1
|
Tawa M, Nakagawa K, Ohkita M. Different sensitivities of porcine coronary arteries and veins to BAY 60-2770, a soluble guanylate cyclase activator. J Pharmacol Sci 2025; 157:1-7. [PMID: 39706640 DOI: 10.1016/j.jphs.2024.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/11/2024] [Accepted: 11/13/2024] [Indexed: 12/23/2024] Open
Abstract
Nitric oxide (NO)-donor drugs, which stimulate reduced form of soluble guanylate cyclase (sGC), have different efficacy to the arteries and veins. This study examined whether sGC activators, which activate oxidized/apo sGC, also have arteriovenous selectivity similar to that of NO-donor drugs. The mechanical responses of the isolated blood vessels were assessed using the organ chamber technique and protein expression was verified using western blotting. BAY 60-2770 (sGC activator) caused concentration-dependent relaxation in both porcine coronary arteries and veins, with the response being slightly more pronounced in the arteries. In contrast, sodium nitroprusside (NO-donor drug)-induced relaxation of the arteries was slightly weaker than that of the veins. Vasorelaxant responses to 8-Br-cGMP (cGMP analog) did not differ between the arteries and veins. In the presence of ODQ (heme oxidant), the heterogeneities in the responses to BAY 60-2770 and sodium nitroprusside between the arteries and veins disappeared. The sGC expression in the arteries did not differ from that in the veins. These findings suggest that sGC activators, in contrast to NO-donor drugs, have greater effects on the arteries than on the veins. This may be due to differences in the balance of sGC forms expressed in the arteries and veins.
Collapse
Affiliation(s)
- Masashi Tawa
- Department of Pathological and Molecular Pharmacology, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, Takatsuki, Osaka, 569-1094, Japan.
| | - Keisuke Nakagawa
- Department of Pathological and Molecular Pharmacology, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, Takatsuki, Osaka, 569-1094, Japan
| | - Mamoru Ohkita
- Department of Pathological and Molecular Pharmacology, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, Takatsuki, Osaka, 569-1094, Japan
| |
Collapse
|
2
|
Wu R, Zhong J, Song L, Zhang M, Chen L, Zhang L, Qiu Z. Untargeted metabolomic analysis of ischemic injury in human umbilical vein endothelial cells reveals the involvement of arginine metabolism. Nutr Metab (Lond) 2023; 20:17. [PMID: 36998018 DOI: 10.1186/s12986-023-00737-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 03/14/2023] [Indexed: 04/01/2023] Open
Abstract
OBJECTIVE In this study, differentially expressed metabolites of vascular endothelial cells were examined to further understand the metabolic regulation of ischemic injury by untargeted metabolomics. METHOD Human umbilical vein endothelial cells (HUVECs) were selected to construct an ischemia model using oxygen-glucose deprivation (OGD) and 0, 3, 6, and 9 h of treatment. After that, cell survival levels were determined by CCK8 detection. Flow cytometry, ROS detection, JC-1 detection, and western blotting were used to measure apoptosis and oxidative stress in cells. Then, combined with UPLC Orbitrap/MS, we verified the impacted metabolism pathways by western blotting and RT‒PCR. RESULTS CCK8 assays showed that the survival of HUVECs was decreased with OGD treatment. Flow cytometry and the expression of cleaved caspase 3 showed that the apoptosis levels of HUVECs increased following OGD treatment. The ROS and JC-1 results further suggested that oxidative stress injury was aggravated. Then, combined with the heatmap, KEGG and IPA, we found that arginine metabolism was differentially altered during different periods of OGD treatment. Furthermore, the expression of four arginine metabolism-related proteins, ASS1, ARG2, ODC1 and SAT1, was found to change during treatment. CONCLUSION Arginine metabolism pathway-related proteins were significantly altered by OGD treatment, which suggests that they may have a potential role in ischemic injury.
Collapse
Affiliation(s)
- Ruihao Wu
- Department of Cardiovascular Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, No. 1111, Xianxia Road, Changning District, Shanghai, 200336, China
| | - Jiayin Zhong
- Department of Cardiovascular Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, No. 1111, Xianxia Road, Changning District, Shanghai, 200336, China
| | - Lei Song
- Department of Cardiovascular Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, No. 1111, Xianxia Road, Changning District, Shanghai, 200336, China
| | - Min Zhang
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Lulu Chen
- Department of Cardiovascular Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, No. 1111, Xianxia Road, Changning District, Shanghai, 200336, China
| | - Li Zhang
- Department of Cardiovascular Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, No. 1111, Xianxia Road, Changning District, Shanghai, 200336, China.
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China.
| | - Zhaohui Qiu
- Department of Cardiovascular Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, No. 1111, Xianxia Road, Changning District, Shanghai, 200336, China.
| |
Collapse
|
3
|
Cai Z, Wu C, Xu Y, Cai J, Zhao M, Zu L. The NO-cGMP-PKG Axis in HFpEF: From Pathological Mechanisms to Potential Therapies. Aging Dis 2023; 14:46-62. [PMID: 36818566 PMCID: PMC9937694 DOI: 10.14336/ad.2022.0523] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/23/2022] [Indexed: 11/18/2022] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) accounts for almost half of all heart failure (HF) cases worldwide. Unfortunately, its incidence is expected to continue to rise, and effective therapy to improve clinical outcomes is lacking. Numerous efforts currently directed towards the pathophysiology of human HFpEF are uncovering signal transduction pathways and novel therapeutic targets. The nitric oxide-cyclic guanosine phosphate-protein kinase G (NO-cGMP-PKG) axis has been described as an important regulator of cardiac function. Suppression of the NO-cGMP-PKG signalling pathway is involved in the progression of HFpEF. Therefore, the NO-cGMP-PKG signalling pathway is a potential therapeutic target for HFpEF. In this review, we aim to explore the mechanism of NO-cGMP-PKG in the progression of HFpEF and to summarize potential therapeutic drugs that target this signalling pathway.
Collapse
Affiliation(s)
- Zhulan Cai
- Department of Cardiology, Peking University Third Hospital, Beijing 100191, China.
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, China.
| | - Cencen Wu
- Department of Cardiology, Peking University Third Hospital, Beijing 100191, China.
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, China.
| | - Yuan Xu
- Department of Cardiology, Peking University Third Hospital, Beijing 100191, China.
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, China.
| | - Jiageng Cai
- Department of Cardiology, Peking University Third Hospital, Beijing 100191, China.
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, China.
| | - Menglin Zhao
- Department of Cardiology, Peking University Third Hospital, Beijing 100191, China.
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, China.
| | - Lingyun Zu
- Department of Cardiology, Peking University Third Hospital, Beijing 100191, China.
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, China.
- Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, China.
- Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China
| |
Collapse
|
4
|
Jing G, Xia Z, Lei Q. Co-expression of soluble guanylyl cyclase subunits and PDE5A shRNA to elevate cellular cGMP level: A potential gene therapy for myocardial cell death. Technol Health Care 2022; 31:901-910. [PMID: 36442224 DOI: 10.3233/thc-220333] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND: Genetic manipulation on the NO-sGC-cGMP pathway has been rarely achieved, partially due to complexity of the soluble guanylyl cyclase (sGC) enzyme. OBJECTIVE: We aim to develop gene therapy directly targeting the pathway to circumvent cytotoxicity and tolerance after prolonged use of NO-donors and the insufficiency of PDE inhibitors. METHODS: In this study, we constructed lentivirus vectors expressing GUCY1A3 and GUCY1B3 genes, which encoded the α1 and β1 subunits of soluble guanylyl cyclase (sGC), respectively, to enhance cGMP synthesis. We also constructed lentiviral vector harboring PDE5A shRNA to alleviate phosphodiesterase activity and cGMP degradation. RESULTS: Transductions of human HEK293 cells with the constructs were successful, as indicated by the fluorescent signal and altered gene expression produced by each vector. Overexpression of GUCY1A3 and GUCY1B3 resulted in increased sGC enzyme activity and elevated cGMP level in the cells. Expression of PDE5A shRNA resulted in decreased PDE5A expression and elevated cGMP level. Co-transduction of the three lentiviral vectors resulted in a more significant elevation of cGMP in HEK293 cells without obvious cytotoxicity. CONCLUSION: To the best of our knowledge, this is the first study to show that co-expression of exogenous subunits of the soluble guanylyl cyclase could form functional enzyme and increase cellular cGMP level in mammalian cells. Simultaneous expression of PDE5A shRNA could alleviate feedback up-regulation on PDE5A caused by cGMP elevation. Further studies are required to evaluate the effects of these constructs in vivo.
