1
|
He B, Wood KH, Li ZJ, Ermer JA, Li J, Bastow ER, Sakaram S, Darcy PK, Spalding LJ, Redfern CT, Canes J, Oliveira M, Prat A, Cortes J, Thompson EW, Littlefield BA, Redfern A, Ganss R. Selective tubulin-binding drugs induce pericyte phenotype switching and anti-cancer immunity. EMBO Mol Med 2025; 17:1071-1100. [PMID: 40140727 DOI: 10.1038/s44321-025-00222-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 02/23/2025] [Accepted: 02/28/2025] [Indexed: 03/28/2025] Open
Abstract
The intratumoral immune milieu is crucial for the success of anti-cancer immunotherapy. We show here that stromal modulation by the tubulin-binding anti-cancer drugs combretastatin A4 (CA-4) and eribulin improved tumor perfusion and anti-tumor immunity. This was achieved by reverting highly proliferative, angiogenic pericytes into a quiescent, contractile state which durably normalized the vascular bed and reduced hypoxia in mouse models of pancreatic neuroendocrine cancer, breast cancer and melanoma. The crucial event in pericyte phenotype switching was RhoA kinase activation, which distinguished CA-4 and eribulin effects from other anti-mitotic drugs such as paclitaxel and vinorelbine. Importantly, eribulin pre-treatment sensitized tumors for adoptive T cell therapy or checkpoint inhibition resulting in effector cell infiltration and better survival outcomes in mice. In breast cancer patients, eribulin neoadjuvant treatment induced pericyte maturity and RhoA kinase activity indicating similar vessel remodeling effects as seen in mice. Moreover, a contractile pericyte signature was associated with overall better survival outcome in two independent breast cancer cohorts. This underscores the potential of re-purposing specific anti-cancer drugs to enable synergistic complementation with emerging immunotherapies.
Collapse
Affiliation(s)
- Bo He
- Cancer Microenvironment Laboratory, Harry Perkins Institute of Medical Research, Centre for Medical Research, The University of Western Australia, Perth, WA, Australia
| | - Kira H Wood
- Cancer Microenvironment Laboratory, Harry Perkins Institute of Medical Research, Centre for Medical Research, The University of Western Australia, Perth, WA, Australia
| | - Zhi-Jie Li
- Cancer Microenvironment Laboratory, Harry Perkins Institute of Medical Research, Centre for Medical Research, The University of Western Australia, Perth, WA, Australia
- Department of Geriatrics and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Guangdong, P. R. China
| | - Judith A Ermer
- Cancer Microenvironment Laboratory, Harry Perkins Institute of Medical Research, Centre for Medical Research, The University of Western Australia, Perth, WA, Australia
| | - Ji Li
- Cancer Microenvironment Laboratory, Harry Perkins Institute of Medical Research, Centre for Medical Research, The University of Western Australia, Perth, WA, Australia
| | - Edward R Bastow
- Cancer Microenvironment Laboratory, Harry Perkins Institute of Medical Research, Centre for Medical Research, The University of Western Australia, Perth, WA, Australia
| | | | - Phillip K Darcy
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia. Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia
| | - Lisa J Spalding
- Harry Perkins Institute of Medical Research, Centre for Medical Research, The University of Western Australia, Perth, WA, Australia
| | - Cameron T Redfern
- Harry Perkins Institute of Medical Research, Centre for Medical Research, The University of Western Australia, Perth, WA, Australia
| | - Jordi Canes
- SOLTI Cancer Research Group, Barcelona, Spain
| | - Mafalda Oliveira
- SOLTI Cancer Research Group, Barcelona, Spain
- Medical Oncology Department, Vall d'Hebron University Hospital, Barcelona, Spain
- Breast Cancer Group, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Aleix Prat
- SOLTI Cancer Research Group, Barcelona, Spain
- Medical Oncology Department, Hospital Clinic of Barcelona, Barcelona, Spain
- Translational Genomics and Targeted Therapies in Solid Tumors, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
- Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Javier Cortes
- SOLTI Cancer Research Group, Barcelona, Spain
- Medica Scientia Innovation Research (MEDSIR)-Oncoclínicas&Co, Jersey City, NJ, USA
- Medica Scientia Innovation Research (MEDSIR)-Oncoclínicas&Co, Sao Paulo, Brazil
- International Breast Cancer Center (IBCC), Pangaea Oncology, Quiron Group, Barcelona, Spain
- Faculty of Biomedical and Health Sciences, Department of Medicine, Universidad Europea de Madrid, Madrid, Spain
- IOB Madrid, Institute of Oncology, Hospital Beata María Ana, Madrid, Spain
| | - Erik W Thompson
- School of Biomedical Sciences and Centre for Genomics and Personalised Health, Faculty of Health, Queensland University of Technology (QUT) and Translational Research Institute, Brisbane, Australia
| | | | - Andrew Redfern
- Harry Perkins Institute of Medical Research, Centre for Medical Research, The University of Western Australia, Perth, WA, Australia
- Fiona Stanley Hospital, Perth, WA, Australia
| | - Ruth Ganss
- Cancer Microenvironment Laboratory, Harry Perkins Institute of Medical Research, Centre for Medical Research, The University of Western Australia, Perth, WA, Australia.
