1
|
Wang W, Ma X, Du W, Lin R, Li Z, Jiang W, Wang LY, Worley PF, Xu T. Small G-Protein Rheb Gates Mammalian Target of Rapamycin Signaling to Regulate Morphine Tolerance in Mice. Anesthesiology 2024; 140:786-802. [PMID: 38147625 DOI: 10.1097/aln.0000000000004885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
BACKGROUND Analgesic tolerance due to long-term use of morphine remains a challenge for pain management. Morphine acts on μ-opioid receptors and downstream of the phosphatidylinositol 3-kinase signaling pathway to activate the mammalian target of rapamycin (mTOR) pathway. Rheb is an important regulator of growth and cell-cycle progression in the central nervous system owing to its critical role in the activation of mTOR. The hypothesis was that signaling via the GTP-binding protein Rheb in the dorsal horn of the spinal cord is involved in morphine-induced tolerance. METHODS Male and female wild-type C57BL/6J mice or transgenic mice (6 to 8 weeks old) were injected intrathecally with saline or morphine twice daily at 12-h intervals for 5 consecutive days to establish a tolerance model. Analgesia was assessed 60 min later using the tail-flick assay. After 5 days, the spine was harvested for Western blot or immunofluorescence analysis. RESULTS Chronic morphine administration resulted in the upregulation of spinal Rheb by 4.27 ± 0.195-fold (P = 0.0036, n = 6), in turn activating mTOR by targeting rapamycin complex 1 (mTORC1). Genetic overexpression of Rheb impaired morphine analgesia, resulting in a tail-flick latency of 4.65 ± 1.10 s (P < 0.0001, n = 7) in Rheb knock-in mice compared to 10 s in control mice (10 ± 0 s). Additionally, Rheb overexpression in spinal excitatory neurons led to mTORC1 signaling overactivation. Genetic knockout of Rheb or inhibition of mTORC1 signaling by rapamycin potentiated morphine-induced tolerance (maximum possible effect, 52.60 ± 9.56% in the morphine + rapamycin group vs. 16.60 ± 8.54% in the morphine group; P < 0.0001). Moreover, activation of endogenous adenosine 5'-monophosphate-activated protein kinase inhibited Rheb upregulation and retarded the development of morphine-dependent tolerance (maximum possible effect, 39.51 ± 7.40% in morphine + metformin group vs. 15.58 ± 5.79% in morphine group; P < 0.0001). CONCLUSIONS This study suggests spinal Rheb as a key molecular factor for regulating mammalian target of rapamycin signaling. EDITOR’S PERSPECTIVE
Collapse
Affiliation(s)
- Wenying Wang
- Department of Anesthesiology, Sixth People's Hospital Affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaqing Ma
- Department of Anesthesiology, Sixth People's Hospital Affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenjie Du
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Raozhou Lin
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Zhongping Li
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Wei Jiang
- Department of Anesthesiology, Sixth People's Hospital Affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lu-Yang Wang
- Program in Neuroscience and Mental Health, SickKids Research Institute, Toronto, Ontario, Canada; and Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Paul F Worley
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Tao Xu
- Department of Anesthesiology, Sixth People's Hospital Affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Anesthesiology, Suzhou Hospital of Anhui Medical University, Suzhou, China; and Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
2
|
Fu X, Zhang Y. Research progress of p38 as a new therapeutic target against morphine tolerance and the current status of therapy of morphine tolerance. J Drug Target 2023; 31:152-165. [PMID: 36264036 DOI: 10.1080/1061186x.2022.2138895] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
With the development of the medical industry, new painkillers continue to appear in people's field of vision, but so far no painkiller can replace morphine. While morphine has a strong analgesic effect, it is also easy to produce pain sensitivity and tolerance. Due to the great inter-individual differences in patient responses, there are few clear instructions on how to optimise morphine administration regimens, which complicates clinicians' treatment strategies and limits the effectiveness of morphine in long-term pain therapy. P38MAPK is a key member of the MAPK family. Across recent years, it has been discovered that p38MAPK rises dramatically in a wide range of morphine tolerance animal models. Morphine tolerance can be reduced or reversed by inhibiting p38MAPK. However, the role and specific mechanism of p38MAPK are not clear. In this review, we synthesise the relevant findings, highlight the function and potential mechanism of p38MAPK in morphine tolerance, as well as the present status and efficacy of morphine tolerance therapy, and underline the future promise of p38MAPK targeted morphine tolerance treatment.