Collapse
Affiliation(s)
- Gao Jing
- Tianjin Key Laboratory of Exercise Physiology and Sport Medicine, Institute of Exercise and Health, Tianjin University of Sport, Tianjin, China
- Family Medicine Clinic, Tianjin United Family Healthcare, Tianjin, China
| | - Zhang Xia
- Tianjin Key Laboratory of Exercise Physiology and Sport Medicine, Institute of Exercise and Health, Tianjin University of Sport, Tianjin, China
| | - Quan Lei
- Tianjin Key Laboratory of Exercise Physiology and Sport Medicine, Institute of Exercise and Health, Tianjin University of Sport, Tianjin, China
| |
Collapse
|
5
|
Chasapi SA, Argyriou AI, Spyroulias GA. Backbone and side chain NMR assignment of the heme-nitric oxide/oxygen binding (H-NOX) domain from Nostoc punctiforme. BIOMOLECULAR NMR ASSIGNMENTS 2022; 16:379-384. [PMID: 36066818 PMCID: PMC9510103 DOI: 10.1007/s12104-022-10107-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 08/31/2022] [Indexed: 06/15/2023]
Abstract
Soluble guanylate cyclase (sGC) is considered as the primary NO receptor across several known eukaryotes. The main interest regarding the biological role and its function, focuses on the H-NOX domain of the β1 subunit. This domain in its active form bears a ferrous b type heme as prosthetic group, which facilitates the binding of NO and other diatomic gases. The key point that still needs to be answered is how the protein selectively binds the NO and how the redox state of heme and coordination determines H-NOX active state upon binding of diatomic gases. H-NOX domain is present in the genomes of both prokaryotes and eukaryotes, either as a stand-alone protein domain or as a partner of a larger polypeptide. The biological functions of these signaling modules for a wide range of genomes, diverge considerably along with their ligand binding properties. In this direction, we examine the prokaryotic H-NOX protein domain from Nostoc punctiforme (Npun H-NOX). Herein, we first report the almost complete NMR backbone and side-chain resonance assignment (1H, 13C, 15 N) of Npun H-NOX domain together with the NMR chemical shift-based prediction of the domain's secondary structure elements.
Collapse
|
6
|
The role of nitric oxide in sepsis-associated kidney injury. Biosci Rep 2022; 42:231441. [PMID: 35722824 PMCID: PMC9274646 DOI: 10.1042/bsr20220093] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/07/2022] [Accepted: 06/17/2022] [Indexed: 01/09/2023] Open
Abstract
Sepsis is one of the leading causes of acute kidney injury (AKI), and several mechanisms including microcirculatory alterations, oxidative stress, and endothelial cell dysfunction are involved. Nitric oxide (NO) is one of the common elements to all these mechanisms. Although all three nitric oxide synthase (NOS) isoforms are constitutively expressed within the kidneys, they contribute in different ways to nitrergic signaling. While the endothelial (eNOS) and neuronal (nNOS) isoforms are likely to be the main sources of NO under basal conditions and participate in the regulation of renal hemodynamics, the inducible isoform (iNOS) is dramatically increased in conditions such as sepsis. The overexpression of iNOS in the renal cortex causes a shunting of blood to this region, with consequent medullary ischemia in sepsis. Differences in the vascular reactivity among different vascular beds may also help to explain renal failure in this condition. While most of the vessels present vasoplegia and do not respond to vasoconstrictors, renal microcirculation behaves differently from nonrenal vascular beds, displaying similar constrictor responses in control and septic conditions. The selective inhibition of iNOS, without affecting other isoforms, has been described as the ideal scenario. However, iNOS is also constitutively expressed in the kidneys and the NO produced by this isoform is important for immune defense. In this sense, instead of a direct iNOS inhibition, targeting the NO effectors such as guanylate cyclase, potassium channels, peroxynitrite, and S-nitrosothiols, may be a more interesting approach in sepsis-AKI and further investigation is warranted.
Collapse
|
7
|
Makrynitsa GI, Argyriou AI, Zompra AA, Salagiannis K, Vazoura V, Papapetropoulos A, Topouzis S, Spyroulias GA. Mapping of the sGC Stimulator BAY 41-2272 Binding Site on H-NOX Domain and Its Regulation by the Redox State of the Heme. Front Cell Dev Biol 2022; 10:925457. [PMID: 35784456 PMCID: PMC9247194 DOI: 10.3389/fcell.2022.925457] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 05/27/2022] [Indexed: 11/29/2022] Open
Abstract
Soluble guanylate cyclase (sGC) is the main receptor of nitric oxide (NO) and by converting GTP to cGMP regulates numerous biological processes. The β1 subunit of the most abundant, α1β1 heterodimer, harbors an N-terminal domain called H-NOX, responsible for heme and NO binding and thus sGC activation. Dysfunction of the NO/sGC/cGMP axis is causally associated with pathological states such as heart failure and pulmonary hypertension. Enhancement of sGC enzymatic function can be effected by a class of drugs called sGC “stimulators,” which depend on reduced heme and synergize with low NO concentrations. Until recently, our knowledge about the binding mode of stimulators relied on low resolution cryo-EM structures of human sGC in complex with known stimulators, while information about the mode of synergy with NO is still limited. Herein, we couple NMR spectroscopy using the H-NOX domain of the Nostoc sp. cyanobacterium with cGMP determinations in aortic smooth muscle cells (A7r5) to study the impact of the redox state of the heme on the binding of the sGC stimulator BAY 41-2272 to the Ns H-NOX domain and on the catalytic function of the sGC. BAY 41-2272 binds on the surface of H-NOX with low affinity and this binding is enhanced by low NO concentrations. Subsequent titration of the heme oxidant ODQ, fails to modify the conformation of H-NOX or elicit loss of the heme, despite its oxidation. Treatment of A7r5 cells with ODQ following the addition of BAY 41-2272 and an NO donor can still inhibit cGMP synthesis. Overall, we describe an analysis in real time of the interaction of the sGC stimulator, BAY 41-2272, with the Ns H-NOX, map the amino acids that mediate this interaction and provide evidence to explain the characteristic synergy of BAY 41-2272 with NO. We also propose that ODQ can still oxidize the heme in the H-NOX/NO complex and inhibit sGC activity, even though the heme remains associated with H-NOX. These data provide a more-in-depth understanding of the molecular mode of action of sGC stimulators and can lead to an optimized design and development of novel sGC agonists.
Collapse
Affiliation(s)
| | | | | | - Konstantinos Salagiannis
- Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, Patras, Greece
| | - Vassiliki Vazoura
- Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, Patras, Greece
| | - Andreas Papapetropoulos
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Stavros Topouzis
- Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, Patras, Greece
| | - Georgios A. Spyroulias
- Department of Pharmacy, University of Patras, Patras, Greece
- *Correspondence: Georgios A. Spyroulias,
| |
Collapse
|
8
|
Grange RMH, Preedy MEJ, Renukanthan A, Dignam JP, Lowe VJ, Moyes AJ, Pérez-Ternero C, Aubdool AA, Baliga RS, Hobbs AJ. Multidrug resistance proteins preferentially regulate natriuretic peptide-driven cGMP signalling in the heart and vasculature. Br J Pharmacol 2022; 179:2443-2459. [PMID: 34131904 DOI: 10.1111/bph.15593] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 05/07/2021] [Accepted: 05/14/2021] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE cGMP underpins the bioactivity of NO and natriuretic peptides and is key to cardiovascular homeostasis. cGMP-driven responses are terminated primarily by PDEs, but cellular efflux via multidrug resistance proteins (MRPs) might contribute. Herein, the effect of pharmacological blockade of MRPs on cGMP signalling in the heart and vasculature was investigated in vitro and in vivo. EXPERIMENTAL APPROACH Proliferation of human coronary artery smooth muscle cells (hCASMCs), vasorelaxation of murine aorta and reductions in mean arterial BP (MABP) in response to NO donors or natriuretic peptides were determined in the absence and presence of the MRP inhibitor MK571. The ability of MRP inhibition to reverse morphological and contractile deficits in a murine model of pressure overload-induced heart failure was also explored. KEY RESULTS MK571 attenuated hCASMC growth and enhanced the anti-proliferative effects of NO and atrial natriuretic peptide (ANP). MRP blockade caused concentration-dependent relaxations of murine aorta and augmented responses to ANP (and to a lesser extent NO). MK571 did not decrease MABP per se but enhanced the hypotensive actions of ANP and improved structural and functional indices of disease severity in experimental heart failure. These beneficial actions of MRP inhibition were associated with a greater intracellular:extracellular cGMP ratio in vitro and in vivo. CONCLUSIONS AND IMPLICATIONS MRP blockade promotes the cardiovascular functions of natriuretic peptides in vitro and in vivo, with more modest effects on NO. MRP inhibition may have therapeutic utility in cardiovascular diseases triggered by dysfunctional cGMP signalling, particularly those associated with altered natriuretic peptide bioactivity. LINKED ARTICLES This article is part of a themed issue on cGMP Signalling in Cell Growth and Survival. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v179.11/issuetoc.