| |
Collapse
|
2
|
Suzuki T, Tanaka M, Sasaki M, Ichikawa H, Nishie H, Kataoka H. Vascular Shutdown by Photodynamic Therapy Using Talaporfin Sodium. Cancers (Basel) 2020; 12:cancers12092369. [PMID: 32825648 PMCID: PMC7563359 DOI: 10.3390/cancers12092369] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 08/18/2020] [Accepted: 08/19/2020] [Indexed: 11/16/2022] Open
Abstract
Photodynamic therapy (PDT) is an attractive cancer treatment modality. Talaporfin sodium, a second-generation photosensitizer, results in lower systemic toxicity and relatively better selective tumor destruction than first-generation photosensitizers. However, the mechanism through which PDT induces vascular shutdown is unclear. In this study, the in vitro effects of talaporfin sodium-based PDT on human umbilical vein endothelial cells (HUVECs) were determined through cell viability and endothelial tube formation assays, and evaluation of the tubulin and F-actin dynamics and myosin light chain (MLC) phosphorylation. Additionally, the effects on tumor blood flow and tumor vessel destruction were assessed in vivo. In the HUVECs, talaporfin sodium-based PDT induced endothelial tube destruction and microtubule depolymerization, triggering the formation of F-actin stress fibers and a significant increase in MLC phosphorylation. However, pretreatment with the Rho-associated protein kinase (ROCK) inhibitor, Y27632, completely prevented PDT-induced stress fiber formation and MLC phosphorylation. The in vivo analysis and pathological examination revealed that the PDT had significantly decreased the tumor blood flow and the active area of the tumor vessel. We concluded that talaporfin sodium-based PDT induces the shutdown of existing tumor vessels via the RhoA/ROCK pathway by activating the Rho-GTP pathway and decreasing the tumor blood flow.
Collapse
Affiliation(s)
| | - Mamoru Tanaka
- Correspondence: ; Tel.: +81-52-853-8211; Fax: +81-52-852-0952
| | | | | | | | | |
Collapse
|
3
|
The influence of hypoxia and energy depletion on the response of endothelial cells to the vascular disrupting agent combretastatin A-4-phosphate. Sci Rep 2020; 10:9926. [PMID: 32555222 PMCID: PMC7303175 DOI: 10.1038/s41598-020-66568-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 05/15/2020] [Indexed: 12/25/2022] Open
Abstract
Combretastatin A-4 phosphate (CA4P) is a microtubule-disrupting tumour-selective vascular disrupting agent (VDA). CA4P activates the actin-regulating RhoA-GTPase/ ROCK pathway, which is required for full vascular disruption. While hypoxia renders tumours resistant to many conventional therapies, little is known about its influence on VDA activity. Here, we found that active RhoA and ROCK effector phospho-myosin light chain (pMLC) were downregulated in endothelial cells by severe hypoxia. CA4P failed to activate RhoA/ROCK/pMLC but its activity was restored upon reoxygenation. Hypoxia also inhibited CA4P-mediated actinomyosin contractility, VE-cadherin junction disruption and permeability rise. Glucose withdrawal downregulated pMLC, and coupled with hypoxia, reduced pMLC faster and more profoundly than hypoxia alone. Concurrent inhibition of glycolysis (2-deoxy-D-glucose, 2DG) and mitochondrial respiration (rotenone) caused profound actin filament loss, blocked RhoA/ROCK signalling and rendered microtubules CA4P-resistant. Withdrawal of the metabolism inhibitors restored the cytoskeleton and CA4P activity. The AMP-activated kinase AMPK was investigated as a potential mediator of pMLC downregulation. Pharmacological AMPK activators that generate AMP, unlike allosteric activators, downregulated pMLC but only when combined with 2DG and/or rotenone. Altogether, our results suggest that Rho/ROCK and actinomyosin contractility are regulated by AMP/ATP levels independently of AMPK, and point to hypoxia/energy depletion as potential modifiers of CA4P response.
