1
|
Staehr C, Hinkley V, Matchkov VV, Rajanathan R, Hansen LMB, Eiby Y, Luque N, Wright I, Bjorkman ST, Miller SM, Grimley RS, Dettrick A, Chand K, Nguyen HL, Jones NM, Murphy TV, Sandow SL. Hypoxia and ischemic stroke modify cerebrovascular tone by upregulating endothelial BK(Ca) channels-Lessons from rat, pig, mouse, and human. Acta Physiol (Oxf) 2025; 241:e70030. [PMID: 40116175 PMCID: PMC11926774 DOI: 10.1111/apha.70030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Accepted: 03/01/2025] [Indexed: 03/23/2025]
Abstract
AIM In animal models and human cerebral arteries, the changes in endothelial cell (EC)-large conductance calcium-activated potassium channel (BKCa) distribution, expression, and function were determined in hypoxia and ischemic stroke. The hypothesis that hypoxia and ischemic stroke induce EC-BKCa in cerebral arteries was examined. METHODS Immunohistochemistry analyzed BKCa expression in EC and smooth muscle (SM) of the middle-cerebral artery (MCA) from rat, piglet, and mouse, and pial arteriole of human. Pressure myography with pharmacological intervention characterized EC-BKCa and TRPV4 function in rat MCA. Electron microscopy determined caveolae density and vessel properties in rat and mouse MCA. RESULTS In rat, pig, and human cerebral vessels, EC-BKCa was absent in normoxia; present after chronic (rat) and acute hypoxia (pig), post-ischemic stroke in human vessels, and after endothelin-1-induced stroke in rats. Mouse MCA EC-BKCa expression increased after acute hypoxia. In rat MCA post-hypoxia and stroke, EC and SMC caveolae density increased, with reduced medial thickness, and unchanged diameter. Caveolae and BKCa did not colocalize. In rat MCA, iberiotoxin (IbTx) potentiated pressure-induced tone in hypoxia/stroke, but not in normoxia. In normoxia, overall MCA tone was unaffected by endothelial removal, but was increased in hypoxia/stroke, where there was no additive effect of endothelial removal and IbTx on tone. Functional TRPV4 was expressed in EC of rat MCA post-stroke. CONCLUSIONS In post-hypoxia/stroke, but not in normoxia, EC-BKCa contribute to the regulation of MCA tone. Identifying unique up- and downstream signaling mechanisms associated with EC-BKCa is a potential therapeutic target to control blood flow post-hypoxia/stroke.
Collapse
Affiliation(s)
- Christian Staehr
- Department of Biomedicine, HealthAarhus UniversityAarhusDenmark
- Department of Anaesthesiology and Intensive CareAarhus University HospitalAarhusDenmark
- Biomedical Science, School of HealthUniversity of the Sunshine CoastMaroochydoreQueenslandAustralia
| | - Victoria Hinkley
- Biomedical Science, School of HealthUniversity of the Sunshine CoastMaroochydoreQueenslandAustralia
- UQ Centre for Clinical Research, School of Clinical Medicine, Faculty of MedicineUniversity of QueenslandSt LuciaQueenslandAustralia
| | | | | | | | - Yvonne Eiby
- UQ Centre for Clinical Research, School of Clinical Medicine, Faculty of MedicineUniversity of QueenslandSt LuciaQueenslandAustralia
| | - Nathan Luque
- Blacktown Clinical School, Faculty of MedicineWestern Sydney UniversityBlacktownNew South WalesAustralia
- Department of Physiology, School of Biomedical Sciences, Faculty of MedicineUniversity of New South WalesSydneyNew South WalesAustralia
| | - Ian Wright
- UQ Centre for Clinical Research, School of Clinical Medicine, Faculty of MedicineUniversity of QueenslandSt LuciaQueenslandAustralia
- School of Clinical Medicine, Faculty of MedicineJames Cook UniversityTownsvilleQueenslandAustralia
| | - Stella T. Bjorkman
- UQ Centre for Clinical Research, School of Clinical Medicine, Faculty of MedicineUniversity of QueenslandSt LuciaQueenslandAustralia
| | - Stephanie M. Miller
- UQ Centre for Clinical Research, School of Clinical Medicine, Faculty of MedicineUniversity of QueenslandSt LuciaQueenslandAustralia
| | - Rohan S. Grimley
- Sunshine Coast University HospitalBirtinyaQueenslandAustralia
- School of MedicineGriffith UniversityBirtinyaQueenslandAustralia
