenchymal strips. These findings suggest that changing the duration between DIs may alter the rate of ASM force recovery post-DI and thereby affect the rate of renarrowing and the duration of the respiratory relief afforded by DI.
Collapse
Affiliation(s)
- Samuel Mailhot-Larouche
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Canada
| | - Katherine Lortie
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Canada
| | - David Marsolais
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Canada
| | - Nicolas Flamand
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Canada
| | - Ynuk Bossé
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Canada.
| |
Collapse
|
14
|
Gazzola M, Lortie K, Henry C, Mailhot-Larouche S, Chapman DG, Couture C, Seow CY, Paré PD, King GG, Boulet LP, Bossé Y. Airway smooth muscle tone increases airway responsiveness in healthy young adults. Am J Physiol Lung Cell Mol Physiol 2016; 312:L348-L357. [PMID: 27941076 DOI: 10.1152/ajplung.00400.2016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 12/06/2016] [Accepted: 12/07/2016] [Indexed: 11/22/2022] Open
Abstract
Force adaptation, a process whereby sustained spasmogenic activation (viz., tone) of airway smooth muscle (ASM) increases its contractile capacity, has been reported in isolated ASM tissues in vitro, as well as in mice in vivo. The objective of the present study was to assess the effect of tone on airway responsiveness in humans. Ten healthy volunteers underwent methacholine challenge on two occasions. One challenge consisted of six serial doses of saline followed by a single high dose of methacholine. The other consisted of six low doses of methacholine 5 min apart followed by a higher dose. The cumulative dose was identical for both challenges. After both methacholine challenges, subjects took a deep inspiration (DI) to total lung capacity as another way to probe ASM mechanics. Responses to methacholine and the DI were measured using a multifrequency forced oscillation technique. Compared with a single high dose, the challenge preceded by tone led to an elevated response measured by respiratory system resistance (Rrs) and reactance at 5 Hz. However, there was no difference in the increase in Rrs at 19 Hz, suggesting a predominant effect on smaller airways. Increased tone also reduced the efficacy of DI, measured by an attenuated maximal dilation during the DI and an increased renarrowing post-DI. We conclude that ASM tone increases small airway responsiveness to inhaled methacholine and reduces the effectiveness of DI in healthy humans. This suggests that force adaptation may contribute to airway hyperresponsiveness and the reduced bronchodilatory effect of DI in asthma.
Collapse
Affiliation(s)
- Morgan Gazzola
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Québec, Canada
| | - Katherine Lortie
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Québec, Canada
| | - Cyndi Henry
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Québec, Canada
| | - Samuel Mailhot-Larouche
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Québec, Canada
| | - David G Chapman
- Vermont Lung Center, University of Vermont College of Medicine, Burlington, Vermont
| | - Christian Couture
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Québec, Canada
| | - Chun Y Seow
- University of British Columbia Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, British Columbia, Canada
| | - Peter D Paré
- University of British Columbia Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, British Columbia, Canada
| | - Gregory G King
- Woolcock Institute of Medical Research, Sydney, Australia.,University of Sydney, Sydney, Australia; and.,Cooperative Research Centre for Asthma, Sydney, Australia
| | - Louis-Philippe Boulet
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Québec, Canada
| | - Ynuk Bossé
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Québec, Canada;
| |
Collapse
|
15
|
Krishnan R, Park JA, Seow CY, Lee PVS, Stewart AG. Cellular Biomechanics in Drug Screening and Evaluation: Mechanopharmacology. Trends Pharmacol Sci 2015; 37:87-100. [PMID: 26651416 DOI: 10.1016/j.tips.2015.10.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 10/12/2015] [Accepted: 10/23/2015] [Indexed: 12/14/2022]
Abstract
The study of mechanobiology is now widespread. The impact of cell and tissue mechanics on cellular responses is well appreciated. However, knowledge of the impact of cell and tissue mechanics on pharmacological responsiveness, and its application to drug screening and mechanistic investigations, have been very limited in scope. We emphasize the need for a heightened awareness of the important bidirectional influence of drugs and biomechanics in all living systems. We propose that the term 'mechanopharmacology' be applied to approaches that employ in vitro systems, biomechanically appropriate to the relevant (patho)physiology, to identify new drugs and drug targets. This article describes the models and techniques that are being developed to transform drug screening and evaluation, ranging from a 2D environment to the dynamic 3D environment of the target expressed in the disease of interest.