Collapse
Affiliation(s)
- Xiao Fu
- Inner Mongolia Medical University, Hohhot, China
| | - Yanhong Zhang
- Department of Anesthesiology, People's Hospital Affiliated to Inner Mongolia Medical University, Hohhot, China
| |
Collapse
|
3
|
Akbari E, Beheshti F, Zarmehri HA, Mousavi SY, Gholami M, Ahmadi-Soleimani SM. Comparative investigation of analgesic tolerance to taurine, sodium salicylate and morphine: Involvement of peripheral muscarinic receptors. Neurosci Lett 2023; 795:137041. [PMID: 36586531 DOI: 10.1016/j.neulet.2022.137041] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 12/19/2022] [Accepted: 12/26/2022] [Indexed: 12/29/2022]
Abstract
Nowadays various analgesic medications are used for the management of acute and chronic pain. Among these opioid and non-steroidal anti-inflammatory drugs stand in the first line of therapy, however, prolonged administration of these substance is generally challenged by development of analgesic tolerance in patients. Therefore, it is highly valuable to find new pharmacological strategies for prolonged therapeutic procedures. In this respect, Taurine, a free amino acid, has been shown to induce significant analgesia at both spinal and peripheral levels through cholinergic mechanisms. In the present study, we used hot-plate analgesic test to investigate how taurine either as a single medication or in combination with sodium salicylate and morphine may affect both acute response to pain and development of analgesic tolerance. The effect of taurine was also tested on morphine withdrawal syndrome. Hyoscine butyl bromide was used to assess the role of muscarinic receptors in taurine-mediated effects. Finally, biochemical assay was done to reveal how the activity of brain acetylcholinesterase may change in relation with muscarinic receptor activity. Results indicated that acute administration of taurine-sodium salicylate combination causes more potent analgesia compared to the use of tau (but not SS alone) and this seems to be mediated via activity of muscarinic receptors in peripheral nervous system. Furthermore, the effect of this combination undergoes less analgesic tolerance during time. Combination of taurine and morphine is an effective strategy to attenuate both morphine analgesic tolerance and dependence and this also seems to depend on activity of muscarinic receptors, however through differential cellular mechanisms.
Collapse
Affiliation(s)
- Elham Akbari
- Student Research Committee, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran; Deparment of Physiology, School of Paramedical Sciences, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Farimah Beheshti
- Deparment of Physiology, School of Paramedical Sciences, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran; Neuroscience Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Hassan Azhdari Zarmehri
- Deparment of Physiology, School of Paramedical Sciences, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran; Neuroscience Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Seyed Yousof Mousavi
- Neuroscience Research Center, Kavosh Educational-Research Institute, Kabul, Afghanistan
| | - Masoumeh Gholami
- Deparment of Physiology, School of Paramedical Sciences, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran; Department of Physiology, School of Medicine, Arak University of Medical Sciences, Arak, Iran.
| | - S Mohammad Ahmadi-Soleimani
- Deparment of Physiology, School of Paramedical Sciences, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran; Neuroscience Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran.
| |
Collapse
|
4
|
Wan L, Jia RM, Ji LL, Qin XM, Hu L, Hu F, Han Y, Pan YB, Jiang CY, Liu WT. AMPK-autophagy-mediated inhibition of microRNA-30a-5p alleviates morphine tolerance via SOCS3-dependent neuroinflammation suppression. J Neuroinflammation 2022; 19:25. [PMID: 35093117 PMCID: PMC8800317 DOI: 10.1186/s12974-022-02384-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 01/10/2022] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The development of morphine tolerance is a clinical challenge for managing severe pain. Studies have shown that neuroinflammation is a critical aspect for the development of analgesic tolerance. We found that AMPK-autophagy activation could suppress neuroinflammation and improve morphine tolerance via the upregulation of suppressor of cytokine signaling 3 (SOCS3) by inhibiting the processing and maturation of microRNA-30a-5p. METHODS CD-1 mice were utilized for the tail-flick test to evaluate morphine tolerance. The microglial cell line BV-2 was utilized to investigate the mechanism of AMPK-autophagy-mediated posttranscriptional regulation of SOCS3. Proinflammatory cytokines were measured by western blotting and real-time PCR. The levels of SOCS3 and miRNA-processing enzymes were evaluated by western blotting, real-time PCR and immunofluorescence staining. RESULTS Based on experimental verification, miRNA-30a-5p could negatively regulate SOCS3. The AMPK activators AICAR, resveratrol and metformin downregulated miRNA-30a-5p. We found that AMPK activators specifically inhibited the processing and maturation of miRNA-30a-5p in microglia by degrading DICER and AGO2 via autophagy. Furthermore, a miRNA-30a-5p inhibitor significantly improved morphine tolerance via upregulation of SCOS3 in mice. It markedly increased the level of SOCS3 in the spinal cord of mice and subsequently inhibited morphine-induced phosphorylation of NF-κB p65. In addition, a miRNA-30a-5p inhibitor decreased the levels of IL-1β and TNF-α caused by morphine in microglia. CONCLUSION AMPK-autophagy activation suppresses neuroinflammation and improves morphine tolerance via the upregulation of SOCS3 by inhibiting miRNA-30a-5p.
