1
|
Sakloth F, Manouras L, Avrampou K, Mitsi V, Serafini RA, Pryce KD, Cogliani V, Berton O, Jarpe M, Zachariou V. HDAC6-selective inhibitors decrease nerve-injury and inflammation-associated mechanical hypersensitivity in mice. Psychopharmacology (Berl) 2020; 237:2139-2149. [PMID: 32388618 PMCID: PMC7470631 DOI: 10.1007/s00213-020-05525-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 04/13/2020] [Indexed: 12/31/2022]
Abstract
BACKGROUND HDAC6 is a class IIB histone deacetylase expressed at many levels of the nociceptive pathway. This study tested the ability of novel and selective HDAC6 inhibitors to alleviate sensory hypersensitivity behaviors in mouse models of peripheral nerve injury and peripheral inflammation. METHODS We utilized the murine spared nerve injury (SNI) model for peripheral nerve injury and the Complete Freund's Adjuvant (CFA) model of peripheral inflammation. We applied the Von Frey assay to monitor mechanical allodynia. RESULTS Using the SNI model, we demonstrate that daily administration of the brain-penetrant HDAC6 inhibitor, ACY-738, abolishes mechanical allodynia in male and in female mice. Importantly, there is no tolerance to the antiallodynic actions of these compounds as they produce a consistent increase in Von Frey thresholds for several weeks. We observed a similar antiallodynic effect when utilizing the HDAC6 inhibitor, ACY-257, which shows limited brain expression when administered systemically. We also demonstrate that ACY-738 and ACY-257 attenuate mechanical allodynia in the CFA model of peripheral inflammation. CONCLUSIONS Overall, our findings suggest that inhibition of HDAC6 provides a promising therapeutic avenue for the alleviation of mechanical allodynia associated with peripheral nerve injury and peripheral inflammation.
Collapse
Affiliation(s)
- Farhana Sakloth
- Nash Family Department of Neuroscience, and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 1425 Madison Ave, Box 10-65, New York, NY, 10029, USA
| | - Lefteris Manouras
- Nash Family Department of Neuroscience, and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 1425 Madison Ave, Box 10-65, New York, NY, 10029, USA
| | - Kleopatra Avrampou
- Nash Family Department of Neuroscience, and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 1425 Madison Ave, Box 10-65, New York, NY, 10029, USA
| | - Vasiliki Mitsi
- Nash Family Department of Neuroscience, and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 1425 Madison Ave, Box 10-65, New York, NY, 10029, USA
| | - Randal A Serafini
- Nash Family Department of Neuroscience, and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 1425 Madison Ave, Box 10-65, New York, NY, 10029, USA
| | - Kerri D Pryce
- Nash Family Department of Neuroscience, and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 1425 Madison Ave, Box 10-65, New York, NY, 10029, USA
| | - Valeria Cogliani
- Nash Family Department of Neuroscience, and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 1425 Madison Ave, Box 10-65, New York, NY, 10029, USA
| | - Olivier Berton
- Nash Family Department of Neuroscience, and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 1425 Madison Ave, Box 10-65, New York, NY, 10029, USA
- Division of Neuroscience & Behavior, National institute on Drug Abuse (NIDA), 6001 Executive Blvd, Rm 4289, Rockville, MD, 20852, USA
| | - Matthew Jarpe
- Regenacy Pharmaceuticals, 303 Wyman St, Suite 300, Waltham, MA, USA
| | - Venetia Zachariou
- Nash Family Department of Neuroscience, and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 1425 Madison Ave, Box 10-65, New York, NY, 10029, USA.