Collapse
Affiliation(s)
- Robert M H Grange
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Michael E J Preedy
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Aniruthan Renukanthan
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Joshua P Dignam
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Vanessa J Lowe
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Amie J Moyes
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Cristina Pérez-Ternero
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Aisah A Aubdool
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Reshma S Baliga
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Adrian J Hobbs
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
9
|
Replacement of heme by soluble guanylate cyclase (sGC) activators abolishes heme-nitric oxide/oxygen (H-NOX) domain structural plasticity. Curr Res Struct Biol 2021; 3:324-336. [PMID: 34901882 PMCID: PMC8640258 DOI: 10.1016/j.crstbi.2021.11.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/03/2021] [Accepted: 11/05/2021] [Indexed: 11/23/2022] Open
Abstract
The gasotransmitter nitric oxide (NO) is a critical endogenous regulator of homeostasis, in major part via the generation of cGMP (cyclic guanosine monophosphate) from GTP (guanosine triphosphate) by NO's main physiological receptor, the soluble guanylate cyclase (sGC). sGC is a heterodimer, composed of an α1 and a β1 subunit, of which the latter contains the heme-nitric oxide/oxygen (H-NOX) domain, responsible for NO recognition, binding and signal initiation. The NO/sGC/cGMP axis is dysfunctional in a variety of diseases, including hypertension and heart failure, especially since oxidative stress results in heme oxidation, sGC unresponsiveness to NO and subsequent degradation. As a central player in this axis, sGC is the focus of intense research efforts aiming to develop therapeutic molecules that enhance its activity. A class of drugs named sGC “activators” aim to replace the oxidized heme of the H-NOX domain, thus stabilizing the enzyme and restoring its activity. Although numerous studies outline the pharmacology and binding behavior of these compounds, the static 3D models available so far do not allow a satisfactory understanding of the structural basis of sGC's activation mechanism by these drugs. Herein, application NMR describes different conformational states during the replacement of the heme by a sGC activators. We show that the two sGC activators (BAY 58-2667 and BAY 60-2770) significantly decrease the conformational plasticity of the recombinant H-NOX protein domain of Nostoc sp. cyanobacterium, rendering it a lot more rigid compared to the heme-occupied H-NOX. NMR methodology also reveals, for the first time, a surprising bi-directional competition between reduced heme and these compounds, pointing to a highly dynamic regulation of the H-NOX domain. This competitive, bi-directional mode of interaction is also confirmed by monitoring cGMP generation in A7r5 vascular smooth muscle cells by these activators. We show that, surprisingly, heme's redox state impacts differently the bioactivity of these two structurally similar compounds. In all, by NMR-based and functional approaches we contribute unique experimental insight into the dynamic interaction of sGC activators with the H-NOX domain and its dependence on the heme redox status, with the ultimate goal to permit a better design of such therapeutically important molecules. When the heme of Ns H-NOX is replaced by the sGC activators, the protein’s flexibility is significantly reduced. Heme causes the conformational exchange of Ns H-NOX, as many residues around the heme adopt invisible conformation. L-ascorbate prevents the proper action of BAY 58-2667 and BAY 60-2770 from forming a stable complex with the Ns H-NOX. In A7r5 cells, L-ascorbate does not affect cGMP formation induced by BAY 58-2667 and it inhibits the effect of BAY 60-2770. BAY molecules act on the H-NOX or the sGC in a bi-directional way, depending on the redox state of the heme.
Collapse
|
10
|
Roh JS, Jeong H, Lee B, Song BW, Han SJ, Sohn DH, Lee SG. Mirodenafil ameliorates skin fibrosis in bleomycin-induced mouse model of systemic sclerosis. Anim Cells Syst (Seoul) 2021; 25:387-395. [PMID: 35059138 PMCID: PMC8765282 DOI: 10.1080/19768354.2021.1995486] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Systemic sclerosis (SSc) is a chronic autoimmune disease characterized by fibrosis of the skin and internal organs. Despite the recent advances in the pathogenesis and treatment of SSc, effective therapies for fibrosis caused by SSc have not yet been established. In this study, we investigated the potential role of mirodenafil, a potent phosphodiesterase 5 (PDE5) inhibitor, in the treatment of fibrosis in SSc. We used a bleomycin (BLM)-induced SSc mouse model to mimic the typical features of fibrosis in human SSc and examined the dermal thickness to assess the degree of skin fibrosis after staining with hematoxylin and eosin or Masson’s trichrome stains. The effect of mirodenafil on the expression of profibrotic genes was also analyzed by treating fibroblasts with transforming growth factor (TGF)-β and mirodenafil. We showed that mirodenafil ameliorated dermal fibrosis and downregulated the protein levels of fibrosis markers including COL1A1 and α-SMA in the BLM-induced SSc mouse model. Further, using mouse embryonic fibroblasts and human lung fibroblasts, we demonstrated that the expression of collagen and profibrotic genes was reduced by treatment with mirodenafil. Finally, we showed that mirodenafil inhibited TGF-β-induced phosphorylation of Smad2/3 in fibroblasts, which suggested that this drug may ameliorate fibrosis by suppressing the TGF-β/Smad signaling pathway. Our findings suggest that mirodenafil possesses a therapeutic potential for treating fibrosis in SSc.
Collapse
Affiliation(s)
- Jong Seong Roh
- Department of Herbal Prescription, College of Korean Medicine, Daegu Haany University, Gyeongsan, Republic of Korea
| | - Hoim Jeong
- Department of Microbiology and Immunology, Pusan National University School of Medicine, Yangsan, Republic of Korea
| | - Beomgu Lee
- Department of Microbiology and Immunology, Pusan National University School of Medicine, Yangsan, Republic of Korea
| | - Byung Wook Song
- Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
- Division of Rheumatology, Department of Internal Medicine, Pusan National University School of Medicine, Pusan National University Hospital, Busan, Republic of Korea
| | - Seung Jin Han
- Department of Biotechnology, Inje University, Gimhae, Republic of Korea
- Institute of Digital Anti-Aging Healthcare, Inje University, Gimhae, Republic of Korea
| | - Dong Hyun Sohn
- Department of Microbiology and Immunology, Pusan National University School of Medicine, Yangsan, Republic of Korea
| | - Seung-Geun Lee
- Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
- Division of Rheumatology, Department of Internal Medicine, Pusan National University School of Medicine, Pusan National University Hospital, Busan, Republic of Korea
| |
Collapse
|
11
|
Moreira LDSG, Fanton S, Cardozo L, Borges NA, Combet E, Shiels PG, Stenvinkel P, Mafra D. Pink pressure: beetroot (Beta vulgaris rubra) as a possible novel medical therapy for chronic kidney disease. Nutr Rev 2021; 80:1041-1061. [PMID: 34613396 DOI: 10.1093/nutrit/nuab074] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Chronic kidney disease (CKD) manifests with systemic inflammation, oxidative stress, and gut dysbiosis, resulting in metabolic disorders and elevated rates of cardiovascular disease-associated death. These all correlate with a high economic cost to healthcare systems. Growing evidence indicates that diet is an indispensable ally in the prevention and management of CKD and its complications. In this context, the root vegetable beetroot (Beta vulgaris rubra) deserves special attention because it is a source of several bioactive compounds, such as nitrate, betaine, and betalain, and has shown beneficial effects in CKD, including reduction of blood pressure, anti-inflammatory effects, and antioxidant actions by scavenging radical oxidative species, as observed in preclinical studies. Beetroot consumption as a possible therapeutic strategy to improve the clinical treatment of patients with CKD and future directions for clinical studies are addressed in this narrative review.