- Stroke and Ageing Research, Department of Medicine, School of Clinical Sciences at Monash HealthMonash UniversityClaytonVictoriaAustralia
| | - Andrew Dettrick
- Sunshine Coast University HospitalBirtinyaQueenslandAustralia
| | - Kirat Chand
- UQ Centre for Clinical Research, School of Clinical Medicine, Faculty of MedicineUniversity of QueenslandSt LuciaQueenslandAustralia
| | - Hong L. Nguyen
- Department of Pharmacology, School of Biomedical Sciences, Faculty of MedicineUniversity of New South WalesSydneyNew South WalesAustralia
| | - Nicole M. Jones
- Department of Pharmacology, School of Biomedical Sciences, Faculty of MedicineUniversity of New South WalesSydneyNew South WalesAustralia
| | - Tim V. Murphy
- Department of Physiology, School of Biomedical Sciences, Faculty of MedicineUniversity of New South WalesSydneyNew South WalesAustralia
| | - Shaun L. Sandow
- Biomedical Science, School of HealthUniversity of the Sunshine CoastMaroochydoreQueenslandAustralia
- UQ Centre for Clinical Research, School of Clinical Medicine, Faculty of MedicineUniversity of QueenslandSt LuciaQueenslandAustralia
| |
Collapse
|
2
|
Kolbe MR, Hohmann T, Hohmann U, Maronde E, Golbik R, Prell J, Illert J, Strauss C, Dehghani F. Elucidation of GPR55-Associated Signaling behind THC and LPI Reducing Effects on Ki67-Immunoreactive Nuclei in Patient-Derived Glioblastoma Cells. Cells 2023; 12:2646. [PMID: 37998380 PMCID: PMC10670585 DOI: 10.3390/cells12222646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/09/2023] [Accepted: 11/13/2023] [Indexed: 11/25/2023] Open
Abstract
GPR55 is involved in many physiological and pathological processes. In cancer, GPR55 has been described to show accelerating and decelerating effects in tumor progression resulting from distinct intracellular signaling pathways. GPR55 becomes activated by LPI and various plant-derived, endogenous, and synthetic cannabinoids. Cannabinoids such as THC exerted antitumor effects by inhibiting tumor cell proliferation or inducing apoptosis. Besides its effects through CB1 and CB2 receptors, THC modulates cellular responses among others via GPR55. Previously, we reported a reduction in Ki67-immunoreactive nuclei of human glioblastoma cells after GPR55 activation in general by THC and in particular by LPI. In the present study, we investigated intracellular mechanisms leading to an altered number of Ki67+ nuclei after stimulation of GPR55 by LPI and THC. Pharmacological analyses revealed a strongly involved PLC-IP3 signaling and cell-type-specific differences in Gα-, Gβγ-, RhoA-ROCK, and calcineurin signaling. Furthermore, immunochemical visualization of the calcineurin-dependent transcription factor NFAT revealed an unchanged subcellular localization after THC or LPI treatment. The data underline the cell-type-specific diversity of GPR55-associated signaling pathways in coupling to intracellular G proteins. Furthermore, this diversity might determine the outcome and the individual responsiveness of tumor cells to GPR55 stimulation by cannabin oids.
Collapse
Affiliation(s)
- Marc Richard Kolbe
- Department of Anatomy and Cell Biology, Medical Faculty, Martin Luther University Halle-Wittenberg, Grosse Steinstrasse 52, 06108 Halle (Saale), Germany; (M.R.K.); (T.H.); (U.H.)
| | - Tim Hohmann
- Department of Anatomy and Cell Biology, Medical Faculty, Martin Luther University Halle-Wittenberg, Grosse Steinstrasse 52, 06108 Halle (Saale), Germany; (M.R.K.); (T.H.); (U.H.)
| | - Urszula Hohmann
- Department of Anatomy and Cell Biology, Medical Faculty, Martin Luther University Halle-Wittenberg, Grosse Steinstrasse 52, 06108 Halle (Saale), Germany; (M.R.K.); (T.H.); (U.H.)
| | - Erik Maronde
- Department of Anatomy II, Goethe-University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany;
| | - Ralph Golbik
- Charles Tanford Protein Centre, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 3a, 06120 Halle (Saale), Germany;
| | - Julian Prell
- Department of Neurosurgery, Medical Faculty, Martin Luther University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120 Halle (Saale), Germany; (J.P.); (J.I.); (C.S.)