Collapse
|
4
|
Izumi Y, Takagi S. Vascular disrupting effect of combretastatin A-4 phosphate with inhibition of vascular endothelial cadherin in canine osteosarcoma-xenografted mice. Res Vet Sci 2019; 122:1-6. [DOI: 10.1016/j.rvsc.2018.10.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 10/29/2018] [Accepted: 10/29/2018] [Indexed: 11/24/2022]
|
5
|
Brown AW, Holmes T, Fisher M, Tozer GM, Harrity JPA, Kanthou C. Evaluation of Sydnone-Based Analogues of Combretastatin A-4 Phosphate (CA4P) as Vascular Disrupting Agents for Use in Cancer Therapy. ChemMedChem 2018; 13:2618-2626. [PMID: 30281922 DOI: 10.1002/cmdc.201800567] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Indexed: 11/10/2022]
Abstract
The combretastatins have attracted significant interest as small-molecule therapies for cancer due to their ability to function as vascular disrupting agents. We have successfully prepared a range of combretastatin analogues that are based on a novel sydnone heterocycle core, and their potential as tubulin binders has been assessed in vitro and in vivo. The most potent candidate was found to disrupt microtubules and affect cellular morphology at sub-micromolar levels. Moreover, it was found to bind reversibly to tubulin and significantly increase endothelial cell monolayer permeability, in a similar manner to combretastatin A4. Surprisingly, the compound did not exhibit efficacy in vivo, possibly due to rapid metabolism.
Collapse
Affiliation(s)
- Andrew W Brown
- Department of Chemistry, The University of Sheffield, Dainton Building, Brook Hill, Sheffield, S3 7HF, UK.,Department of Oncology & Metabolism, The University of Sheffield, The Medical School, Beech Hill Road, Sheffield, S10 2RX, UK
| | - Toby Holmes
- Department of Oncology & Metabolism, The University of Sheffield, The Medical School, Beech Hill Road, Sheffield, S10 2RX, UK
| | - Matthew Fisher
- Department of Oncology & Metabolism, The University of Sheffield, The Medical School, Beech Hill Road, Sheffield, S10 2RX, UK
| | - Gillian M Tozer
- Department of Oncology & Metabolism, The University of Sheffield, The Medical School, Beech Hill Road, Sheffield, S10 2RX, UK
| | - Joseph P A Harrity
- Department of Chemistry, The University of Sheffield, Dainton Building, Brook Hill, Sheffield, S3 7HF, UK
| | - Chryso Kanthou
- Department of Oncology & Metabolism, The University of Sheffield, The Medical School, Beech Hill Road, Sheffield, S10 2RX, UK
| |
Collapse
|
6
|
Vicente-Blázquez A, González M, Álvarez R, Del Mazo S, Medarde M, Peláez R. Antitubulin sulfonamides: The successful combination of an established drug class and a multifaceted target. Med Res Rev 2018; 39:775-830. [PMID: 30362234 DOI: 10.1002/med.21541] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 09/02/2018] [Accepted: 09/06/2018] [Indexed: 12/13/2022]
Abstract
Tubulin, the microtubules and their dynamic behavior are amongst the most successful antitumor, antifungal, antiparasitic, and herbicidal drug targets. Sulfonamides are exemplary drugs with applications in the clinic, in veterinary and in the agrochemical industry. This review summarizes the actual state and recent progress of both fields looking from the double point of view of the target and its drugs, with special focus onto the structural aspects. The article starts with a brief description of tubulin structure and its dynamic assembly and disassembly into microtubules and other polymers. Posttranslational modifications and the many cellular means of regulating and modulating tubulin's biology are briefly presented in the tubulin code. Next, the structurally characterized drug binding sites, their occupying drugs and the effects they induce are described, emphasizing on the structural requirements for high potency, selectivity, and low toxicity. The second part starts with a summary of the favorable and highly tunable combination of physical-chemical and biological properties that render sulfonamides a prototypical example of privileged scaffolds with representatives in many therapeutic areas. A complete description of tubulin-binding sulfonamides is provided, covering the different species and drug sites. Some of the antimitotic sulfonamides have met with very successful applications and others less so, thus illustrating the advances, limitations, and future perspectives of the field. All of them combine in a mechanism of action and a clinical outcome that conform efficient drugs.