Collapse
Affiliation(s)
- Ramaswamy Krishnan
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Jin-Ah Park
- Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Chun Y Seow
- Center for Heart Lung Innovation, St Pauls Hospital, University of British Columbia, Vancouver, Canada
| | - Peter V-S Lee
- Department of Mechanical Engineering, University of Melbourne, Melbourne, Australia
| | - Alastair G Stewart
- Lung Health Research Centre, Department of Pharmacology and Therapeutics, University of Melbourne, Melbourne, Australia.
| |
Collapse
|
16
|
Norris BA, Lan B, Wang L, Pascoe CD, Swyngedouw NE, Paré PD, Seow CY. Biphasic force response to iso-velocity stretch in airway smooth muscle. Am J Physiol Lung Cell Mol Physiol 2015; 309:L653-61. [DOI: 10.1152/ajplung.00201.2015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 08/05/2015] [Indexed: 11/22/2022] Open
Abstract
Airway smooth muscle (ASM) in vivo is constantly subjected to oscillatory strain due to tidal breathing and deep inspirations. ASM contractility is known to be adversely affected by strains, especially those of large amplitudes. Based on the cross-bridge model of contraction, it is likely that strain impairs force generation by disrupting actomyosin cross-bridge interaction. There is also evidence that strain modulates muscle stiffness and force through induction of cytoskeletal remodeling. However, the molecular mechanism by which strain alters smooth muscle function is not entirely clear. Here, we examine the response of ASM to iso-velocity stretches to probe the components within the muscle preparation that give rise to different features in the force response. We found in ASM that force response to a ramp stretch showed a biphasic feature, with the initial phase associated with greater muscle stiffness compared with that in the later phase, and that the transition between the phases occurred at a critical strain of ∼3.3%. Only strains with amplitudes greater than the critical strain could lead to reduction in force and stiffness of the muscle in the subsequent stretches. The initial-phase stiffness was found to be linearly related to the degree of muscle activation, suggesting that the stiffness stems mainly from attached cross bridges. Both phases were affected by the degree of muscle activation and by inhibitors of myosin light-chain kinase, PKC, and Rho-kinase. Different responses due to different interventions suggest that cross-bridge and cytoskeletal stiffness is regulated differently by the kinases.
Collapse
Affiliation(s)
- Brandon A. Norris
- Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Centre for Heart Lung Innovation, St. Paul's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Bo Lan
- Department of Environmental Health, Harvard University, Boston, Massachusetts
- Department of Physiology and Pharmacology, University of Calgary, Alberta, Canada
| | - Lu Wang
- Centre for Heart Lung Innovation, St. Paul's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Christopher D. Pascoe
- Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Centre for Heart Lung Innovation, St. Paul's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Nicholas E. Swyngedouw
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada; and
- Centre for Heart Lung Innovation, St. Paul's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Peter D. Paré
- Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Centre for Heart Lung Innovation, St. Paul's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Chun Y. Seow
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada; and
- Centre for Heart Lung Innovation, St. Paul's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
17
|
Harvey BC, Parameswaran H, Lutchen KR. Can breathing-like pressure oscillations reverse or prevent narrowing of small intact airways? J Appl Physiol (1985) 2015; 119:47-54. [PMID: 25953836 DOI: 10.1152/japplphysiol.01100.2014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 05/01/2015] [Indexed: 01/20/2023] Open
Abstract
Periodic length fluctuations of airway smooth muscle during breathing are thought to modulate airway responsiveness in vivo. Recent animal and human intact airway studies have shown that pressure fluctuations simulating breathing can only marginally reverse airway narrowing and are ineffective at protecting against future narrowing. However, these previous studies were performed on relatively large (>5 mm diameter) airways, which are inherently stiffer than smaller airways for which a preponderance of airway constriction in asthma likely occurs. The goal of this study was to determine the effectiveness of breathing-like transmural pressure oscillations to reverse induced narrowing and/or protect against future narrowing of smaller, more compliant intact airways. We constricted smaller (luminal diameter = 2.92 ± 0.29 mm) intact airway segments twice with ACh (10(-6) M), once while applying tidal-like pressure oscillations (5-15 cmH2O) before, during, and after inducing constriction (Pre + Post) and again while only imposing the tidal-like pressure oscillation after induced constriction (Post Only). Smaller airways were 128% more compliant than previously studied larger airways. This increased compliance translated into 196% more strain and 76% greater recovery (41 vs. 23%) because of tidal-like pressure oscillations. Larger pressure oscillations (5-25 cmH2O) caused more recovery (77.5 ± 16.5%). However, pressure oscillations applied before and during constriction resulted in the same steady-state diameter as when pressure oscillations were only applied after constriction. These data show that reduced straining of the airways before a challenge likely does not contribute to the emergence of airway hyperreactivity observed in asthma but may serve to sustain a given level of constriction.