| | - Jörg Illert
- Department of Neurosurgery, Medical Faculty, Martin Luther University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120 Halle (Saale), Germany; (J.P.); (J.I.); (C.S.)
| | - Christian Strauss
- Department of Neurosurgery, Medical Faculty, Martin Luther University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120 Halle (Saale), Germany; (J.P.); (J.I.); (C.S.)
| | - Faramarz Dehghani
- Department of Anatomy and Cell Biology, Medical Faculty, Martin Luther University Halle-Wittenberg, Grosse Steinstrasse 52, 06108 Halle (Saale), Germany; (M.R.K.); (T.H.); (U.H.)
| |
Collapse
|
3
|
Asante I, Louie S, Yassine HN. Uncovering mechanisms of brain inflammation in Alzheimer's disease with APOE4: Application of single cell-type lipidomics. Ann N Y Acad Sci 2022; 1518:84-105. [PMID: 36200578 PMCID: PMC10092192 DOI: 10.1111/nyas.14907] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A chronic state of unresolved inflammation in Alzheimer's disease (AD) is intrinsically involved with the remodeling of brain lipids. This review highlights the effect of carrying the apolipoprotein E ε4 allele (APOE4) on various brain cell types in promoting an unresolved inflammatory state. Among its pleotropic effects on brain lipids, we focus on APOE4's activation of Ca2+ -dependent phospholipase A2 (cPLA2) and its effects on arachidonic acid, eicosapentaenoic acid, and docosahexaenoic acid signaling cascades in the brain. During the process of neurodegeneration, various brain cell types, such as astrocytes, microglia, and neurons, together with the neurovascular unit, develop distinct inflammatory phenotypes that impact their functions and have characteristic lipidomic fingerprints. We propose that lipidomic phenotyping of single cell-types harvested from brains differing by age, sex, disease severity stage, and dietary and genetic backgrounds can be employed to probe mechanisms of neurodegeneration. A better understanding of the brain cellular inflammatory/lipidomic response promises to guide the development of nutritional and drug interventions for AD dementia.
Collapse
Affiliation(s)
- Isaac Asante
- Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Stan Louie
- School of Pharmacy, University of Southern California, Los Angeles, California, USA
| | - Hussein N Yassine
- Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
4
|
Iozzo M, Sgrignani G, Comito G, Chiarugi P, Giannoni E. Endocannabinoid System and Tumour Microenvironment: New Intertwined Connections for Anticancer Approaches. Cells 2021; 10:cells10123396. [PMID: 34943903 PMCID: PMC8699381 DOI: 10.3390/cells10123396] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/24/2021] [Accepted: 11/30/2021] [Indexed: 01/01/2023] Open
Abstract
The tumour microenvironment (TME) is now recognised as a hallmark of cancer, since tumour:stroma crosstalk supports the key steps of tumour growth and progression. The dynamic co-evolution of the tumour and stromal compartments may alter the surrounding microenvironment, including the composition in metabolites and signalling mediators. A growing number of evidence reports the involvement of the endocannabinoid system (ECS) in cancer. ECS is composed by a complex network of ligands, receptors, and enzymes, which act in synergy and contribute to several physiological but also pathological processes. Several in vitro and in vivo evidence show that ECS deregulation in cancer cells affects proliferation, migration, invasion, apoptosis, and metastatic potential. Although it is still an evolving research, recent experimental evidence also suggests that ECS can modulate the functional behaviour of several components of the TME, above all the immune cells, endothelial cells and stromal components. However, the role of ECS in the tumour:stroma interplay remains unclear and research in this area is particularly intriguing. This review aims to shed light on the latest relevant findings of the tumour response to ECS modulation, encouraging a more in-depth analysis in this field. Novel discoveries could be promising for novel anti-tumour approaches, targeting the microenvironmental components and the supportive tumour:stroma crosstalk, thereby hindering tumour development.