Collapse
Affiliation(s)
- Alba Vicente-Blázquez
- Laboratorio de Química Orgánica y Farmacéutica, Departamento de Ciencias Farmacéuticas, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain.,Facultad de Farmacia, Instituto de Investigación Biomédica de Salamanca (IBSAL), Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain.,Facultad de Farmacia, Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca (CIETUS), Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain.,Laboratory of Cell Death and Cancer Therapy, Department of Molecular Biomedicine, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Myriam González
- Laboratorio de Química Orgánica y Farmacéutica, Departamento de Ciencias Farmacéuticas, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain.,Facultad de Farmacia, Instituto de Investigación Biomédica de Salamanca (IBSAL), Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain.,Facultad de Farmacia, Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca (CIETUS), Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
| | - Raquel Álvarez
- Laboratorio de Química Orgánica y Farmacéutica, Departamento de Ciencias Farmacéuticas, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain.,Facultad de Farmacia, Instituto de Investigación Biomédica de Salamanca (IBSAL), Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain.,Facultad de Farmacia, Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca (CIETUS), Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
| | - Sara Del Mazo
- Laboratorio de Química Orgánica y Farmacéutica, Departamento de Ciencias Farmacéuticas, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain.,Facultad de Farmacia, Instituto de Investigación Biomédica de Salamanca (IBSAL), Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain.,Facultad de Farmacia, Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca (CIETUS), Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
| | - Manuel Medarde
- Laboratorio de Química Orgánica y Farmacéutica, Departamento de Ciencias Farmacéuticas, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain.,Facultad de Farmacia, Instituto de Investigación Biomédica de Salamanca (IBSAL), Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain.,Facultad de Farmacia, Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca (CIETUS), Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
| | - Rafael Peláez
- Laboratorio de Química Orgánica y Farmacéutica, Departamento de Ciencias Farmacéuticas, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain.,Facultad de Farmacia, Instituto de Investigación Biomédica de Salamanca (IBSAL), Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain.,Facultad de Farmacia, Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca (CIETUS), Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
| |
Collapse
|
7
|
Walker-Samuel S, Roberts TA, Ramasawmy R, Burrell JS, Johnson SP, Siow BM, Richardson S, Gonçalves MR, Pendse D, Robinson SP, Pedley RB, Lythgoe MF. Investigating Low-Velocity Fluid Flow in Tumors with Convection-MRI. Cancer Res 2018; 78:1859-1872. [PMID: 29317434 PMCID: PMC6298581 DOI: 10.1158/0008-5472.can-17-1546] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 08/18/2017] [Accepted: 01/05/2018] [Indexed: 02/06/2023]
Abstract
Several distinct fluid flow phenomena occur in solid tumors, including intravascular blood flow and interstitial convection. Interstitial fluid pressure is often raised in solid tumors, which can limit drug delivery. To probe low-velocity flow in tumors resulting from raised interstitial fluid pressure, we developed a novel MRI technique named convection-MRI, which uses a phase-contrast acquisition with a dual-inversion vascular nulling preparation to separate intra- and extravascular flow. Here, we report the results of experiments in flow phantoms, numerical simulations, and tumor xenograft models to investigate the technical feasibility of convection-MRI. We observed a significant correlation between estimates of effective fluid pressure from convection-MRI with gold-standard, invasive measurements of interstitial fluid pressure in mouse models of human colorectal carcinoma. Our results show how convection-MRI can provide insights into the growth and responsiveness to vascular-targeting therapy in colorectal cancers.Significance: A noninvasive method for measuring low-velocity fluid flow caused by raised fluid pressure can be used to assess changes caused by therapy. Cancer Res; 78(7); 1859-72. ©2018 AACR.