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Ave, New York, NY, 10029, USA.
| |
Collapse
|
2
|
Kremer M, Megat S, Bohren Y, Wurtz X, Nexon L, Ceredig RA, Doridot S, Massotte D, Salvat E, Yalcin I, Barrot M. Delta opioid receptors are essential to the antiallodynic action of Β 2-mimetics in a model of neuropathic pain. Mol Pain 2020; 16:1744806920912931. [PMID: 32208806 PMCID: PMC7097867 DOI: 10.1177/1744806920912931] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The adrenergic system, because of its reported implication in pain mechanisms, may be a potential target for chronic pain treatment. We previously demonstrated that β2-adrenoceptors (β2-ARs) are essential for neuropathic pain treatment by antidepressant drugs, and we showed that agonists of β2-ARs, that is, β2-mimetics, had an antiallodynic effect per se following chronic administration. To further explore the downstream mechanism of this action, we studied here the role of the opioid system. We used behavioral, genetic, and pharmacological approaches to test whether opioid receptors were necessary for the antiallodynic action of a short acting (terbutaline) and a long-acting (formoterol) β2-mimetic. Using the Cuff model of neuropathic pain in mice, we showed that chronic treatments with terbutaline (intraperitoneal) or formoterol (orally) alleviated mechanical hypersensitivity. We observed that these β2-mimetics remained fully effective in μ-opioid and in κ-opioid receptor deficient mice, but lost their antiallodynic action in δ-opioid receptor deficient mice, either female or male. Accordingly, we showed that the δ-opioid receptor antagonist naltrindole induced an acute relapse of allodynia in mice with neuropathic pain chronically treated with the β2-mimetics. Such relapse was also observed following administration of the peripheral opioid receptor antagonist naloxone methiodide. These data demonstrate that the antiallodynic effect of long-term β2-mimetics in a context of neuropathic pain requires the endogenous opioid system, and more specifically peripheral δ-opioid receptors.
Collapse
Affiliation(s)
- Mélanie Kremer
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Salim Megat
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Yohann Bohren
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Xavier Wurtz
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Laurent Nexon
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Rhian Alice Ceredig
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Stéphane Doridot
- Centre National de la Recherche Scientifique, Université de Strasbourg, Chronobiotron, Strasbourg, France
| | - Dominique Massotte
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Eric Salvat
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France.,Hôpitaux Universitaires de Strasbourg, Centre d'Evaluation et de Traitement de la Douleur, Strasbourg, France
| | - Ipek Yalcin
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Michel Barrot
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| |
Collapse
|
3
|
Zarkowski PA. Relative prevalence of 10 types of pharmacodynamic interactions in psychiatric treatment. Int J Psychiatry Med 2020; 55:82-104. [PMID: 31470752 DOI: 10.1177/0091217419870669] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVE To assess the relative prevalence and factors affecting the prescription of medication combinations with a theoretical efficacy limiting pharmacodynamic interaction, defined as two medications with opposing indications and side effects or antagonistic action at the primary receptor of mechanism of action. METHOD One hundred sixteen combinations were identified for 10 types of pharmacodynamic interactions. PubMed was searched for each combination to assess the quality of evidence either supporting clinical use or verifying reduced efficacy. Micromedex was searched to determine the presence of warnings to prescribers of reduced efficacy. The prevalence in clinical practice was determined by computer review of the Genoa Healthcare database for all prescribers at 10 participating community mental health centers. The expected prevalence was calculated as the product of the probability of each medication prescribed alone and was compared with the actual prevalence of the combination using the test of proportions. RESULTS The frequency of prescription of eight combinations met the Bonferroni corrected level of significance of p < 0.001. Four were combinations of amphetamine and D2 antagonists and each were prescribed less often than chance, p = 0.0001 consistent with epidemiological studies and multiple animal studies verifying an efficacy limiting interaction. Despite epidemiological studies indicating increased risk of accidents, alprazolam and amphetamine were prescribed more often than chance, p = 0.0001. Micromedex generated warnings for efficacy limiting interactions for five other combinations, but with no subsequent change in prescription frequency. CONCLUSIONS Neither presence of medical evidence nor warnings from Micromedex consistently affect the prescription of combinations with pharmacodynamic efficacy limiting interactions.