Collapse
|
5
|
Kurano M, Kobayashi T, Sakai E, Tsukamoto K, Yatomi Y. Lysophosphatidylinositol, especially albumin-bound form, induces inflammatory cytokines in macrophages. FASEB J 2021; 35:e21673. [PMID: 34042213 DOI: 10.1096/fj.202100245r] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/23/2021] [Accepted: 05/03/2021] [Indexed: 12/12/2022]
Abstract
Lysophosphatidylinositol (LPI) is a glycero-lysophospholipid and a natural agonist against GPR55. The roles of the LPI/GPR55 axis in the pathogenesis of inflammation have been controversial. In the present study, we attempted to elucidate the roles of the LPI/GPR55 axis in inflammation, especially the secretion of inflammatory cytokines, IL-6 and TNF-α from macrophages. We treated RAW264.7 cells and mouse peritoneal macrophages (MPMs) with LPI and observed that LPI induced the secretion of IL-6 and TNF-α from these cells, as well as the phosphorylation of p38. These responses were inhibited by treatment with CID16020046 (CID), an antagonist against GPR55, or SB202190, an inhibitor of p38 cascade or knockdown of GPR55 with siRNA. Treatment with CID or ML-193, another antagonist against GPR55, attenuated the elevation of inflammatory cytokines in the plasma or tissue of db/db mice and in a septic mouse model induced using lipopolysaccharide, suggesting contributions to the improvement of insulin resistance and protection against organ injuries by treatment with CID or ML-193, respectively. In human subjects, although the serum LPI levels were not different, the levels of LPI in the lipoprotein fractions were lower and the levels in the lipoprotein-depleted fractions were higher in subjects with diabetes. LPI bound to albumin induced the secretion of IL-6 and TNF-α from RAW264.7 cells to a greater degree than LPI bound to LDL or HDL. These results suggest that LPI, especially the albumin-bound form, induced inflammatory cytokines depending on the GPR55/p38 pathway, which might contribute to the pathogenesis of obesity-induced inflammation and acute inflammation.
Collapse
Affiliation(s)
- Makoto Kurano
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Department of Clinical Laboratory, The University of Tokyo Hospital, Tokyo, Japan
| | - Tamaki Kobayashi
- Department of Clinical Laboratory, The University of Tokyo Hospital, Tokyo, Japan
| | - Eri Sakai
- Department of Clinical Laboratory, The University of Tokyo Hospital, Tokyo, Japan
| | - Kazuhisa Tsukamoto
- Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Yutaka Yatomi
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Department of Clinical Laboratory, The University of Tokyo Hospital, Tokyo, Japan
| |
Collapse
|
6
|
Walsh SK, Lipina C, Ang SY, Sato M, Chia LY, Kocan M, Hutchinson DS, Summers RJ, Wainwright CL. GPR55 regulates the responsiveness to, but does not dimerise with, α 1A-adrenoceptors. Biochem Pharmacol 2021; 188:114560. [PMID: 33844984 DOI: 10.1016/j.bcp.2021.114560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/26/2021] [Accepted: 04/06/2021] [Indexed: 11/15/2022]
Abstract
Emerging evidence suggests that G protein coupled receptor 55 (GPR55) may influence adrenoceptor function/activity in the cardiovascular system. Whether this reflects direct interaction (dimerization) between receptors or signalling crosstalk has not been investigated. This study explored the interaction between GPR55 and the alpha 1A-adrenoceptor (α1A-AR) in the cardiovascular system and the potential to influence function/signalling activities. GPR55 and α1A-AR mediated changes in both cardiac and vascular function was assessed in male wild-type (WT) and GPR55 homozygous knockout (GPR55-/-) mice by pressure volume loop analysis and isolated vessel myography, respectively. Dimerization of GPR55 with the α1A-AR was examined in transfected Chinese hamster ovary-K1 (CHO-K1) cells via Bioluminescence Resonance Energy Transfer (BRET). GPR55 and α1A-AR mediated signalling (extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation) was investigated in neonatal rat ventricular cardiomyocytes using AlphaScreen proximity assays. GPR55-/- mice exhibited both enhanced pressor and inotropic responses to A61603 (α1A-AR agonist), while in isolated vessels, A61603 induced vasoconstriction was attenuated by a GPR55-dependent mechanism. Conversely, GPR55-mediated vasorelaxation was not altered by pharmacological blockade of α1A-ARs with tamsulosin. While cellular studies demonstrated that GPR55 and α1A-AR failed to dimerize, pharmacological blockade of GPR55 altered α1A-AR mediated signalling and reduced ERK1/2 phosphorylation. Taken together, this study provides evidence that GPR55 and α1A-AR do not dimerize to form heteromers, but do interact at the signalling level to modulate the function of α1A-AR in the cardiovascular system.