Collapse
Affiliation(s)
- Laís de Souza Gouveia Moreira
- L.d.S.G. Moreira and D. Mafra are with the Graduate Program in Medical Sciences, Fluminense Federal University, Niterói, Rio de Janiero, Brazil. S. Fanton, L. Cardozo, and D. Mafra are with the Graduate Program in Cardiovascular Sciences, Federal Fluminense University, Niterói-Rio de Janeiro, RJ, Brazil. N.A. Borges is with the Institute of Nutrition, State University of Rio de Janeiro, Rio de Janeiro, Brazil. E. Combet is with the School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom. P.G. Shiels is with the Wolfson Wohl Translational Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom. P. Stenvinkel is with the Department of Renal Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Susane Fanton
- L.d.S.G. Moreira and D. Mafra are with the Graduate Program in Medical Sciences, Fluminense Federal University, Niterói, Rio de Janiero, Brazil. S. Fanton, L. Cardozo, and D. Mafra are with the Graduate Program in Cardiovascular Sciences, Federal Fluminense University, Niterói-Rio de Janeiro, RJ, Brazil. N.A. Borges is with the Institute of Nutrition, State University of Rio de Janeiro, Rio de Janeiro, Brazil. E. Combet is with the School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom. P.G. Shiels is with the Wolfson Wohl Translational Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom. P. Stenvinkel is with the Department of Renal Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Ludmila Cardozo
- L.d.S.G. Moreira and D. Mafra are with the Graduate Program in Medical Sciences, Fluminense Federal University, Niterói, Rio de Janiero, Brazil. S. Fanton, L. Cardozo, and D. Mafra are with the Graduate Program in Cardiovascular Sciences, Federal Fluminense University, Niterói-Rio de Janeiro, RJ, Brazil. N.A. Borges is with the Institute of Nutrition, State University of Rio de Janeiro, Rio de Janeiro, Brazil. E. Combet is with the School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom. P.G. Shiels is with the Wolfson Wohl Translational Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom. P. Stenvinkel is with the Department of Renal Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Natalia A Borges
- L.d.S.G. Moreira and D. Mafra are with the Graduate Program in Medical Sciences, Fluminense Federal University, Niterói, Rio de Janiero, Brazil. S. Fanton, L. Cardozo, and D. Mafra are with the Graduate Program in Cardiovascular Sciences, Federal Fluminense University, Niterói-Rio de Janeiro, RJ, Brazil. N.A. Borges is with the Institute of Nutrition, State University of Rio de Janeiro, Rio de Janeiro, Brazil. E. Combet is with the School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom. P.G. Shiels is with the Wolfson Wohl Translational Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom. P. Stenvinkel is with the Department of Renal Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Emilie Combet
- L.d.S.G. Moreira and D. Mafra are with the Graduate Program in Medical Sciences, Fluminense Federal University, Niterói, Rio de Janiero, Brazil. S. Fanton, L. Cardozo, and D. Mafra are with the Graduate Program in Cardiovascular Sciences, Federal Fluminense University, Niterói-Rio de Janeiro, RJ, Brazil. N.A. Borges is with the Institute of Nutrition, State University of Rio de Janeiro, Rio de Janeiro, Brazil. E. Combet is with the School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom. P.G. Shiels is with the Wolfson Wohl Translational Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom. P. Stenvinkel is with the Department of Renal Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Paul G Shiels
- L.d.S.G. Moreira and D. Mafra are with the Graduate Program in Medical Sciences, Fluminense Federal University, Niterói, Rio de Janiero, Brazil. S. Fanton, L. Cardozo, and D. Mafra are with the Graduate Program in Cardiovascular Sciences, Federal Fluminense University, Niterói-Rio de Janeiro, RJ, Brazil. N.A. Borges is with the Institute of Nutrition, State University of Rio de Janeiro, Rio de Janeiro, Brazil. E. Combet is with the School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom. P.G. Shiels is with the Wolfson Wohl Translational Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom. P. Stenvinkel is with the Department of Renal Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Peter Stenvinkel
- L.d.S.G. Moreira and D. Mafra are with the Graduate Program in Medical Sciences, Fluminense Federal University, Niterói, Rio de Janiero, Brazil. S. Fanton, L. Cardozo, and D. Mafra are with the Graduate Program in Cardiovascular Sciences, Federal Fluminense University, Niterói-Rio de Janeiro, RJ, Brazil. N.A. Borges is with the Institute of Nutrition, State University of Rio de Janeiro, Rio de Janeiro, Brazil. E. Combet is with the School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom. P.G. Shiels is with the Wolfson Wohl Translational Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom. P. Stenvinkel is with the Department of Renal Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Denise Mafra
- L.d.S.G. Moreira and D. Mafra are with the Graduate Program in Medical Sciences, Fluminense Federal University, Niterói, Rio de Janiero, Brazil. S. Fanton, L. Cardozo, and D. Mafra are with the Graduate Program in Cardiovascular Sciences, Federal Fluminense University, Niterói-Rio de Janeiro, RJ, Brazil. N.A. Borges is with the Institute of Nutrition, State University of Rio de Janeiro, Rio de Janeiro, Brazil. E. Combet is with the School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom. P.G. Shiels is with the Wolfson Wohl Translational Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom. P. Stenvinkel is with the Department of Renal Medicine, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
12
|
Abstract
The prevalence of cardiovascular and metabolic disease coupled with kidney dysfunction is increasing worldwide. This triad of disorders is associated with considerable morbidity and mortality as well as a substantial economic burden. Further understanding of the underlying pathophysiological mechanisms is important to develop novel preventive or therapeutic approaches. Among the proposed mechanisms, compromised nitric oxide (NO) bioactivity associated with oxidative stress is considered to be important. NO is a short-lived diatomic signalling molecule that exerts numerous effects on the kidneys, heart and vasculature as well as on peripheral metabolically active organs. The enzymatic L-arginine-dependent NO synthase (NOS) pathway is classically viewed as the main source of endogenous NO formation. However, the function of the NOS system is often compromised in various pathologies including kidney, cardiovascular and metabolic diseases. An alternative pathway, the nitrate-nitrite-NO pathway, enables endogenous or dietary-derived inorganic nitrate and nitrite to be recycled via serial reduction to form bioactive nitrogen species, including NO, independent of the NOS system. Signalling via these nitrogen species is linked with cGMP-dependent and independent mechanisms. Novel approaches to restoring NO homeostasis during NOS deficiency and oxidative stress have potential therapeutic applications in kidney, cardiovascular and metabolic disorders.
Collapse
|
13
|
Kopra K, Sharina I, Martin E, Härmä H. Homogeneous single-label cGMP detection platform for the functional study of nitric oxide-sensitive (soluble) guanylyl cyclases and cGMP-specific phosphodiesterases. Sci Rep 2020; 10:17469. [PMID: 33060787 PMCID: PMC7562898 DOI: 10.1038/s41598-020-74611-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 09/07/2020] [Indexed: 11/09/2022] Open
Abstract
Cardiovascular diseases are the number one death worldwide. Nitric oxide (NO)-NO-sensitive (soluble) guanylyl cyclase (sGC)-cyclic guanosine monophosphate (cGMP) pathway regulates diverse set of important physiological functions, including maintenance of cardiovascular homeostasis. Resting and activated sGC enzyme converts guanosine triphosphate to an important second messenger cGMP. In addition to traditional NO generators, a number of sGC activators and stimulators are currently in clinical trials aiming to support or increase sGC activity in various pathological conditions. cGMP-specific phosphodiesterases (PDEs), which degrade cGMP to guanosine monophosphate, play key role in controlling the cGMP level and the strength or length of the cGMP-dependent cellular signaling. Thus, PDE inhibitors also have clear clinical applications. Here, we introduce a homogeneous quenching resonance energy transfer (QRET) for cGMP to monitor both sGC and PDE activities using high throughput screening adoptable method. We demonstrate that using cGMP-specific antibody, sGC or PDE activity and the effect of small molecules modulating their function can be studied with sub-picomole cGMP sensitivity. The results further indicate that the method is suitable for monitoring enzyme reactions also in complex biological cellular homogenates and mixture.
Collapse
Affiliation(s)
- Kari Kopra
- Department of Chemistry, Chemistry of Drug Development, University of Turku, Vatselankatu 2, 20500, Turku, Finland.
| | - Iraida Sharina
- Division of Cardiology, Department of Internal Medicine, University of Texas Medical School At Houston, 1941 East Road, Houston, TX, 77054, USA
| | - Emil Martin
- Division of Cardiology, Department of Internal Medicine, University of Texas Medical School At Houston, 1941 East Road, Houston, TX, 77054, USA
| | - Harri Härmä
- Department of Chemistry, Chemistry of Drug Development, University of Turku, Vatselankatu 2, 20500, Turku, Finland
| |
Collapse
|
14
|
Fusi F, Mugnai P, Trezza A, Spiga O, Sgaragli G. Fine tuning by protein kinases of Ca V1.2 channel current in rat tail artery myocytes. Biochem Pharmacol 2020; 182:114263. [PMID: 33035505 DOI: 10.1016/j.bcp.2020.114263] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/01/2020] [Accepted: 10/02/2020] [Indexed: 11/26/2022]
Abstract
Seventeen compounds, rather selective, direct or indirect inhibitors and activators of PKA, PKG, and PKC, were analysed for effects on vascular CaV1.2 channel current (ICa1.2) by using the patch-clamp technique in single rat tail artery myocytes. The aim was to investigate how PKs regulate ICa1.2 and disclose any unexpected modulation of CaV1.2 channel function by these agents. The cAMP analogues 8-Br-cAMP and 6-Bnz-cAMP partially reduced ICa1.2 in dialysed cells, while weakly increasing it under the perforated configuration. The β-adrenoceptor agonist isoproterenol and the adenylate cyclase activator forskolin concentration-dependently increased ICa1.2; this effect was reversed by PKA inhibitors H-89 and KT5720, but not by PKI 6-22. The cGMP analogue 8-Br-cGMP, similarly to the NO-donor SNP, moderately reduced ICa1.2, this effect being reversed to a slight stimulation under the perforated configuration. Among PKG inhibitors, Rp-8-Br-PET-cGMPS decreased current amplitude in a concentration-dependent manner while Rp-8-Br-cGMPS was ineffective. The non-specific phosphodiesterase inhibitor IBMX increased ICa1.2, while H-89, KT5720, and PKI 6-22 antagonized this effect. The PKC activator PMA, but not the diacylglycerol analogue OAG, stimulated ICa1.2 in a concentration-dependent manner; conversely, the PKCα inhibitor Gö6976 markedly reduced basal ICa1.2 and, similarly to the PKCδ (rottlerin) and PKCε translocation inhibitors antagonised PMA-induced current stimulation. The ensemble of findings indicates that the stimulation of cAMP/PKA, in spite of the paradoxical effect of both 8-Br-cAMP and 6-Bnz-cAMP, or PKC pathways enhanced, while that of cGMP/PKG weakly inhibited ICa1.2 in rat tail artery myocytes. Since Rp-8-Br-PET-cGMPS and Gö6976 appeared to block directly CaV1.2 channel, their docking to the channel protein was investigated. Both compounds appeared to bind the α1C subunit in a region involved in CaV1.2 channel inactivation, forming an interaction network comparable to that of CaV1.2 channel blockers. Therefore, caution should accompany the use of these agents as pharmacological tools to elucidate the mechanism of action of drugs on vascular preparations.