Collapse
Affiliation(s)
- Simon Walker-Samuel
- UCL Centre for Advanced Biomedical Imaging, Division of Medicine, London, UK.
| | - Thomas A Roberts
- UCL Centre for Advanced Biomedical Imaging, Division of Medicine, London, UK
| | - Rajiv Ramasawmy
- UCL Centre for Advanced Biomedical Imaging, Division of Medicine, London, UK
| | - Jake S Burrell
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, Sutton, Surrey, UK
| | | | - Bernard M Siow
- UCL Centre for Advanced Biomedical Imaging, Division of Medicine, London, UK
| | - Simon Richardson
- UCL Centre for Advanced Biomedical Imaging, Division of Medicine, London, UK
| | - Miguel R Gonçalves
- UCL Centre for Advanced Biomedical Imaging, Division of Medicine, London, UK
| | | | - Simon P Robinson
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, Sutton, Surrey, UK
| | | | - Mark F Lythgoe
- UCL Centre for Advanced Biomedical Imaging, Division of Medicine, London, UK
| |
Collapse
|
8
|
Shepherd J, Fisher M, Welford A, McDonald DM, Kanthou C, Tozer GM. The protective role of sphingosine-1-phosphate against the action of the vascular disrupting agent combretastatin A-4 3- O-phosphate. Oncotarget 2017; 8:95648-95661. [PMID: 29221156 PMCID: PMC5707050 DOI: 10.18632/oncotarget.21172] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 08/17/2017] [Indexed: 02/06/2023] Open
Abstract
Solid tumours vary in sensitivity to the vascular disrupting agent combretastatin A-4 3-O-phosphate (CA4P), but underlying factors are poorly understood. The signaling sphingolipid, sphingosine-1-phosphate (S1P), promotes vascular barrier integrity by promoting assembly of VE-cadherin/β-catenin complexes. We tested the hypothesis that tumour pre-treatment with S1P would render tumours less susceptible to CA4P. S1P (1μM) pretreatment attenuated an increase in endothelial cell (HUVEC) monolayer permeability induced by 10μM CA4P. Intravenously administered S1P (8mg/kg/hr for 20 minutes then 2mg/kg/hr for 40 minutes), reduced CA4P-induced (30mg/kg) blood flow shut-down in fibrosarcoma tumours in SCID mice (n≥7 per group), as measured by tumour retention of an intravenously administered fluorescent lectin. A trend towards in vivo protection was also found using laser Doppler flowmetry. Immunohistochemical staining of tumours ex vivo revealed disrupted patterns of VE-cadherin in vasculature of mice treated with CA4P, which were decreased by pretreatment with S1P. S1P treatment also stabilized N-cadherin junctions between endothelial cells and smooth muscle cells in culture, and stabilized tubulin filaments in HUVEC monolayers. We conclude that the rapid shutdown of tumour microvasculature by CA4P is due in part to disruption of adherens junctions and that S1P has a protective effect on both adherens junctions and the endothelial cell cytoskeleton.
Collapse
Affiliation(s)
- Joanna Shepherd
- Current/Present address: School of Clinical Dentistry, The University of Sheffield, Claremont Crescent, Sheffield, UK
| | - Matthew Fisher
- Tumour Microcirculation Group, The University of Sheffield, Department of Oncology and Metabolism, School of Medicine, Sheffield, UK
| | - Abigail Welford
- Tumour Microcirculation Group, The University of Sheffield, Department of Oncology and Metabolism, School of Medicine, Sheffield, UK
| | - Donald M McDonald
- UCSF Comprehensive Cancer Center, Cardiovascular Research Institute, and Department of Anatomy, University of California, San Francisco, CA, USA
| | - Chryso Kanthou
- Tumour Microcirculation Group, The University of Sheffield, Department of Oncology and Metabolism, School of Medicine, Sheffield, UK
| | - Gillian M Tozer
- Tumour Microcirculation Group, The University of Sheffield, Department of Oncology and Metabolism, School of Medicine, Sheffield, UK
| |
Collapse
|
9
|
Sherbet G. Suppression of angiogenesis and tumour progression by combretastatin and derivatives. Cancer Lett 2017; 403:289-295. [DOI: 10.1016/j.canlet.2017.06.032] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 06/10/2017] [Accepted: 06/28/2017] [Indexed: 12/17/2022]
|
10
|
Brown AW, Fisher M, Tozer GM, Kanthou C, Harrity JPA. Sydnone Cycloaddition Route to Pyrazole-Based Analogs of Combretastatin A4. J Med Chem 2016; 59:9473-9488. [PMID: 27690431 DOI: 10.1021/acs.jmedchem.6b01128] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The combretastatins are an important class of tubulin-binding agents. Of this family, a number of compounds are potent tumor vascular disrupting agents (VDAs) and have shown promise in the clinic for cancer therapy. We have developed a modular synthetic route to combretastatin analogs based on a pyrazole core through highly regioselective alkyne cycloaddition reactions of sydnones. These compounds show modest to high potency against human umbilical vein endothelial cell proliferation. Moreover, evidence is presented that these novel VDAs have the same mode of action as CA4P and bind reversibly to β-tubulin, believed to be a key feature in avoiding toxicity. The most active compound from in vitro studies was taken forward to an in vivo model and instigated an increase in tumor cell necrosis.