Collapse
Affiliation(s)
- Paul A Zarkowski
- Department of Psychiatry and Behavioral Sciences, Harborview Medical Center, University of Washington, Seattle, WA, USA
| |
Collapse
|
4
|
Sutherland AM, Nicholls J, Bao J, Clarke H. Overlaps in pharmacology for the treatment of chronic pain and mental health disorders. Prog Neuropsychopharmacol Biol Psychiatry 2018; 87:290-297. [PMID: 30055217 DOI: 10.1016/j.pnpbp.2018.07.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 07/13/2018] [Accepted: 07/18/2018] [Indexed: 12/17/2022]
Abstract
There is significant overlap in the pharmacological management of pain and psychological disorders. Appropriate treatment of patients' comorbid psychological disorders, including sleep disturbances often leads to an improvement in reported pain intensity. The three first line agents for neuropathic pain include tricyclic antidepressants and serotonin norepinephrine reuptake inhibitors which are medications originally developed as antidepressants. The other first line medication for chronic neuropathic pain are anticonvulsant medications initially brought to the market-place for the treatment of epilepsy and are also now being used for the treatment of anxiety disorders and substance withdrawal symptoms. The efficacy of opioids for chronic pain is contentious, but it is agreed that the patients at highest risk for opioid misuse and addiction are patients with underlying psychological disorders who use opioids for their euphoric effects. Similarly, benzodiazepines may present a problem in patients with chronic pain, as up to one third of patients with pain are concomitantly prescribed benzodiazepines, and when combined with other sedating analgesic medications they put patients at increased risk for adverse events and polysubstance misuse. Finally, there is growing evidence for the efficacy of cannabis for treating neuropathic pain, but the consumption of cannabis has been associated with increased risk of psychosis in adolescents, and may be associated with an increased risk for developing bipolar disorder and anxiety disorders. The use of cannabis is associated with an increased risk of substance misuse in both adolescents and adults. In this narrative review, we examine the evidence for the use of several medications used for the treatment of both pain and psychological disorders, and their proposed mechanisms of action, in addition to special concerns for patients with comorbid pain and psychological disorders.
Collapse
Affiliation(s)
- Ainsley M Sutherland
- Department of Anesthesia, University of British Columbia, Vancouver, British Columbia, Canada
| | - Judith Nicholls
- Pain Research Unit, Department of Anesthesia and Pain Medicine, Toronto General Hospital, University Health Network, Toronto, Ontario M5G 2C4, Canada
| | - James Bao
- Pain Research Unit, Department of Anesthesia and Pain Medicine, Toronto General Hospital, University Health Network, Toronto, Ontario M5G 2C4, Canada
| | - Hance Clarke
- Pain Research Unit, Department of Anesthesia and Pain Medicine, Toronto General Hospital, University Health Network, Toronto, Ontario M5G 2C4, Canada; Department of Anesthesia, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
5
|
A Dual Noradrenergic Mechanism for the Relief of Neuropathic Allodynia by the Antidepressant Drugs Duloxetine and Amitriptyline. J Neurosci 2018; 38:9934-9954. [PMID: 30249798 DOI: 10.1523/jneurosci.1004-18.2018] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 06/27/2018] [Accepted: 07/22/2018] [Indexed: 12/21/2022] Open
Abstract
In addition to treating depression, antidepressant drugs are also a first-line treatment for neuropathic pain, which is pain secondary to lesion or pathology of the nervous system. Despite the widespread use of these drugs, the mechanism underlying their therapeutic action in this pain context remains partly elusive. The present study combined data collected in male and female mice from a model of neuropathic pain and data from the clinical setting to understand how antidepressant drugs act. We show two distinct mechanisms by which the selective inhibitor of serotonin and noradrenaline reuptake duloxetine and the tricyclic antidepressant amitriptyline relieve neuropathic allodynia. One