Collapse
Affiliation(s)
- F Fusi
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, via A. Moro 2, 53100 Siena, Italy
| | - P Mugnai
- Dipartimento di Scienze della Vita, Università degli Studi di Siena, via A. Moro 2, 53100 Siena, Italy
| | - A Trezza
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, via A. Moro 2, 53100 Siena, Italy
| | - O Spiga
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, via A. Moro 2, 53100 Siena, Italy
| | - G Sgaragli
- Dipartimento di Scienze della Vita, Università degli Studi di Siena, via A. Moro 2, 53100 Siena, Italy
| |
Collapse
|
15
|
Armstrong PC, Ferreira PM, Chan MV, Lundberg Slingsby MH, Crescente M, Shih CC, Kirkby NS, Hobbs AJ, Warner TD. Combination of cyclic nucleotide modulators with P2Y 12 receptor antagonists as anti-platelet therapy. J Thromb Haemost 2020; 18:1705-1713. [PMID: 32278335 DOI: 10.1111/jth.14826] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 03/02/2020] [Accepted: 03/25/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND Endothelium-derived prostacyclin and nitric oxide elevate platelet cyclic nucleotide levels and maintain quiescence. We previously demonstrated that a synergistic relationship exists between cyclic nucleotides and P2Y12 receptor inhibition. A number of clinically approved drug classes can modulate cyclic nucleotide tone in platelets including activators of NO-sensitive guanylyl cyclase (GC) and phosphodiesterase (PDE) inhibitors. However, the doses required to inhibit platelets produce numerous side effects including headache. OBJECTIVE We investigated using GC-activators in combination with P2Y12 receptor antagonists as a way to selectively amplify the anti-thrombotic effect of both drugs. METHODS In vitro light transmission aggregation and platelet adhesion under flow were performed on washed platelets and platelet rich plasma. Aggregation in whole blood and a ferric chloride-induced arterial thrombosis model were also performed. RESULTS The GC-activator BAY-70 potentiated the action of the P2Y12 receptor inhibitor prasugrel active metabolite in aggregation and adhesion studies and was associated with raised intra-platelet cyclic nucleotide levels. Furthermore, mice administered sub-maximal doses of the GC activator cinaciguat together with the PDE inhibitor dipyridamole and prasugrel, showed significant inhibition of ex vivo platelet aggregation and significantly reduced in vivo arterial thrombosis in response to injury without alteration in basal carotid artery blood flow. CONCLUSIONS Using in vitro, ex vivo, and in vivo functional studies, we show that low dose GC activators synergize with P2Y12 inhibition to produce powerful anti-platelet effects without altering blood flow. Therefore, modulation of intra-platelet cyclic nucleotide levels alongside P2Y12 inhibition can provide a strong, focused anti-thrombotic regimen while minimizing vasodilator side effects.
Collapse
Affiliation(s)
- Paul C Armstrong
- Blizard Institute, Barts & The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| | - Plinio M Ferreira
- Blizard Institute, Barts & The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| | - Melissa V Chan
- Blizard Institute, Barts & The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| | - Martina H Lundberg Slingsby
- Blizard Institute, Barts & The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| | - Marilena Crescente
- Blizard Institute, Barts & The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| | - Chih-Chin Shih
- Blizard Institute, Barts & The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| | - Nicholas S Kirkby
- Cardiothoracic Pharmacology, National Heart and Lung Institute, Imperial College London, London, UK
| | - Adrian J Hobbs
- William Harvey Research Institute, Barts & The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| | - Timothy D Warner
- Blizard Institute, Barts & The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
16
|
Makrynitsa GI, Zompra AA, Argyriou AI, Spyroulias GA, Topouzis S. Therapeutic Targeting of the Soluble Guanylate Cyclase. Curr Med Chem 2019; 26:2730-2747. [PMID: 30621555 DOI: 10.2174/0929867326666190108095851] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 02/13/2018] [Accepted: 04/03/2018] [Indexed: 11/22/2022]
Abstract
The soluble guanylate cyclase (sGC) is the physiological sensor for nitric oxide and alterations of its function are actively implicated in a wide variety of pathophysiological conditions. Intense research efforts over the past 20 years have provided significant information on its regulation, culminating in the rational development of approved drugs or investigational lead molecules, which target and interact with sGC through novel mechanisms. However, there are numerous questions that remain unanswered. Ongoing investigations, with the critical aid of structural chemistry studies, try to further elucidate the enzyme's structural characteristics that define the association of "stimulators" or "activators" of sGC in the presence or absence of the heme moiety, respectively, as well as the precise conformational attributes that will allow the design of more innovative and effective drugs. This review relates the progress achieved, particularly in the past 10 years, in understanding the function of this enzyme, and focusses on a) the rationale and results of its therapeutic targeting in disease situations, depending on the state of enzyme (oxidized or not, heme-carrying or not) and b) the most recent structural studies, which should permit improved design of future therapeutic molecules that aim to directly upregulate the activity of sGC.
Collapse
Affiliation(s)
| | - Aikaterini A Zompra
- Department of Pharmacy, School of Health Sciences, University of Patras, Rio, 26505, Greece
| | - Aikaterini I Argyriou
- Department of Pharmacy, School of Health Sciences, University of Patras, Rio, 26505, Greece
| | - Georgios A Spyroulias
- Department of Pharmacy, School of Health Sciences, University of Patras, Rio, 26505, Greece
| | - Stavros Topouzis
- Department of Pharmacy, School of Health Sciences, University of Patras, Rio, 26505, Greece
| |
Collapse
|
17
|
Huang WC, Hsu CH, Sung SH, Ho WJ, Chu CY, Chang CP, Chiu YW, Wu CH, Chang WT, Lin L, Lin SL, Cheng CC, Wu YJ, Wu SH, Hsieh TY, Hsu HH, Fu M, Dai ZK, Kuo PH, Hwang JJ, Cheng SM. 2018 TSOC guideline focused update on diagnosis and treatment of pulmonary arterial hypertension. J Formos Med Assoc 2019; 118:1584-1609. [PMID: 30926248 DOI: 10.1016/j.jfma.2018.12.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 11/18/2018] [Accepted: 12/14/2018] [Indexed: 01/04/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is characterized as a progressive and sustained increase in pulmonary vascular resistance, which may induce right ventricular failure. In 2014, the Working Group on Pulmonary Hypertension of the Taiwan Society of Cardiology (TSOC) conducted a review of data and developed a guideline for the management of PAH.4 In recent years, several advancements in diagnosis and treatment of PAH has occurred. Therefore, the Working Group on Pulmonary Hypertension of TSOC decided to come up with a focused update that addresses clinically important advances in PAH diagnosis and treatment. This 2018 focused update deals with: (1) the role of echocardiography in PAH; (2) new diagnostic algorithm for the evaluation of PAH; (3) comprehensive prognostic evaluation and risk assessment; (4) treatment goals and follow-up strategy; (5) updated PAH targeted therapy; (6) combination therapy and goal-orientated therapy; (7) updated treatment for PAH associated with congenital heart disease; (8) updated treatment for PAH associated with connective tissue disease; and (9) updated treatment for chronic thromboembolic pulmonary hypertension.