Collapse
Affiliation(s)
- Li Wan
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Ru-Meng Jia
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Lu-Lu Ji
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Xin-Miao Qin
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Liang Hu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Fan Hu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Yuan Han
- Department of Anesthesiology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China
| | - Yin-Bing Pan
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Chun-Yi Jiang
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, 211166, Jiangsu, China.
| | - Wen-Tao Liu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, 211166, Jiangsu, China.
| |
Collapse
|
5
|
Wang H, Huang M, Wang W, Zhang Y, Ma X, Luo L, Xu X, Xu L, Shi H, Xu Y, Wang A, Xu T. Microglial TLR4-induced TAK1 phosphorylation and NLRP3 activation mediates neuroinflammation and contributes to chronic morphine-induced antinociceptive tolerance. Pharmacol Res 2021; 165:105482. [PMID: 33549727 DOI: 10.1016/j.phrs.2021.105482] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 02/02/2021] [Accepted: 02/02/2021] [Indexed: 01/04/2023]
Abstract
BACKGROUND AND PURPOSE The aim of this work was to investigate the role and signal transduction of toll-like receptor 4 (TLR4), TGF-β-activated kinase 1 (TAK1) and nod-like receptor protein 3 (NLRP3) in microglial in the development of morphine-induced antinociceptive tolerance. METHODS TLR4 and NLRP3 knockout mice and 5Z-7-oxozeaeno (a selective inhibitor against TAK1 activity) were used to observe their effect on the development of morphine tolerance. Intrathecal injections of morphine (0.75 mg/kg once daily for 7 days) were used to establish anti-nociceptive tolerance, which was measured by the tail-flick test. Spinal TLR4, TAK1, and NLRP3 expression levels and phosphorylation of TAK1 were evaluated by Western blotting and immunofluorescence. RESULTS Repeated treatment with morphine increased total expression of spinal TLR4, TAK1, and NLRP3 and phosphorylation of TAK1 in wild-type mice. TLR4 knockout attenuated morphine-induced tolerance and inhibited the chronic morphine-induced increase in NLRP3 and phosphorylation of TAK1. Compared with controls, mice that received 5Z-7-oxozeaenol showed decreased development of morphine tolerance and inhibition on repeated morphine-induced increase of NLRP3 but not TLR4. NLRP3 knockout mice showed resistance to morphine-induced analgesic tolerance with no effect on chronic morphine-induced expression of TLR4 and TAK1. TLR4, TAK1, and NLRP3 were collectively co-localized together and with the microglia marker Iba1. CONCLUSIONS Microglial TLR4 regulates TAK1 expression and phosphorylation and results in NLRP3 activation contributes to the development of morphine tolerance through regulating neuroinflammation. Targeting TLR4-TAK1-NLRP3 signaling to regulate neuro-inflammation will be alternative therapeutics and strategies for chronic morphine-induced antinociceptive tolerance.
Collapse
Affiliation(s)
- Haiyan Wang
- Department of Anesthesiology, Tongzhou People's Hospital, Nantong 226300, China; Department of Anesthesiology and Pain Clinic, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yi Shan Road, Shanghai 200233, China
| | - Min Huang
- Department of Anesthesiology and Pain Clinic, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yi Shan Road, Shanghai 200233, China
| | - Wenying Wang
- Department of Anesthesiology and Pain Clinic, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yi Shan Road, Shanghai 200233, China
| | - Yu Zhang
- Department of Anesthesiology and Pain Clinic, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yi Shan Road, Shanghai 200233, China
| | - Xiaqing Ma
- Department of Anesthesiology and Pain Clinic, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yi Shan Road, Shanghai 200233, China
| | - Limin Luo
- Department of Anesthesiology and Pain Clinic, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yi Shan Road, Shanghai 200233, China
| | - Xiaotao Xu
- Department of Anesthesiology and Pain Clinic, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yi Shan Road, Shanghai 200233, China
| | - Liang Xu
- Heart Health Center, East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Haibo Shi
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai 200233, China
| | - Yongming Xu
- Department of Anesthesiology and Pain Clinic, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yi Shan Road, Shanghai 200233, China.
| | - Aizhong Wang
- Department of Anesthesiology and Pain Clinic, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yi Shan Road, Shanghai 200233, China.
| | - Tao Xu
- Department of Anesthesiology, Tongzhou People's Hospital, Nantong 226300, China; Department of Anesthesiology and Pain Clinic, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yi Shan Road, Shanghai 200233, China.
| |
Collapse
|
6
|
Wang R, Man Y, Zhou M, Zhu Y, Wang L, Yang J. Neuropathic pain-induced cognitive dysfunction and down-regulation of neuronal pentraxin 2 in the cortex and hippocampus. Neuroreport 2021; 32:274-283. [PMID: 33512875 PMCID: PMC7870040 DOI: 10.1097/wnr.0000000000001584] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 12/08/2020] [Indexed: 10/29/2022]
Abstract
Evidence from both basic and clinical science suggests that neuropathic pain can induce cognitive dysfunction. However, these results are mainly based on a series of behavioral tests, there is a lack of quantitative variables to indicate cognitive impairment. Neuronal activity-regulated pentraxin (NPTX2) is a ubiquitously expressed, secreted protein in the nervous system. NPTX2 has been implicated to be involved in a variety of neuropathic diseases including Parkinson's disease, ischemia, and Alzheimer's disease. In a mouse model of chronic pain, NPTX2 is involved in the regulation of inflammatory responses. Here, we employ a variety of behavioral approaches to demonstrate that mice with chronic neuropathic pain have cognitive impairment and exhibit an increased anxiety response. The expression of NPTX2, but not NPTX1, was down-regulated in the hippocampus and cortex after chronic neuropathic pain exposure. The modulation effect of NPTX2 on cognitive function was also verified by behavioral tests using Nptx2 knock-out mice. Above all, we conclude that downregulation of NPTX2 induced by neuropathic pain may serve as an indicator of a progressive cognitive dysfunction during the induction and maintenance of spared nerve injury.