of these mechanisms is acute, central, and requires descending noradrenergic inhibitory controls and α2A adrenoceptors, as well as the mu and delta opioid receptors. The second mechanism is delayed, peripheral, and requires noradrenaline from peripheral sympathetic endings and β2 adrenoceptors, as well as the delta opioid receptors. We then conducted a transcriptomic analysis in dorsal root ganglia, which suggested that the peripheral component of duloxetine action involves the inhibition of neuroimmune mechanisms accompanying nerve injury, including the downregulation of the TNF-α-NF-κB signaling pathway. Accordingly, immunotherapies against either TNF-α or Toll-like receptor 2 (TLR2) provided allodynia relief. We also compared duloxetine plasma levels in the animal model and in patients and we observed that patients' drug concentrations were compatible with those measured in animals under chronic treatment involving the peripheral mechanism. Our study highlights a peripheral neuroimmune component of antidepressant drugs that is relevant to their delayed therapeutic action against neuropathic pain.SIGNIFICANCE STATEMENT In addition to treating depression, antidepressant drugs are also a first-line treatment for neuropathic pain, which is pain secondary to lesion or pathology of the nervous system. However, the mechanism by which antidepressant drugs can relieve neuropathic pain remained in part elusive. Indeed, preclinical studies led to contradictions concerning the anatomical and molecular substrates of this action. In the present work, we overcame these apparent contradictions by highlighting the existence of two independent mechanisms. One is rapid and centrally mediated by descending controls from the brain to the spinal cord and the other is delayed, peripheral, and relies on the anti-neuroimmune action of chronic antidepressant treatment.
Collapse
|
6
|
Abstract
This paper is the thirty-eighth consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2015 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior, and the roles of these opioid peptides and receptors in pain and analgesia, stress and social status, tolerance and dependence, learning and memory, eating and drinking, drug abuse and alcohol, sexual activity and hormones, pregnancy, development and endocrinology, mental illness and mood, seizures and neurologic disorders, electrical-related activity and neurophysiology, general activity and locomotion, gastrointestinal, renal and hepatic functions, cardiovascular responses, respiration and thermoregulation, and immunological responses.
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY 11367, United States.
| |
Collapse
|
7
|
Food-Derived Natural Compounds for Pain Relief in Neuropathic Pain. BIOMED RESEARCH INTERNATIONAL 2016; 2016:7917528. [PMID: 27891521 PMCID: PMC5116524 DOI: 10.1155/2016/7917528] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 09/29/2016] [Accepted: 10/16/2016] [Indexed: 12/17/2022]
Abstract
Neuropathic pain, defined as pain caused by a lesion or disease of the somatosensory nervous system, is characterized by dysesthesia, hyperalgesia, and allodynia. The number of patients with this type of pain has increased rapidly in recent years. Yet, available neuropathic pain medicines have undesired side effects, such as tolerance and physical dependence, and do not fully alleviate the pain. The mechanisms of neuropathic pain are still not fully understood. Injury causes inflammation and immune responses and changed expression and activity of receptors and ion channels in peripheral nerve terminals. Additionally, neuroinflammation is a known factor in the development and maintenance of neuropathic pain. During neuropathic pain development, the C-C motif chemokine receptor 2 (CCR2) acts as an important signaling mediator. Traditional plant treatments have been used throughout the world for treating diseases. We and others have identified food-derived compounds that alleviate neuropathic pain. Here, we review the natural compounds for neuropathic pain relief, their mechanisms of action, and the potential benefits of natural compounds with antagonistic effects on GPCRs, especially those containing CCR2, for neuropathic pain treatment.