Collapse
Affiliation(s)
- Wei-Chun Huang
- Department of Critical Care Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan; School of Medicine, National Yang-Ming University, Taipei, Taiwan; Department of Physical Therapy, Fooyin University, Kaohsiung, Taiwan
| | - Chih-Hsin Hsu
- Department of Internal Medicine, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Shih-Hsien Sung
- School of Medicine, National Yang-Ming University, Taipei, Taiwan; Department of Internal Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Wan-Jing Ho
- Department of Internal Medicine, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
| | - Chun-Yuan Chu
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Chih-Ping Chang
- Division of Cardiology, China Medical University Hospital, Taichung, Taiwan
| | - Yu-Wei Chiu
- Department of Internal Medicine, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Chun-Hsien Wu
- Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Wei-Ting Chang
- Division of Cardiovascular Medicine, Chi-Mei Medical Center, Tainan City, Taiwan
| | - Lin Lin
- Cardiovascular Center, National Taiwan University Hospital, Hsinchu Branch, Hsinchu, Taiwan
| | - Shoa-Lin Lin
- Department of Internal Medicine, Yuan's General Hospital, Kaohsiung, Taiwan
| | - Chin-Chang Cheng
- Department of Critical Care Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan; School of Medicine, National Yang-Ming University, Taipei, Taiwan; Department of Physical Therapy, Fooyin University, Kaohsiung, Taiwan; Pulmonary Hypertension Center, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Yih-Jer Wu
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan; Pulmonary Hypertension Interventional Medicine, Cardiovascular Center, Mackay Memorial Hospital, Taipei City, Taiwan
| | - Shu-Hao Wu
- Pulmonary Hypertension Interventional Medicine, Cardiovascular Center, Mackay Memorial Hospital, Taipei City, Taiwan
| | - Tsu-Yi Hsieh
- Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Hsao-Hsun Hsu
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Morgan Fu
- Department of Internal Medicine, Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Zen-Kong Dai
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Ping-Hung Kuo
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Juey-Jen Hwang
- Cardiovascular Division, Department of Internal Medicine, National Taiwan University College of Medicine and Hospital, Taipei, Taiwan; National Taiwan University Hospital Yunlin Branch, Douliu City, Taiwan.
| | - Shu-Meng Cheng
- Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.
| | | |
Collapse
|
18
|
Shi W, Yuan R, Chen X, Xin Q, Wang Y, Shang X, Cong W, Chen K. Puerarin Reduces Blood Pressure in Spontaneously Hypertensive Rats by Targeting eNOS. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2019; 47:19-38. [PMID: 30612457 DOI: 10.1142/s0192415x19500022] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Puerarin is an isoflavonoid isolated from the root of Pueraria lobata (Gegen in Chinese) that has been widely used to treat cardiovascular and cerebrovascular diseases in China. Here, we investigated the hypotensive effects and mechanisms of puerarin in spontaneously hypertensive rats. The qPCR array technique was used to determine the expression of hypertension-related genes. Then, the differentially expressed genes were analyzed using the STRING database. The systolic blood pressure and diastolic blood pressure of rats decreased after the administration of puerarin for nine weeks. Puerarin, but not losartan, also slowed the heart rate of rats. NO and cGMP levels were improved by puerarin. Eighteen differentially expressed hypertension-related genes were identified by comparing the model group with the control group and the high-dose puerarin group with the model group. NO and cGMP levels were increased by high-dose puerarin. High-dose puerarin increased the levels of the phosphorylated eNOS protein and decreased AT1 and Cav1 levels. Based on our results, eNOS was a key target in the mechanism by which puerarin reduced blood pressure, and puerarin represents a potential antihypertensive agent.
Collapse
Affiliation(s)
- Weili Shi
- * Cardiovascular Laboratory, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Rong Yuan
- * Cardiovascular Laboratory, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China.,‡ Graduate School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xun Chen
- † Department of Clinical Laboratory, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Qiqi Xin
- * Cardiovascular Laboratory, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Yan Wang
- § Cardiovascular Department, China-Japan Friendship Hospital, Beijing 100029, China
| | - Xiaohong Shang
- † Department of Clinical Laboratory, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Weihong Cong
- * Cardiovascular Laboratory, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Keji Chen
- * Cardiovascular Laboratory, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| |
Collapse
|
19
|
Carlström M, Lundberg JO, Weitzberg E. Mechanisms underlying blood pressure reduction by dietary inorganic nitrate. Acta Physiol (Oxf) 2018; 224:e13080. [PMID: 29694703 DOI: 10.1111/apha.13080] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 03/28/2018] [Accepted: 04/18/2018] [Indexed: 12/20/2022]
Abstract
Nitric oxide (NO) importantly contributes to cardiovascular homeostasis by regulating blood flow and maintaining endothelial integrity. Conversely, reduced NO bioavailability is a central feature during natural ageing and in many cardiovascular disorders, including hypertension. The inorganic anions nitrate and nitrite are endogenously formed after oxidation of NO synthase (NOS)-derived NO and are also present in our daily diet. Knowledge accumulated over the past two decades has demonstrated that these anions can be recycled back to NO and other bioactive nitrogen oxides via serial reductions that involve oral commensal bacteria and various enzymatic systems. Intake of inorganic nitrate, which is predominantly found in green leafy vegetables and beets, has a variety of favourable cardiovascular effects. As hypertension is a major risk factor of morbidity and mortality worldwide, much attention has been paid to the blood pressure reducing effect of inorganic nitrate. Here, we describe how dietary nitrate, via stimulation of the nitrate-nitrite-NO pathway, affects various organ systems and discuss underlying mechanisms that may contribute to the observed blood pressure-lowering effect.
Collapse
Affiliation(s)
- M. Carlström
- Department of Physiology and Pharmacology; Karolinska Institutet; Stockholm Sweden
| | - J. O. Lundberg
- Department of Physiology and Pharmacology; Karolinska Institutet; Stockholm Sweden
| | - E. Weitzberg
- Department of Physiology and Pharmacology; Karolinska Institutet; Stockholm Sweden
| |
Collapse
|
20
|
Bardsley EN, Davis H, Ajijola OA, Buckler KJ, Ardell JL, Shivkumar K, Paterson DJ. RNA Sequencing Reveals Novel Transcripts from Sympathetic Stellate Ganglia During Cardiac Sympathetic Hyperactivity. Sci Rep 2018; 8:8633. [PMID: 29872217 PMCID: PMC5988725 DOI: 10.1038/s41598-018-26651-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 05/15/2018] [Indexed: 12/15/2022] Open
Abstract
Cardiovascular disease is the most prevalent age-related illness worldwide, causing approximately 15 million deaths every year. Hypertension is central in determining cardiovascular risk and is a strong predictive indicator of morbidity and mortality; however, there remains an unmet clinical need for disease-modifying and prophylactic interventions. Enhanced sympathetic activity is a well-established contributor to the pathophysiology of hypertension, however the cellular and molecular changes that increase sympathetic neurotransmission are not known. The aim of this study was to identify key changes in the transcriptome in normotensive and spontaneously hypertensive rats. We validated 15 of our top-scoring genes using qRT-PCR, and network and enrichment analyses suggest that glutamatergic signalling plays a key role in modulating Ca2+ balance within these ganglia. Additionally, phosphodiesterase activity was found to be altered in stellates obtained from the hypertensive rat, suggesting that impaired cyclic nucleotide signalling may contribute to disturbed Ca2+ homeostasis and sympathetic hyperactivity in hypertension. We have also confirmed the presence of these transcripts in human donor stellate samples, suggesting that key genes coupled to neurotransmission are conserved. The data described here may provide novel targets for future interventions aimed at treating sympathetic hyperactivity associated with cardiovascular disease and other dysautonomias.
Collapse
Affiliation(s)
- Emma N Bardsley
- Wellcome Trust OXION Initiative in Ion Channels and Disease, Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, Sherrington Building, University of Oxford, Oxford, OX1 3PT, UK.
| | - Harvey Davis
- Wellcome Trust OXION Initiative in Ion Channels and Disease, Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, Sherrington Building, University of Oxford, Oxford, OX1 3PT, UK
| | - Olujimi A Ajijola
- UCLA Cardiac Arrhythmia Center, 100 Medical Plaza, Suite 660, Los Angeles, CA, 90095, USA
| | - Keith J Buckler
- Wellcome Trust OXION Initiative in Ion Channels and Disease, Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, Sherrington Building, University of Oxford, Oxford, OX1 3PT, UK
| | - Jeffrey L Ardell
- UCLA Cardiac Arrhythmia Center, 100 Medical Plaza, Suite 660, Los Angeles, CA, 90095, USA
| | - Kalyanam Shivkumar
- UCLA Cardiac Arrhythmia Center, 100 Medical Plaza, Suite 660, Los Angeles, CA, 90095, USA
| | - David J Paterson
- Wellcome Trust OXION Initiative in Ion Channels and Disease, Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, Sherrington Building, University of Oxford, Oxford, OX1 3PT, UK.