Collapse
Affiliation(s)
- Rongguo Wang
- Department of Anesthesiology, Intensive Care Medicine and Pain Medicine, First Affiliated Hospital of Soochow University, Suzhou
- Department of Anesthesiology, Xuzhou Central Hospital, Xuzhou, China
| | - Yuanyuan Man
- Department of Anesthesiology, Xuzhou Central Hospital, Xuzhou, China
| | - Meiyan Zhou
- Department of Anesthesiology, Xuzhou Central Hospital, Xuzhou, China
| | - Yangzi Zhu
- Department of Anesthesiology, Xuzhou Central Hospital, Xuzhou, China
| | - Liwei Wang
- Department of Anesthesiology, Xuzhou Central Hospital, Xuzhou, China
| | - Jianping Yang
- Department of Anesthesiology, Intensive Care Medicine and Pain Medicine, First Affiliated Hospital of Soochow University, Suzhou
| |
Collapse
|
7
|
Persistent Rheb-induced mTORC1 activation in spinal cord neurons induces hypersensitivity in neuropathic pain. Cell Death Dis 2020; 11:747. [PMID: 32920594 PMCID: PMC7487067 DOI: 10.1038/s41419-020-02966-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 08/21/2020] [Accepted: 08/31/2020] [Indexed: 12/21/2022]
Abstract
The small GTPase Ras homolog enriched in the brain (Rheb) can activate mammalian target of rapamycin (mTOR) and regulate the growth and cell cycle progression. We investigated the role of Rheb-mediated mTORC1 signaling in neuropathic pain. A chronic constriction injury (CCI) model was dopted. CCI induced obvious spinal Rheb expression and phosphorylation of mTOR, S6, and 4-E-BP1. Blocking mTORC1 signal with rapamycin alleviated the neuropathic pain and restored morphine efficacy in CCI model. Immunofluoresence showed a neuronal co-localization of CCI-induced Rheb and pS6. Rheb knockin mouse showed a similar behavioral phenotype as CCI. In spinal slice recording, CCI increased the firing frequency of neurons expressing HCN channels; inhibition of mTORC1 with rapamycin could reverse the increased spinal neuronal activity in neuropathic pain. Spinal Rheb is induced in neuropathic pain, which in turn active the mTORC1 signaling in CCI. Spinal Rheb-mTOR signal plays an important role in regulation of spinal sensitization in neuropathic pain, and targeting mTOR may give a new strategy for pain management.
Collapse
|
8
|
Yuan L, Luo L, Ma X, Wang W, Yu K, Shi H, Chen J, Chen D, Xu T. Chronic morphine induces cyclic adenosine monophosphate formation and hyperpolarization-activated cyclic nucleotide-gated channel expression in the spinal cord of mice. Neuropharmacology 2020; 176:108222. [PMID: 32659289 DOI: 10.1016/j.neuropharm.2020.108222] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/31/2020] [Accepted: 06/23/2020] [Indexed: 12/23/2022]
Abstract
Chronic morphine exposure persistently activates Gαi/o protein-coupled receptors and enhances adenylyl cyclase (AC) activity, which can increase cyclic adenosine monophosphate (cAMP) production. Direct binding of cAMP to the cytoplasmic site on hyperpolarization-activated cyclic nucleotide-gated (HCN) channels increases the probability of channel opening. HCN channels play a prominent role in chronic pain the disease that shares some common mechanisms with opioid tolerance. This compensatory AC activation may be responsible for the induction of morphine-induced analgesic tolerance. We investigated spinal cAMP formation and expression of HCN2 in the spinal cord, and observed the effect of AC inhibition on the induction of morphine analgesic tolerance. We found that chronic morphine-induced antinociceptive tolerance increased spinal cAMP formation and the expression of spinal HCN2. Inhibition of spinal AC partially blocked chronic morphine-induced cAMP formation and prevented the induction of morphine-induced analgesic tolerance. Inhibition of HCN2 also showed a partial preventive effect on morphine-induced tolerance, hypothermia tolerance and also the right-shift of the dose-response curve. We conclude that repeated morphine treatment increases AC activity and cAMP formation, and also spinal HCN2 expression, blockade of AC or HCN2 can prevent the development of morphine-induced analgesic tolerance.