Collapse
Affiliation(s)
- Sarah K Walsh
- Cardiometabolic Health Research, School of Pharmacy and Life Sciences, Robert Gordon University, Sir Ian Wood Building, Aberdeen AB10 7GJ, UK.
| | - Christopher Lipina
- Division of Cell Signalling and Immunology, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Sheng Y Ang
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Masaaki Sato
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Ling Yeong Chia
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Martina Kocan
- The Florey Institute of Neuroscience and Mental Health and School of Biosciences, University of Melbourne, Parkville, VIC, Australia
| | - Dana S Hutchinson
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Roger J Summers
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Cherry L Wainwright
- Cardiometabolic Health Research, School of Pharmacy and Life Sciences, Robert Gordon University, Sir Ian Wood Building, Aberdeen AB10 7GJ, UK
| |
Collapse
|
7
|
Mosca MG, Mangini M, Cioffi S, Barba P, Mariggiò S. Peptide targeting of lysophosphatidylinositol-sensing GPR55 for osteoclastogenesis tuning. Cell Commun Signal 2021; 19:48. [PMID: 33902596 PMCID: PMC8073907 DOI: 10.1186/s12964-021-00727-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 02/20/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND The G-protein-coupled receptor GPR55 has been implicated in multiple biological activities, which has fuelled interest in its functional targeting. Its controversial pharmacology and often species-dependent regulation have impacted upon the potential translation of preclinical data involving GPR55. RESULTS With the aim to identify novel GPR55 regulators, we have investigated lysophosphatidylinositol (LPI)-induced GPR55-mediated signal transduction. The expression system for wild-type and mutated GPR55 was HeLa cells silenced for their endogenous receptor by stable expression of a short-hairpin RNA specific for GPR55 5'-UTR, which allowed definition of the requirement of GPR55 Lys80 for LPI-induced MAPK activation and receptor internalisation. In RAW264.7 macrophages, GPR55 pathways were investigated by Gpr55 silencing using small-interfering RNAs, which demonstrated that LPI increased intracellular Ca2+ levels and induced actin filopodium formation through GPR55 activation. Furthermore, the LPI/GPR55 axis was shown to have an active role in osteoclastogenesis of precursor RAW264.7 cells induced by 'receptor-activator of nuclear factor kappa-β ligand' (RANKL). Indeed, this differentiation into mature osteoclasts was associated with a 14-fold increase in Gpr55 mRNA levels. Moreover, GPR55 silencing and antagonism impaired RANKL-induced transcription of the osteoclastogenesis markers: 'nuclear factor of activated T-cells, cytoplasmic 1', matrix metalloproteinase-9, cathepsin-K, tartrate-resistant acid phosphatase, and the calcitonin receptor, as evaluated by real-time PCR. Phage display was previously used to identify peptides that bind to GPR55. Here, the GPR55-specific peptide-P1 strongly inhibited osteoclast maturation of RAW264.7 macrophages, confirming its activity as a blocker of GPR55-mediated functions. Although osteoclast syncytium formation was not affected by pharmacological regulation of GPR55, osteoclast activity was dependent on GPR55 signalling, as shown with resorption assays on bone slices, where LPI stimulated and GPR55 antagonists inhibited bone erosion. CONCLUSIONS Our data indicate that GPR55 represents a target for development of novel therapeutic approaches for treatment of pathological conditions caused by osteoclast-exacerbated bone degradation, such as in osteoporosis or during establishment of bone metastases. Video abstract.
Collapse
Affiliation(s)
| | - Maria Mangini
- Institute of Protein Biochemistry, National Research Council, Naples, Italy.,Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| | - Stefania Cioffi
- Institute of Protein Biochemistry, National Research Council, Naples, Italy.,Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| | - Pasquale Barba
- Institute of Genetics and Biophysics, National Research Council, Naples, Italy
| | - Stefania Mariggiò
- Institute of Protein Biochemistry, National Research Council, Naples, Italy. .,Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy.