| |
Collapse
|
21
|
Booth L, Roberts JL, Poklepovic A, Gordon S, Dent P. PDE5 inhibitors enhance the lethality of pemetrexed through inhibition of multiple chaperone proteins and via the actions of cyclic GMP and nitric oxide. Oncotarget 2018; 8:1449-1468. [PMID: 27903966 PMCID: PMC5352068 DOI: 10.18632/oncotarget.13640] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 11/15/2016] [Indexed: 12/19/2022] Open
Abstract
Phosphodiesterase 5 (PDE5) inhibitors prevent the breakdown of cGMP that results in prolonged protein kinase G activation and the generation of nitric oxide. PDE5 inhibitors enhanced the anti-NSCLC cell effects of the NSCLC therapeutic pemetrexed. [Pemetrexed + sildenafil] activated an eIF2α – ATF4 – CHOP – Beclin1 pathway causing formation of toxic autophagosomes; activated a protective IRE1 – XBP-1 – chaperone induction pathway; and activated a toxic eIF2α – CHOP – DR4 / DR5 / CD95 induction pathway. [Pemetrexed + sildenafil] reduced the expression of c-FLIP-s, MCL-1 and BCL-XL that was blocked in a cell-type -dependent fashion by either over-expression of HSP90 / GRP78 / HSP70 / HSP27 or by blockade of eIF2α-CHOP signaling. Knock down of PKGI/II abolished the ability of sildenafil to enhance pemetrexed toxicity whereas pan-inhibition of NOS using L-NAME or knock down of [iNOS + eNOS] only partially reduced the lethal drug interaction. Pemetrexed reduced the ATPase activities of HSP90 and HSP70 in an ATM-AMPK-dependent fashion that was enhanced by sildenafil signaling via PKGI/II. The drug combination activated an ATM-AMPK-TSC2 pathway that was associated with reduced mTOR S2448 and ULK-1 S757 phosphorylation and increased ULK-1 S317 and ATG13 S318 phosphorylation. These effects were prevented by chaperone over-expression or by expression of an activated form of mTOR that prevented autophagosome formation and reduced cell killing. In two models of NSCLC, sildenafil enhanced the ability of pemetrexed to suppress tumor growth. Collectively we argue that the combination of [pemetrexed + PDE5 inhibitor] should be explored in a new NSCLC phase I trial.
Collapse
Affiliation(s)
- Laurence Booth
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298-0035, USA
| | - Jane L Roberts
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298-0035, USA
| | - Andrew Poklepovic
- Department of Medicine, Virginia Commonwealth University, Richmond, VA 23298-0035, USA
| | - Sarah Gordon
- Department of Medicine, Virginia Commonwealth University, Richmond, VA 23298-0035, USA
| | - Paul Dent
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298-0035, USA
| |
Collapse
|
22
|
Xie X, Zhang Z, Wang X, Luo Z, Lai B, Xiao L, Wang N. Stachydrine protects eNOS uncoupling and ameliorates endothelial dysfunction induced by homocysteine. Mol Med 2018; 24:10. [PMID: 30134790 PMCID: PMC6016886 DOI: 10.1186/s10020-018-0010-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 03/02/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Hyperhomocysteinemia (HHcy) is an independent risk factor for cardiovascular diseases (CVDs). Stachydrine (STA) is an active component in Chinese motherwort Leonurus heterophyllus sweet, which has been widely used for gynecological and cardiovascular disorders. This study is aimed to examine the effects of STA on homocysteine (Hcy)-induced endothelial dysfunction. METHODS The effects of STA on vascular relaxation in rat thoracic aortas (TA), mesenteric arteries (MA) and renal arteries (RA) were measured by using Multi Myograph System. The levels of nitric oxide (NO), tetrahydrobiopterin (BH4) and guanosine 3', 5' cyclic monophosphate (cGMP) were determined. Endothelial nitric oxide synthase (eNOS) dimers and monomers were assayed by using Western blotting. GTP cyclohydrolase 1 (GTPCH1) and dihydrofolate reductase (DHFR) expressions were measured by using quantitative reverse transcriptase-PCR (qRT-PCR) and Western blotting. RESULTS STA effectively blocked Hcy-induced impairment of endothelium-dependent vasorelaxation in rat TA, MA and RA. STA-elicited arterial relaxations were reduced by NOS inhibitor NG-nitro-L-arginine methyl ester (L-NAME) or the NO-sensitive guanylyl cyclase inhibitor 1H- [1, 2, 4] Oxadiazolo[4,3-a]quinoxalin-1-one (ODQ), but not by inducible iNOS inhibitor 1400 W nor the nonselective COX inhibitor indomethacin. Hcy caused eNOS uncoupling and decreases in NO, cGMP and BH4, which were attenuated by STA. Moreover, STA prevented decreases of GTPCH1 and DHFR levels in Hcy-treated BAECs. CONCLUSION We demonstrated that STA effectively reversed the Hcy-induced endothelial dysfunction and prevented eNOS uncoupling by increasing the expression of GTPCH1 and DHFR. These results revealed a novel mechanism by which STA exerts its beneficial vascular effects.
Collapse
Affiliation(s)
- Xinya Xie
- Cardiovascular Research Center, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Zihui Zhang
- Cardiovascular Research Center, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Xinfeng Wang
- Cardiovascular Research Center, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Zhenyu Luo
- Cardiovascular Research Center, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Baochang Lai
- Cardiovascular Research Center, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Lei Xiao
- Cardiovascular Research Center, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, 710061, China.
| | - Nanping Wang
- The Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, 116044, China.
| |
Collapse
|
23
|
Lee SR, Nilius B, Han J. Gaseous Signaling Molecules in Cardiovascular Function: From Mechanisms to Clinical Translation. Rev Physiol Biochem Pharmacol 2018; 174:81-156. [PMID: 29372329 DOI: 10.1007/112_2017_7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Carbon monoxide (CO), hydrogen sulfide (H2S), and nitric oxide (NO) constitute endogenous gaseous molecules produced by specific enzymes. These gases are chemically simple, but exert multiple effects and act through shared molecular targets to control both physiology and pathophysiology in the cardiovascular system (CVS). The gases act via direct and/or indirect interactions with each other in proteins such as heme-containing enzymes, the mitochondrial respiratory complex, and ion channels, among others. Studies of the major impacts of CO, H2S, and NO on the CVS have revealed their involvement in controlling blood pressure and in reducing cardiac reperfusion injuries, although their functional roles are not limited to these conditions. In this review, the basic aspects of CO, H2S, and NO, including their production and effects on enzymes, mitochondrial respiration and biogenesis, and ion channels are briefly addressed to provide insight into their biology with respect to the CVS. Finally, potential therapeutic applications of CO, H2S, and NO with the CVS are addressed, based on the use of exogenous donors and different types of delivery systems.
Collapse
Affiliation(s)
- Sung Ryul Lee
- Department of Convergence Biomedical Science, Cardiovascular and Metabolic Disease Center, College of Medicine, Inje University, Busan, Republic of Korea
| | - Bernd Nilius
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Jin Han
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Department of Health Sciences and Technology, BK21 Plus Project Team, Cardiovascular and Metabolic Disease Center, Inje University, Busan, Republic of Korea.
| |
Collapse
|
24
|
Booth L, Roberts JL, Poklepovic A, Dent P. PDE5 inhibitors enhance the lethality of [pemetrexed + sorafenib]. Oncotarget 2017; 8:13464-13475. [PMID: 28088782 PMCID: PMC5355112 DOI: 10.18632/oncotarget.14562] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 01/02/2017] [Indexed: 01/02/2023] Open
Abstract
The combination of pemetrexed and sorafenib has significant clinical activity against a wide variety of tumor types in patients and the present studies were performed to determine whether sildenafil enhances the killing potential of [pemetrexed + sorafenib]. In multiple genetically diverse lung cancer cell lines, sildenafil enhanced the lethality of [pemetrexed + sorafenib]. The three-drug combination reduced the activities of AKT, mTOR and STAT transcription factors; increased the activities of eIF2α and ULK-1; lowered the expression of MCL-1, BCL-XL, thioredoxin and SOD2; and increased the expression of Beclin1. Enhanced cell killing by sildenafil was blocked by inhibition of death receptor signaling and autophagosome formation. Enforced activation of STAT3 and AKT or inhibition of JNK significantly reduced cell killing. The enhanced cell killing caused by sildenafil was more reliant on increased PKG signaling than on the generation of nitric oxide. In vivo sildenafil enhanced the anti-tumor properties of [pemetrexed + sorafenib]. Based on our data we argue that additional clinical studies combining pemetrexed, sorafenib and sildenafil are warranted.
Collapse
Affiliation(s)
- Laurence Booth
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298-0035, USA
| | - Jane L Roberts
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298-0035, USA
| | - Andrew Poklepovic
- Department of Biochemistry and Medicine, Virginia Commonwealth University, Richmond, VA 23298-0035, USA
| | - Paul Dent
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298-0035, USA
| |
Collapse
|
25
|
Montfort WR, Wales JA, Weichsel A. Structure and Activation of Soluble Guanylyl Cyclase, the Nitric Oxide Sensor. Antioxid Redox Signal 2017; 26:107-121. [PMID: 26979942 PMCID: PMC5240008 DOI: 10.1089/ars.2016.6693] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
SIGNIFICANCE Soluble guanylyl/guanylate cyclase (sGC) is the primary receptor for nitric oxide (NO) and is central to the physiology of blood pressure regulation, wound healing, memory formation, and other key physiological activities. sGC is increasingly implicated in disease and is targeted by novel therapeutic compounds. The protein displays a rich evolutionary history and a fascinating signal transduction mechanism, with NO binding to an N-terminal heme-containing domain, which activates the C-terminal cyclase domains. Recent Advances: Crystal structures of individual sGC domains or their bacterial homologues coupled with small-angle x-ray scattering, electron microscopy, chemical cross-linking, and Förster resonance energy transfer measurements are yielding insight into the overall structure for sGC, which is elongated and likely quite dynamic. Transient kinetic measurements reveal a role for individual domains in lowering NO affinity for heme. New sGC stimulatory drugs are now in the clinic and appear to function through binding near or directly to the sGC heme domain, relieving inhibitory contacts with other domains. New sGC-activating drugs show promise for recovering oxidized sGC in diseases with high inflammation by replacing lost heme. CRITICAL ISSUES Despite the many recent advances, sGC regulation, NO activation, and mechanisms of drug binding remain unclear. Here, we describe the molecular evolution of sGC, new molecular models, and the linked equilibria between sGC NO binding, drug binding, and catalytic activity. FUTURE DIRECTIONS Recent results and ongoing studies lay the foundation for a complete understanding of structure and mechanism, and they open the door for new drug discovery targeting sGC. Antioxid. Redox Signal. 26, 107-121.