Collapse
Affiliation(s)
- Lin Yuan
- Department of Anesthesiology, Tongzhou People's Hospital, Nantong, 226300, China
| | - Limin Luo
- Department of Anesthesiology, Affiliated Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, 200233, China
| | - Xiaqing Ma
- Department of Anesthesiology, Affiliated Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, 200233, China
| | - Wenying Wang
- Department of Anesthesiology, Affiliated Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, 200233, China
| | - Kangkang Yu
- Department of Pathology, Tongzhou People's Hospital, Nantong, 226300, China
| | - Haibo Shi
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, 200233, China
| | - Jian Chen
- Department of Orthopaedics, Tongzhou People's Hospital, Nantong, 226300, China.
| | - Dake Chen
- Department of Oncology, Tongzhou People's Hospital, Nantong, 226300, China.
| | - Tao Xu
- Department of Anesthesiology, Tongzhou People's Hospital, Nantong, 226300, China; Department of Anesthesiology, Affiliated Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, 200233, China.
| |
Collapse
|
9
|
Ma X, Chen R, Huang M, Wang W, Luo L, Kim DK, Jiang W, Xu T. DAMGO-induced μ opioid receptor internalization and recycling restore morphine sensitivity in tolerant rat. Eur J Pharmacol 2020; 878:173118. [PMID: 32320702 DOI: 10.1016/j.ejphar.2020.173118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 04/06/2020] [Accepted: 04/14/2020] [Indexed: 11/28/2022]
Abstract
This study investigated the effect of DAMGO-induced μ opioid receptor (MOR) internalization on morphine tolerance. Male Sprague-Dawley rats (200-250 g) aged 6-8 weeks were administered morphine via intrathecal (i.t.) injection (15 μg/10 μl twice daily for 6 days) to induce antinociceptive tolerance, which was evaluated using the tail-flick and paw-withdrawal tests. Response latency was calculated as the percentage of maximum possible effect (%MPE). A bolus of DAMGO was administered by i.t. injection on day 6, and the tail-flick and paw-withdrawal tests were carried out 24, 48, and 72 h later. Membrane and cytosolic MOR expression was assessed by western blotting. HEK293 cells were transfected with MOR-FLAG plasmid and after 6 days of morphine treatment (10 μM), the cells were treated with 1 μM DAMGO, and MOR localization was examined by immunofluorescence analysis 30 and 60 min later. Repeated morphine treatment induced tolerance after 5 days; however, i.t. DAMGO administration restored morphine sensitivity and enhanced acute morphine-induced antinociception after 24, 48, and 72 h. In HEK293 cells, DAMGO treatment stimulated MOR internalization after 30 min and MOR recycling to the membrane after 1 h. Membrane and cytoplasmic MOR expression in vivo was unchanged 24, 48, and 72 h after i.t. DAMGO injection. Morphine does not cause significant MOR internalization or downregulation, and can readily induce tolerance. DAMGO counters this effect by enhancing receptor endocytosis, thereby reversing morphine-induced antinociceptive tolerance and restoring its analgesic efficacy.
Collapse
Affiliation(s)
- Xiaqing Ma
- Department of Anesthesiology, Affiliated Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, 200233, China
| | - Rui Chen
- Department of Anesthesiology, Affiliated Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, 200233, China
| | - Min Huang
- Department of Anesthesiology, Affiliated Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, 200233, China
| | - Wenying Wang
- Department of Anesthesiology, Affiliated Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, 200233, China
| | - Limin Luo
- Department of Anesthesiology, Affiliated Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, 200233, China
| | - Dong Kwan Kim
- Department of Physiology, Konyang University College of Medicine, Seo-gu, Daejeon, 35365, Republic of Korea
| | - Wei Jiang
- Department of Anesthesiology, Affiliated Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, 200233, China.
| | - Tao Xu
- Department of Anesthesiology, Affiliated Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, 200233, China; Department of Anesthesiology, Tongzhou People's Hospital, Nantong, 226300, China.
| |
Collapse
|
10
|
He XT, Zhou KX, Zhao WJ, Zhang C, Deng JP, Chen FM, Gu ZX, Li YQ, Dong YL. Inhibition of Histone Deacetylases Attenuates Morphine Tolerance and Restores MOR Expression in the DRG of BCP Rats. Front Pharmacol 2018; 9:509. [PMID: 29867508 PMCID: PMC5962808 DOI: 10.3389/fphar.2018.00509] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 04/27/2018] [Indexed: 01/21/2023] Open
Abstract
The easily developed morphine tolerance in bone cancer pain (BCP) significantly hindered its clinical use. Increasing evidence suggests that histone deacetylases (HDACs) regulate analgesic tolerance subsequent to continuous opioid exposure. However, whether HDACs contribute to morphine tolerance in the pathogenesis of BCP is still unknown. In the current study, we explored the possible engagement of HDACs in morphine tolerance during the pathogenesis of BCP. After intra-tibia tumor cell inoculation (TCI), we found that the increased expression of HDACs was negatively correlated with the decreased expression of MOR in the DRG following TCI. The paw withdrawal threshold (PWT) and percentage maximum possible effects (MPEs) decreased rapidly in TCI rats when morphine was used alone. In contrast, the concomitant use of SAHA and morphine significantly elevated the PWT and MPEs of TCI rats compared to morphine alone. Additionally, we found that SAHA administration significantly elevated MOR expression in the DRG of TCI rats with or without morphine treatment. Moreover, the TCI-induced increase in the co-expression of MOR and HDAC1 in neurons was significantly decreased after SAHA administration. These results suggest that HDACs are correlated with the downregulation of MOR in the DRG during the pathogenesis of BCP. Inhibition of HDACs using SAHA can be used to attenuate morphine tolerance in BCP.