Collapse
Affiliation(s)
- Brian C Harvey
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts
| | | | - Kenneth R Lutchen
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts
| |
Collapse
|
18
|
Spina D. Pharmacology of novel treatments for COPD: are fixed dose combination LABA/LAMA synergistic? Eur Clin Respir J 2015; 2:26634. [PMID: 26557255 PMCID: PMC4629759 DOI: 10.3402/ecrj.v2.26634] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 02/08/2015] [Indexed: 12/13/2022] Open
Abstract
Bronchodilators are mainstay for the symptomatic treatment of chronic obstructive pulmonary disease (COPD) and the introduction of long-acting bronchodilators has led to an improvement in the maintenance treatment of this disease. Various clinical trials have evaluated the effects of fixed dose long-acting β2-agonists (LABA)/long-acting anti-muscarinics (LAMA) combinations and documented greater improvements in spirometry but such improvements do not always translate to greater improvements in symptom scores or reduction in the rates of exacerbation compared with a single component drug. An analysis of whether this significantly greater change in spirometry with combination therapy is additive or synergistic was undertaken and is the subject of this review. Bronchodilators are not disease modifiers and whilst glucocorticosteroids have been shown to reduce rates of exacerbation in moderate to severe COPD, the increase risk of pneumonia and bone fractures is a motivation enough to warrant developing novel anti-inflammatory and disease-modifying drugs and with the expectation of positive outcomes.
Collapse
Affiliation(s)
- Domenico Spina
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, Pharmacology and Therapeutics, King's College London, London, UK
| |
Collapse
|
19
|
Lan B, Norris BA, Liu JCY, Paré PD, Seow CY, Deng L. Development and maintenance of force and stiffness in airway smooth muscle. Can J Physiol Pharmacol 2014; 93:163-9. [PMID: 25615545 DOI: 10.1139/cjpp-2014-0404] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Airway smooth muscle (ASM) plays a central role in the excessive narrowing of the airway that characterizes the primary functional impairment in asthma. This phenomenon is known as airway hyper-responsiveness (AHR). Emerging evidence suggests that the development and maintenance of ASM force involves dynamic reorganization of the subcellular filament network in both the cytoskeleton and the contractile apparatus. In this review, evidence is presented to support the view that regulation of ASM contraction extends beyond the classical actomyosin interaction and involves processes within the cytoskeleton and at the interfaces between the cytoskeleton, the contractile apparatus, and the extracellular matrix. These processes are initiated when the muscle is activated, and collectively they cause the cytoskeleton and the contractile apparatus to undergo structural transformation, resulting in a more connected and solid state that allows force generated by the contractile apparatus to be transmitted to the extracellular domain. Solidification of the cytoskeleton also serves to stiffen the muscle and hence the airway. Oscillatory strain from tidal breathing and deep inspiration is believed to be the counter balance that prevents hypercontraction and stiffening of ASM in vivo. Dysregulation of this balance could lead to AHR seen in asthma.
Collapse
Affiliation(s)
- Bo Lan
- Bioengineering College, Chongqing University, Chongqing, China., Centre for Heart and Lung Innovation, St Paul's Hospital and University of British Columbia, 1081 Burrard Street, Vancouver, BC V6Z 1Y6, Canada
| | | | | | | | | | | |
Collapse
|
20
|
Chapman DG, Pascoe CD, Lee-Gosselin A, Couture C, Seow CY, Paré PD, Salome CM, King GG, Bossé Y. Smooth Muscle in the Maintenance of Increased Airway Resistance Elicited by Methacholine in Humans. Am J Respir Crit Care Med 2014; 190:879-85. [DOI: 10.1164/rccm.201403-0502oc] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|