Collapse
Affiliation(s)
- William R Montfort
- Department of Chemistry and Biochemistry, University of Arizona , Tucson, Arizona
| | - Jessica A Wales
- Department of Chemistry and Biochemistry, University of Arizona , Tucson, Arizona
| | - Andrzej Weichsel
- Department of Chemistry and Biochemistry, University of Arizona , Tucson, Arizona
| |
Collapse
|
26
|
Szabo C. Hydrogen sulfide, an enhancer of vascular nitric oxide signaling: mechanisms and implications. Am J Physiol Cell Physiol 2016; 312:C3-C15. [PMID: 27784679 DOI: 10.1152/ajpcell.00282.2016] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 10/17/2016] [Indexed: 12/15/2022]
Abstract
Nitric oxide (NO) vascular signaling has long been considered an independent, self-sufficient pathway. However, recent data indicate that the novel gaseous mediator, hydrogen sulfide (H2S), serves as an essential enhancer of vascular NO signaling. The current article overviews the multiple levels at which this enhancement takes place. The first level of interaction relates to the formation of biologically active hybrid S/N species and the H2S-induced stimulation of NO release from its various stable "pools" (e.g., nitrite). The next interactions occur on the level of endothelial calcium mobilization and PI3K/Akt signaling, increasing the specific activity of endothelial NO synthase (eNOS). The next level of interaction occurs on eNOS itself; H2S directly interacts with the enzyme: sulfhydration of critical cysteines stabilizes it in its physiological, dimeric state, thereby optimizing eNOS-derived NO production and minimizing superoxide formation. Yet another level of interaction, further downstream, occurs at the level of soluble guanylate cyclase (sGC): H2S stabilizes sGC in its NO-responsive, physiological, reduced form. Further downstream, H2S inhibits the vascular cGMP phosphodiesterase (PDE5), thereby prolonging the biological half-life of cGMP. Finally, H2S-derived polysulfides directly activate cGMP-dependent protein kinase (PKG). Taken together, H2S emerges an essential endogenous enhancer of vascular NO signaling, contributing to vasorelaxation and angiogenesis. The functional importance of the H2S/NO cooperative interactions is highlighted by the fact that H2S loses many of its beneficial cardiovascular effects when eNOS is inactive.
Collapse
Affiliation(s)
- Csaba Szabo
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas
| |
Collapse
|
27
|
Zhang R, Wang XJ, Zhang HD, Sun XQ, Zhao QH, Wang L, He J, Jiang X, Liu JM, Jing ZC. Profiling nitric oxide metabolites in patients with idiopathic pulmonary arterial hypertension. Eur Respir J 2016; 48:1386-1395. [DOI: 10.1183/13993003.00245-2016] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 06/22/2016] [Indexed: 11/05/2022]
Abstract
Intact nitric oxide (NO) signalling is critical to maintaining appropriate pulmonary vascular tone. NO bioavailability is reduced in patients with pulmonary arterial hypertension. This study aimed to examine the impact of NO plasma metabolites (NOx) relative to haemodynamic dysfunction and mortality in patients with idiopathic pulmonary arterial hypertension (IPAH).A total of 104 consecutive adult IPAH patients who had undergone genetic counselling when first diagnosed were enrolled in this prospective study.The median concentration of NOx (μmol·L−1) was significantly lower in IPAH patients compared with healthy subjects, and was decreased further in 19 carriers of the bone morphogenetic protein-receptor type-2 (BMPR2) mutation compared to non-carriers. Reduced concentrations of NOx were correlated with mean pulmonary arterial pressure (mPAP), pulmonary vascular resistance (PVR) and cardiac output. Compared with higher baseline NOx concentrations, patients with a NOx concentration of ≤10 μmol·L−1 had a markedly worse survival. After adjustment for clinical features, a BMPR2 mutation and haemodynamics, a lower NOx level remained an increased risk of mortality.Patients with IPAH had lower levels of plasma NOx, which correlated inversely with mPAP, PVR and survival. Plasma NOx may be an important biomarker and prognostic indicator, suggesting that reduced NO synthesis contributes to the pathogenesis of IPAH.
Collapse
|
28
|
Zhou Z, Martin E, Sharina I, Esposito I, Szabo C, Bucci M, Cirino G, Papapetropoulos A. Regulation of soluble guanylyl cyclase redox state by hydrogen sulfide. Pharmacol Res 2016; 111:556-562. [PMID: 27378567 DOI: 10.1016/j.phrs.2016.06.029] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 06/07/2016] [Accepted: 06/30/2016] [Indexed: 01/09/2023]
Abstract
Soluble guanylate cyclase (sGC) is a receptor for nitric oxide (NO). Binding of NO to ferrous (Fe(2+)) heme increases its catalytic activity, leading to the production of cGMP from GTP. Hydrogen sulfide (H2S) is a signaling molecule that exerts both direct and indirect anti-oxidant effects. In the present, study we aimed to determine whether H2S could regulate sGC redox state and affect its responsiveness to NO-releasing agents and sGC activators. Using cultured rat aortic smooth muscle cells, we observed that treatment with H2S augmented the response to the NO donor DEA/NO, while attenuating the response to the heme-independent activator BAY58-2667 that targets oxidized sGC. Similarly, overexpression of H2S-synthesizing enzyme cystathionine-γ lyase reduced the ability of BAY58-2667 to promote cGMP accumulation. In experiments with phenylephrine-constricted mouse aortic rings, treatment with rotenone (a compound that increases ROS production), caused a rightward shift of the DEA/NO concentration-response curve, an effect partially restored by H2S. When rings were pre-treated with H2S, the concentration-response curve to BAY 58-2667 shifted to the right. Using purified recombinant human sGC, we observed that treatment with H2S converted ferric to ferrous sGC enhancing NO-donor-stimulated sGC activity and reducing BAY 58-2667-triggered cGMP formation. The present study identified an additional mechanism of cross-talk between the NO and H2S pathways at the level of redox regulation of sGC. Our results provide evidence that H2S reduces sGC heme Fe, thus, facilitating NO-mediated cellular signaling events.
Collapse
Affiliation(s)
- Zongmin Zhou
- 1st Department of Critical Care and Pulmonary Services, Faculty of Medicine, National and Kapodistrian University of Athens, Evangelismos Hospital, Greece
| | - Emil Martin
- Division of Cardiology, Department of Internal Medicine, University of Texas Medical School at Houston, TX, USA
| | - Iraida Sharina
- Division of Cardiology, Department of Internal Medicine, University of Texas Medical School at Houston, TX, USA
| | - Iolanda Esposito
- Department of Experimental Pharmacology, Faculty of Pharmacy, University of NaplesFederico II, Italy
| | - Csaba Szabo
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, USA
| | - Mariarosaria Bucci
- Department of Experimental Pharmacology, Faculty of Pharmacy, University of NaplesFederico II, Italy
| | - Giuseppe Cirino
- Department of Experimental Pharmacology, Faculty of Pharmacy, University of NaplesFederico II, Italy
| | - Andreas Papapetropoulos
- 1st Department of Critical Care and Pulmonary Services, Faculty of Medicine, National and Kapodistrian University of Athens, Evangelismos Hospital, Greece; Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Greece; Center of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation of the Academy of Athens, Greece.
| |
Collapse
|
29
|
Papapetropoulos A, Foresti R, Ferdinandy P. Pharmacology of the 'gasotransmitters' NO, CO and H2S: translational opportunities. Br J Pharmacol 2016; 172:1395-6. [PMID: 25891246 DOI: 10.1111/bph.13005] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Affiliation(s)
- Andreas Papapetropoulos
- Faculty of Pharmacy, University of Athens, Athens, Greece; 'George P. Livanos and Marianthi Simou Laboratories', Evangelismos Hospital, 1st Department of Critical Care and Pulmonary Services, University of Athens, Greece
| | | | | |
Collapse
|