Collapse
Affiliation(s)
- Xiao-Tao He
- Department of Human Anatomy, Histology and Embryology, K.K. Leung Brain Research Centre, Preclinical School of Medicine, The Fourth Military Medical University, Xi'an, China.,Department of Periodontology, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Kai-Xiang Zhou
- Department of Human Anatomy, Histology and Embryology, K.K. Leung Brain Research Centre, Preclinical School of Medicine, The Fourth Military Medical University, Xi'an, China.,Student Brigade, The Fourth Military Medical University, Xi'an, China
| | - Wen-Jun Zhao
- Department of Human Anatomy, Histology and Embryology, K.K. Leung Brain Research Centre, Preclinical School of Medicine, The Fourth Military Medical University, Xi'an, China.,Student Brigade, The Fourth Military Medical University, Xi'an, China
| | - Chen Zhang
- Department of Human Anatomy, Histology and Embryology, K.K. Leung Brain Research Centre, Preclinical School of Medicine, The Fourth Military Medical University, Xi'an, China.,Student Brigade, The Fourth Military Medical University, Xi'an, China
| | - Jian-Ping Deng
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Fa-Ming Chen
- Department of Periodontology, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Ze-Xu Gu
- State Key Laboratory of Military Stomatology, Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Yun-Qing Li
- Department of Human Anatomy, Histology and Embryology, K.K. Leung Brain Research Centre, Preclinical School of Medicine, The Fourth Military Medical University, Xi'an, China.,Joint Laboratory of Neuroscience at Hainan Medical University and The Fourth Military Medical University, Hainan Medical University, Haikou, China
| | - Yu-Lin Dong
- Department of Human Anatomy, Histology and Embryology, K.K. Leung Brain Research Centre, Preclinical School of Medicine, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
11
|
Wang W, Ma X, Luo L, Huang M, Dong J, Zhang X, Jiang W, Xu T. Exchange factor directly activated by cAMP-PKCε signalling mediates chronic morphine-induced expression of purine P2X3 receptor in rat dorsal root ganglia. Br J Pharmacol 2018; 175:1760-1769. [PMID: 29500928 DOI: 10.1111/bph.14191] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 02/22/2018] [Accepted: 02/23/2018] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND AND PURPOSE The P2X3 receptor is a major receptor in the processing of nociceptive information in dorsal root ganglia. We investigated the role of the P2X3 receptor and the detailed mechanisms underlying chronic morphine-induced analgesic tolerance in rats. EXPERIMENTAL APPROACH Repeated i.t. morphine treatment was used to induce anti-nociceptive tolerance. The expression of spinal P2X3 receptor, phosphorylated PKCε and exchange factor directly activated by cAMP (Epac) were evaluated. Effects of A-317491 (P2X3 antagonist), ε-V1-2 (PKCε inhibitor) and ESI-09 (Epac inhibitor) on mechanical pain thresholds and tail-flick latency after chronic morphine treatment were determined. Co-localization of P2X3 receptor with NeuNs (marker of neuron), IB4 (marker of small DRG neurons), peripherin, PKCε and Epac were performed by double immunofluorescence staining. KEY RESULTS Chronic morphine time-dependently increased the expression of P2X3 receptor, phosphorylated PKCε and Epac in DRGs. ε-V1-2 prevented chronic morphine-induced expression of P2X3 receptor. ESI-09 decreased the phosphorylation of PKCε and up-regulated expression of Epac after chronic morphine exposure. Mechanical pain thresholds and tail-flick latency showed that A317491, ε-V1-2 and ESI-09 significantly attenuated the loss of morphine's analgesic potency. Morphine-induced P2X3 receptor expression mainly occurred in neurons staining for IB4 and peripherin. Co-localization of P2X3 receptor with PKCε and Epac was demonstrated in the same neurons. CONCLUSIONS AND IMPLICATIONS Chronic morphine exposure increased the expression of P2X3 receptor, and i.t. P2X3 receptor antagonists attenuated the loss of morphine's analgesic effect. Inhibiting Epac/PKCε signalling was shown to play a significant inhibitory role in chronic morphine-induced P2X3 receptor expression and attenuate morphine-induced tolerance.
Collapse
Affiliation(s)
- Wenying Wang
- Department of Anesthesiology, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaqing Ma
- Department of Anesthesiology, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, China.,Department of Anesthesiology, Nantong Third People's Hospital, Nantong University, Nantong, China
| | - Limin Luo
- Department of Anesthesiology, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Min Huang
- Department of Anesthesiology, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jing Dong
- Department of Anesthesiology, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoli Zhang
- Department of Anesthesiology, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Jiang
- Department of Anesthesiology, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Tao Xu
- Department of Anesthesiology, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, China.,Department of Anesthesiology, Tongzhou People's Hospital, Nantong, China
| |
Collapse
|
12
|
Abstract
This paper is the thirty-ninth consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2016 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior, and the roles of these opioid peptides and receptors in pain and analgesia, stress and social status, tolerance and dependence, learning and memory, eating and drinking, drug abuse and alcohol, sexual activity and hormones, pregnancy, development and endocrinology, mental illness and mood, seizures and neurologic disorders, electrical-related activity and neurophysiology, general activity and locomotion, gastrointestinal, renal and hepatic functions, cardiovascular responses, respiration and thermoregulation, and immunological responses.