Collapse
|
8
|
Li J, Li Y, Zhang B, Shen X, Zhao H. Why depression and pain often coexist and mutually reinforce: Role of the lateral habenula. Exp Neurol 2016; 284:106-113. [PMID: 27554829 DOI: 10.1016/j.expneurol.2016.08.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 08/05/2016] [Accepted: 08/18/2016] [Indexed: 12/18/2022]
Abstract
The interrelation of depression and pain is increasingly coming under scrutiny. Although the lateral habenula (LHb) is widely implicated in the pathogenesis of depression and pain, its role in the interaction of depression and pain remains unknown. Thus, the aim of current study was to investigate the role of LHb in rat depression-pain comorbidity. Single extracellular firing recording and immunofluorescence methods were used to compare firing rates and c-Fos expression of the LHb neurons in normal and model rats. Following subcutaneous injection of formalin into the hind paw to simulate natural pain, we assessed pain behavior in rats subjected to the chronic, unpredictable mild stress procedure (CUMS, a model of depression). Pain sensitivity in the model rats was increased over that of controls. These rats showed a significant increase in the firing activity of LHb neurons compared with normal rats. Significantly, about 73% of neurons with high discharge frequency in LHb of model rats were pain-activated neurons (PANs), and the firing rates of PANs were inhibited by intraperitoneal injection of a tricyclic antidepressant, clomipramine. Immunofluorescence showed that the percentage of c-Fos positive cells in LHb was significantly increased in rats receiving CUMS alone, rats receiving pain stimulation alone, and rats receiving both CUMS and pain stimulation, but especially the last. The interaction effect was inhibited by injection of clomipramine. The LHb lesion can improve both depression-like behavior and pain sensitivity in depression model rats with pain. These suggest that hyperactivity of the LHb neurons contributes to depression-pain comorbidity in rats.
Collapse
Affiliation(s)
- Jicheng Li
- Department of Physiology, College of Basic Medical Sciences, Jilin University, Changchun 130021, PR China
| | - Yang Li
- Department of Physiology, College of Basic Medical Sciences, Jilin University, Changchun 130021, PR China
| | - Beilin Zhang
- Department of Physiology, College of Basic Medical Sciences, Jilin University, Changchun 130021, PR China
| | - Xiangfeng Shen
- Department of Physiology, College of Basic Medical Sciences, Jilin University, Changchun 130021, PR China
| | - Hua Zhao
- Department of Physiology, College of Basic Medical Sciences, Jilin University, Changchun 130021, PR China.
| |
Collapse
|
9
|
Kremer M, Salvat E, Muller A, Yalcin I, Barrot M. Antidepressants and gabapentinoids in neuropathic pain: Mechanistic insights. Neuroscience 2016; 338:183-206. [PMID: 27401055 DOI: 10.1016/j.neuroscience.2016.06.057] [Citation(s) in RCA: 167] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 06/21/2016] [Accepted: 06/30/2016] [Indexed: 01/20/2023]
Abstract
Neuropathic pain arises as a consequence of a lesion or disease affecting the somatosensory system. It is generally chronic and challenging to treat. The recommended pharmacotherapy for neuropathic pain includes the use of some antidepressants, such as tricyclic antidepressants (TCAs) (amitriptyline…) or serotonin and noradrenaline re-uptake inhibitors (duloxetine…), and/or anticonvulsants such as the gabapentinoids gabapentin or pregabalin. Antidepressant drugs are not acute analgesics but require a chronic treatment to relieve neuropathic pain, which suggests the recruitment of secondary downstream mechanisms as well as long-term molecular and neuronal plasticity. Noradrenaline is a major actor for the action of antidepressant drugs in a neuropathic pain context. Mechanistic hypotheses have implied the recruitment of noradrenergic descending pathways as well as the peripheral recruitment of noradrenaline from sympathetic fibers sprouting into dorsal root ganglia; and importance of both α2 and β2 adrenoceptors have been reported. These monoamine re-uptake inhibitors may also indirectly act as anti-proinflammatory cytokine drugs; and their therapeutic action requires the opioid system, particularly the mu (MOP) and/or delta (DOP) opioid receptors. Gabapentinoids, which target the voltage-dependent calcium channels α2δ-1 subunit, inhibit calcium currents, thus decreasing the excitatory transmitter release and spinal sensitization. Gabapentinoids also activate the descending noradrenergic pain inhibitory system coupled to spinal α2 adrenoceptors. Gabapentinoid treatment may also indirectly impact on neuroimmune actors, like proinflammatory cytokines. These drugs are effective against neuropathic pain both with acute administration at high dose and with repeated administration. This review focuses on mechanistic knowledge concerning chronic antidepressant treatment and gabapentinoid treatment in a neuropathic pain context.