Collapse
Affiliation(s)
- Andrew W Brown
- Department of Chemistry, University of Sheffield , Dainton Building, Brook Hill, Sheffield S3 7HF, U.K.,Department of Oncology and Metabolism, The Medical School, University of Sheffield , Beech Hill Road, Sheffield S10 2RX, U.K
| | - Matthew Fisher
- Department of Oncology and Metabolism, The Medical School, University of Sheffield , Beech Hill Road, Sheffield S10 2RX, U.K
| | - Gillian M Tozer
- Department of Oncology and Metabolism, The Medical School, University of Sheffield , Beech Hill Road, Sheffield S10 2RX, U.K
| | - Chryso Kanthou
- Department of Oncology and Metabolism, The Medical School, University of Sheffield , Beech Hill Road, Sheffield S10 2RX, U.K
| | - Joseph P A Harrity
- Department of Chemistry, University of Sheffield , Dainton Building, Brook Hill, Sheffield S3 7HF, U.K
| |
Collapse
|
11
|
Deoxypodophyllotoxin suppresses tumor vasculature in HUVECs by promoting cytoskeleton remodeling through LKB1-AMPK dependent Rho A activatio. Oncotarget 2016; 6:29497-512. [PMID: 26470595 PMCID: PMC4745742 DOI: 10.18632/oncotarget.4985] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 07/16/2015] [Indexed: 02/06/2023] Open
Abstract
Angiogenesis plays a critical role in the growth and metastasis of tumors, which makes it an attractive target for anti-tumor drug development. Deoxypodophyllotoxin (DPT), a natural product isolated from Anthriscus sylvestris, inhibits cell proliferation and migration in various cancer cell types. Our previous studies indicate that DPT possesses both anti-angiogenic and vascular-disrupting activities. Although the RhoA/ RhoA kinase (ROCK) signaling pathway is implicated in DPT-stimulated cytoskeleton remodeling and tumor vasculature suppressing, the detailed mechanisms by which DPT mediates these effects are poorly understood. In the current study, we found that DPT promotes cytoskeleton remodeling in human umbilical vein endothelial cells (HUVECs) via stimulation of AMP-activated protein kinase (AMPK) and that this effect is abolished by either treatment with a selective AMPK inhibitor or knockdown. Moreover, the cellular levels of LKB1, a kinase upstream of AMPK, were enhanced following DPT exposure. DPT-induced activation of AMPK in tumor vasculature effect was also verified by transgenic zebrafish (VEGFR2:GFP), Matrigel plug assay, and xenograft model in nude mice. The present findings may lay the groundwork for a novel therapeutic approach in treating cancer.