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and CUNY Neuroscience Collaborative, Queens College, City University of New York, Flushing, NY 11367, United States.
| |
Collapse
|
13
|
Zhang Y, Tao GJ, Hu L, Qu J, Han Y, Zhang G, Qian Y, Jiang CY, Liu WT. Lidocaine alleviates morphine tolerance via AMPK-SOCS3-dependent neuroinflammation suppression in the spinal cord. J Neuroinflammation 2017; 14:211. [PMID: 29096659 PMCID: PMC5667445 DOI: 10.1186/s12974-017-0983-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 10/18/2017] [Indexed: 12/29/2022] Open
Abstract
Background Morphine tolerance is a clinical challenge, and its pathogenesis is closely related to the neuroinflammation mediated by Toll-like receptor 4 (TLR4). In Chinese pain clinic, lidocaine is combined with morphine to treat chronic pain. We found that lidocaine sufficiently inhibited neuroinflammation induced by morphine and improved analgesic tolerance on the basis of non-affecting pain threshold. Methods CD-1 mice were utilized for tail-flick test to evaluate morphine tolerance. The microglial cell line BV-2 was utilized to investigate the mechanism of lidocaine. Neuroinflammation-related cytokines were measured by western blotting and real-time PCR. The level of suppressor of cytokine signaling 3 (SOCS3) and adenosine 5′-monophosphate (AMP)-activated protein kinase (AMPK)-related signaling pathway was evaluated by western blotting, real-time PCR, enzyme-linked immunosorbent assay (ELISA), and immunofluorescence staining. Results Lidocaine potentiated an anti-nociceptive effect of morphine and attenuated the chronic analgesic tolerance. Lidocaine suppressed morphine-induced activation of microglia and downregulated inflammatory cytokines, interleukin-1β (IL-1β), and tumor necrosis factor-alpha (TNF-α) via upregulating SOCS3 by activating AMPK. Lidocaine enhanced AMPK phosphorylation in a calcium-dependent protein kinase kinase β (CaMKKβ)-dependent manner. Furthermore, lidocaine decreased the phosphorylation of p38 mitogen-activated protein kinase (MAPK) and inhibited the nuclear factor-κB (NF-κB) in accordance with the inhibitory effects to TLR4. Conclusions Lidocaine as a prevalent local anesthetic suppresses morphine tolerance efficiently. AMPK-dependent upregulation of SOCS3 by lidocaine plays a crucial role in the improvement of analgesic tolerance. Electronic supplementary material The online version of this article (10.1186/s12974-017-0983-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yan Zhang
- Neuroprotective Drug Discovery Key Laboratory of Nanjing Medical University, Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu, 211166, China.,Research Division of Pharmacology, China Pharmaceutical University, Nanjing, Jiangsu, 211100, China
| | - Gao-Jian Tao
- Neuroprotective Drug Discovery Key Laboratory of Nanjing Medical University, Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu, 211166, China.,Department of Pain, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210008, China
| | - Liang Hu
- Neuroprotective Drug Discovery Key Laboratory of Nanjing Medical University, Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Jie Qu
- Neuroprotective Drug Discovery Key Laboratory of Nanjing Medical University, Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Yuan Han
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
| | - Guangqin Zhang
- Research Division of Pharmacology, China Pharmaceutical University, Nanjing, Jiangsu, 211100, China
| | - Yanning Qian
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Chun-Yi Jiang
- Neuroprotective Drug Discovery Key Laboratory of Nanjing Medical University, Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu, 211166, China.
| | - Wen-Tao Liu
- Neuroprotective Drug Discovery Key Laboratory of Nanjing Medical University, Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu, 211166, China. .,Department of Pharmacy, Sir Run Run Shaw Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu, 210008, China.