Collapse
Affiliation(s)
- Mélanie Kremer
- Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique, Strasbourg, France; Université de Strasbourg, Strasbourg, France
| | - Eric Salvat
- Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique, Strasbourg, France; Centre d'Etude et de Traitement de la Douleur, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - André Muller
- Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique, Strasbourg, France; Centre d'Etude et de Traitement de la Douleur, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Ipek Yalcin
- Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique, Strasbourg, France
| | - Michel Barrot
- Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique, Strasbourg, France.
| |
Collapse
|
10
|
Kremer M, Yalcin I, Nexon L, Wurtz X, Ceredig RA, Daniel D, Hawkes RA, Salvat E, Barrot M. The antiallodynic action of pregabalin in neuropathic pain is independent from the opioid system. Mol Pain 2016; 12:12/0/1744806916633477. [PMID: 27030724 PMCID: PMC4956392 DOI: 10.1177/1744806916633477] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 01/22/2016] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Clinical management of neuropathic pain, which is pain arising as a consequence of a lesion or a disease affecting the somatosensory system, partly relies on the use of anticonvulsant drugs such as gabapentinoids. Therapeutic action of gabapentinoids such as gabapentin and pregabalin, which act by the inhibition of calcium currents through interaction with the α2δ-1 subunit of voltage-dependent calcium channels, is well documented. However, some aspects of the downstream mechanisms are still to be uncovered. Using behavioral, genetic, and pharmacological approaches, we tested whether opioid receptors are necessary for the antiallodynic action of acute and/or long-term pregabalin treatment in the specific context of neuropathic pain. RESULTS Using the cuff model of neuropathic pain in mice, we show that acute pregabalin administration at high dose has a transitory antiallodynic action, while prolonged oral pregabalin treatment leads to sustained antiallodynic action, consistent with clinical observations. We show that pregabalin remains fully effective in μ-opioid receptor, in δ-opioid receptor and in κ-opioid receptor deficient mice, either female or male, and its antiallodynic action is not affected by acute naloxone. Our work also shows that long-term pregabalin treatment suppresses tumor necrosis factor-α overproduction induced by sciatic nerve constriction in the lumbar dorsal root ganglia. CONCLUSIONS We demonstrate that neither acute nor long-term antiallodynic effect of pregabalin in a context of neuropathic pain is mediated by the endogenous opioid system, which differs from opioid treatment of pain and antidepressant treatment of neuropathic pain. Our data are also supportive of an impact of gabapentinoid treatment on the neuroimmune aspect of neuropathic pain.
Collapse
Affiliation(s)
- Mélanie Kremer
- Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique, Strasbourg, France Université de Strasbourg, Strasbourg, France
| | - Ipek Yalcin
- Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique, Strasbourg, France
| | - Laurent Nexon
- Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique, Strasbourg, France
| | - Xavier Wurtz
- Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique, Strasbourg, France Université de Strasbourg, Strasbourg, France
| | - Rhian Alice Ceredig
- Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique, Strasbourg, France Université de Strasbourg, Strasbourg, France
| | - Dorothée Daniel
- Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique, Strasbourg, France
| | - Rachael Aredhel Hawkes
- Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique, Strasbourg, France Université de Strasbourg, Strasbourg, France
| | - Eric Salvat
- Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique, Strasbourg, France Centre d'Etude et de Traitement de la Douleur, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Michel Barrot
- Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique, Strasbourg, France
| |
Collapse
|