Collapse
|
12
|
Pérez-Pérez MJ, Priego EM, Bueno O, Martins MS, Canela MD, Liekens S. Blocking Blood Flow to Solid Tumors by Destabilizing Tubulin: An Approach to Targeting Tumor Growth. J Med Chem 2016; 59:8685-8711. [DOI: 10.1021/acs.jmedchem.6b00463] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
| | - Eva-María Priego
- Instituto de Química Médica (IQM-CSIC), Juan de la Cierva 3, E-28006 Madrid, Spain
| | - Oskía Bueno
- Instituto de Química Médica (IQM-CSIC), Juan de la Cierva 3, E-28006 Madrid, Spain
| | | | - María-Dolores Canela
- Instituto de Química Médica (IQM-CSIC), Juan de la Cierva 3, E-28006 Madrid, Spain
| | - Sandra Liekens
- Rega
Institute for Medical Research, KU Leuven, B-3000 Leuven, Belgium
| |
Collapse
|
13
|
Exaggerated hypertensive response to combretastatin A-4 phosphate in hypertensive rats: Effective pharmacological inhibition by diltiazem. Vascul Pharmacol 2015; 74:73-79. [DOI: 10.1016/j.vph.2015.05.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 05/08/2015] [Accepted: 05/09/2015] [Indexed: 12/31/2022]
|
14
|
Mahal K, Ahmad A, Sethi S, Resch M, Ficner R, Sarkar FH, Schobert R, Biersack B. Role of JNK and NF-κB in mediating the effect of combretastatin A-4 and brimamin on endothelial and carcinoma cells. Cell Oncol (Dordr) 2015; 38:463-78. [PMID: 26358135 DOI: 10.1007/s13402-015-0243-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2015] [Indexed: 10/23/2022] Open
Abstract
PURPOSE The 4,5-diarylimidazole brimamin is an analog of the natural vascular-disrupting agent combretastatin A-4 (CA-4) with improved water solubility, tolerance by animals and efficacy in multidrug-resistant tumors. Here, we aimed at identifying the major mechanisms underlying the in vitro and in vivo actions of brimamin on endothelial and carcinoma cells, including vascularization. METHODS The contribution of specific signaling kinases to the effects of brimamin on cytoskeleton organization and the viability and differentiation of endothelial cells was assessed by MTT and tube formation assays in the presence or absence of specific kinase inhibitors. Changes in DNA affinity and expression of NF-κB in endothelial and carcinoma-derived cells and their solid tumors (xenografts) treated with brimamin were ascertained by electrophoretic mobility shift assays and Western blotting. The anti-vascular effect of brimamin in solid tumors was verified by CD31 immunostaining. RESULTS We found that brimamin can inhibit tubulin polymerization and cause a reorganization of F-actin in Ea.hy926 endothelial cells. Its inhibitory effect on tube formation was found to depend on functional Rho kinase and JNK. JNK inhibition was found to suppress the induction of endothelial cell apoptosis by brimamin. In CA-4-refractory human BxPC-3 pancreas carcinoma-derived and triple-negative MDA-MB-231 breast carcinoma-derived cells brimamin was found to inhibit growth and to induce apoptosis at low nanomolar concentrations by blocking NF-κB activation in a dose-dependent manner. Brimamin was also found to reduce the in vivo growth rate and vascularization of MDA-MB-231 xenografts in mice. Residual tumor cells of these treated xenografts showed a relatively low expression of the p65 subunit of NF-κB. CONCLUSIONS Our data indicate that cellular JNK and Rho kinase activities are crucial for the cytotoxic and cytoskeleton reorganizing effects of brimamin on endothelial cells. In addition, we found that in resistant carcinoma cells and xenografts brimamin can induce down-regulation of anti-apoptotic NF-κB expression and signaling. Its chemical properties and efficacy against clinically relevant cancer entities make brimamin a promising candidate vascular-disrupting agent.
Collapse
Affiliation(s)
- Katharina Mahal
- Organic Chemistry Laboratory, University Bayreuth, Universitaetsstrasse 30, 95440, Bayreuth, Germany
| | - Aamir Ahmad
- Karmanos Cancer Institute, Department of Pathology, Wayne State University School of Medicine, 4100 John R. Street, Detroit, 48201, MI, USA
| | - Seema Sethi
- Karmanos Cancer Institute, Department of Pathology, Wayne State University School of Medicine, 4100 John R. Street, Detroit, 48201, MI, USA
| | - Marcus Resch
- Department of Molecular Structural Biology, Georg-August-University Göttingen, Justus-von-Liebig-Weg 11, 37077, Göttingen, Germany
| | - Ralf Ficner
- Department of Molecular Structural Biology, Georg-August-University Göttingen, Justus-von-Liebig-Weg 11, 37077, Göttingen, Germany
| | - Fazlul H Sarkar
- Karmanos Cancer Institute, Department of Pathology, Wayne State University School of Medicine, 4100 John R. Street, Detroit, 48201, MI, USA
| | - Rainer Schobert
- Organic Chemistry Laboratory, University Bayreuth, Universitaetsstrasse 30, 95440, Bayreuth, Germany.
| | - Bernhard Biersack
- Organic Chemistry Laboratory, University Bayreuth, Universitaetsstrasse 30, 95440, Bayreuth, Germany
| |
Collapse
|