| |
Collapse
|
14
|
Ahmadi S, Rafieenia F, Rostamzadeh J. Morphine-Induced Analgesic Tolerance Effect on Gene Expression of the NMDA Receptor Subunit 1 in Rat Striatum and Prefrontal Cortex. Basic Clin Neurosci 2016; 7:241-8. [PMID: 27563417 PMCID: PMC4981836 DOI: 10.15412/j.bcn.03070309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Introduction: Morphine is a potent analgesic but its continual use results in analgesic tolerance. Mechanisms of this tolerance remain to be clarified. However, changes in the functions of μ-opioid and N-Methyl-D-aspartate (NMDA) receptors have been proposed in morphine tolerance. We examined changes in gene expression of the NMDA receptor subunit 1 (NR1) at mRNA levels in rat striatum and prefrontal cortex (PFC) after induction of morphine tolerance. Methods: Morphine (10 mg/kg, IP) was injected in male Wistar rats for 7 consecutive days (intervention group), but control rats received just normal saline (1 mL/kg, IP). We used a hotplate test of analgesia to assess induction of tolerance to analgesic effects of morphine on days 1 and 8 of injections. Later, two groups of rats were sacrificed one day after 7 days of injections, their whole brains removed, and the striatum and PFC immediately dissected. Then, the NR1 gene expression was examined with a semi-quantitative RT-PCR method. Results: The results showed that long-term morphine a administration induces tolerance to analgesic effect of the opioid, as revealed by a significant decrease in morphine-induced analgesia on day 8 compared to day 1 of the injections (P<0.001). The results also showed that the NR1 gene expression at mRNA level in rats tolerant to morphine was significantly increased in the striatum (P<0.01) but decreased in the PFC (P<0.001). Conclusion: Therefore, changes in the NR1 gene expression in rat striatum and PFC have a region-specific association with morphine-induced analgesic tolerance.
Collapse
Affiliation(s)
- Shamseddin Ahmadi
- Department of Biological Science and Biotechnology, Faculty of Science, University of Kurdistan, Sanandaj, Iran
| | - Fatemeh Rafieenia
- Department of Biological Science and Biotechnology, Faculty of Science, University of Kurdistan, Sanandaj, Iran
| | - Jalal Rostamzadeh
- Department of Biological Science and Biotechnology, Faculty of Science, University of Kurdistan, Sanandaj, Iran
| |
Collapse
|
15
|
Zhang D, Yan H, Li H, Hao S, Zhuang Z, Liu M, Sun Q, Yang Y, Zhou M, Li K, Hang C. TGFβ-activated Kinase 1 (TAK1) Inhibition by 5Z-7-Oxozeaenol Attenuates Early Brain Injury after Experimental Subarachnoid Hemorrhage. J Biol Chem 2015; 290:19900-9. [PMID: 26100626 DOI: 10.1074/jbc.m115.636795] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Indexed: 11/06/2022] Open
Abstract
Accumulating evidence suggests that activation of mitogen-activated protein kinases (MAPKs) and nuclear factor NF-κB exacerbates early brain injury (EBI) following subarachnoid hemorrhage (SAH) by provoking proapoptotic and proinflammatory cellular signaling. Here we evaluate the role of TGFβ-activated kinase 1 (TAK1), a critical regulator of the NF-κB and MAPK pathways, in early brain injury following SAH. Although the expression level of TAK1 did not present significant alternation in the basal temporal lobe after SAH, the expression of phosphorylated TAK1 (Thr-187, p-TAK1) showed a substantial increase 24 h post-SAH. Intracerebroventricular injection of a selective TAK1 inhibitor (10 min post-SAH), 5Z-7-oxozeaenol (OZ), significantly reduced the levels of TAK1 and p-TAK1 at 24 h post-SAH. Involvement of MAPKs and NF-κB signaling pathways was revealed that OZ inhibited SAH-induced phosphorylation of p38 and JNK, the nuclear translocation of NF-κB p65, and degradation of IκBα. Furthermore, OZ administration diminished the SAH-induced apoptosis and EBI. As a result, neurological deficits caused by SAH were reversed. Our findings suggest that TAK1 inhibition confers marked neuroprotection against EBI following SAH. Therefore, TAK1 might be a promising new molecular target for the treatment of SAH.
Collapse
Affiliation(s)
- Dingding Zhang
- From the Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, 305 East Zhongshan Rd., Nanjing 210002, Jiangsu Province
| | - Huiying Yan
- From the Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, 305 East Zhongshan Rd., Nanjing 210002, Jiangsu Province
| | - Hua Li
- From the Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, 305 East Zhongshan Rd., Nanjing 210002, Jiangsu Province
| | - Shuangying Hao
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, 22 Hankou Rd., Nanjing 210093, Jiangsu Province, and
| | - Zong Zhuang
- From the Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, 305 East Zhongshan Rd., Nanjing 210002, Jiangsu Province
| | - Ming Liu
- the Department of Neurosurgery, School of Medicine, Southern Medical University (Guangzhou), Jinling Hospital, 305 East Zhongshan Rd., Nanjing 210002, Jiangsu Province, China
| | - Qing Sun
- From the Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, 305 East Zhongshan Rd., Nanjing 210002, Jiangsu Province
| | - Yiqing Yang
- From the Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, 305 East Zhongshan Rd., Nanjing 210002, Jiangsu Province
| | - Mengliang Zhou
- From the Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, 305 East Zhongshan Rd., Nanjing 210002, Jiangsu Province
| | - Kuanyu Li
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, 22 Hankou Rd., Nanjing 210093, Jiangsu Province, and
| | - Chunhua Hang
- From the Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, 305 East Zhongshan Rd., Nanjing 210002, Jiangsu Province, the Department of Neurosurgery, School of Medicine, Southern Medical University (Guangzhou), Jinling Hospital, 305 East Zhongshan Rd., Nanjing 210002, Jiangsu Province, China
| |
Collapse
|