| |
Collapse
|
8
|
Vasodilatory effects of cannabidiol in human pulmonary and rat small mesenteric arteries: modification by hypertension and the potential pharmacological opportunities. J Hypertens 2021; 38:896-911. [PMID: 31800399 PMCID: PMC7170434 DOI: 10.1097/hjh.0000000000002333] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Objective: Cannabidiol (CBD) has been suggested as a potential antihypertensive drug. The aim of our study was to investigate its vasodilatory effect in isolated human pulmonary arteries (hPAs) and rat small mesenteric arteries (sMAs). Methods: Vascular effects of CBD were examined in hPAs obtained from patients during resection of lung carcinoma and sMAs isolated from spontaneously hypertensive (SHR); 11-deoxycorticosterone acetate (DOCA-salt) hypertensive rats or their appropriate normotensive controls using organ bath and wire myography, respectively. Results: CBD induced almost full concentration-dependent vasorelaxation in hPAs and rat sMAs. In hPAs, it was insensitive to antagonists of CB1 (AM251) and CB2 (AM630) receptors but it was reduced by endothelium denudation, cyclooxygenase inhibitors (indomethacin and nimesulide), antagonists of prostanoid EP4 (L161982), IP (Cay10441), vanilloid TRPV1 (capsazepine) receptors and was less potent under KCl-induced tone and calcium-activated potassium channel (KCa) inhibitors (iberiotoxin, UCL1684 and TRAM-34) and in hypertensive, overweight and hypercholesteremic patients. The time-dependent effect of CBD was sensitive to the PPARγ receptor antagonist GW9662. In rats, the CBD potency was enhanced in DOCA-salt and attenuated in SHR. The CBD-induced relaxation was inhibited in SHR and DOCA-salt by AM251 and only in DOCA-salt by AM630 and endothelium denudation. Conclusion: The CBD-induced relaxation in hPAs that was reduced in hypertensive, obese and hypercholesteremic patients was endothelium-dependent and mediated via KCa and IP, EP4, TRPV1 receptors. The CBD effect in rats was CB1-sensitive and dependent on the hypertension model. Thus, modification of CBD-mediated responses in disease should be considered when CBD is used for therapeutic purposes.
Collapse
|
9
|
Marichal-Cancino BA, González-Hernández A, MaassenVanDenBrink A, Ramírez-San Juan E, Villalón CM. Potential Mechanisms Involved in Palmitoylethanolamide-Induced Vasodepressor Effects in Rats. J Vasc Res 2020; 57:152-163. [PMID: 32248195 DOI: 10.1159/000506158] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 01/26/2020] [Indexed: 11/19/2022] Open
Abstract
Palmitoylethanolamide is an endogenous lipid that exerts complex vascular effects, enhances the effects of endocannabinoids and induces a direct hypotension, but the mechanisms involved have been poorly explored. Hence, this study investigated in Wistar pithed rats the role of CB1, CB2, TRPV1 and GPR55 receptors in the inhibition by palmitoylethanolamide of the vasopressor responses produced by sympathetic stimulation or exogenous noradrenaline. Frequency- and dose-dependent vasopressor responses were analysed before and during intravenous (i.v.) continuous infusions of palmitoylethanolamide in animals receiving i.v. bolus of the antagonists NIDA41020 (CB1), AM630 (CB2), capsazepine (TRPV1), and/or cannabidiol (GPR55). Palmitoyletha-nolamide (0.1-3.1 μg/kg/min) dose-dependently inhibited the sympathetically induced and noradrenaline-induced vasopressor responses. Both inhibitions were: (i) partially blocked by 100 μg/kg NIDA41020, 100 μg/kg capsazepine, or 31 μg/kg cannabidiol; (ii) unaffected by 310 μg/kg AM630; and (iii) abolished by the combination NIDA41020 + capsazepine + cannabidiol (100, 100, and 31 μg/kg, respectively). The resting blood pressure was decreased by palmitoylethanolamide (effect prevented by NIDA41020, capsazepine or cannabidiol, but not by AM630). These results suggest that: (i) palmitoylethanolamide inhibits the vasopressor responses to sympathetic stimulation and exogenous noradrenaline and that it induces hypotension; and (ii) all these effects are mediated by prejunctional and vascular CB1, TRPV1 and probably GPR55, but not by CB2, receptors.
Collapse
Affiliation(s)
- Bruno A Marichal-Cancino
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Ciudad Universitaria, Aguascalientes, Mexico
| | - Abimael González-Hernández
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus UNAM-Juriquilla, Querétaro, Mexico
| | - Antoinette MaassenVanDenBrink
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Eduardo Ramírez-San Juan
- Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Carlos M Villalón
- Departamento de Farmacobiología, Cinvestav-Coapa, Mexico City, Mexico,
| |
Collapse
|
10
|
A Novel Alternative in the Treatment of Detrusor Overactivity? In Vivo Activity of O-1602, the Newly Synthesized Agonist of GPR55 and GPR18 Cannabinoid Receptors. Molecules 2020; 25:molecules25061384. [PMID: 32197469 PMCID: PMC7144400 DOI: 10.3390/molecules25061384] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/15/2020] [Accepted: 03/17/2020] [Indexed: 02/07/2023] Open
Abstract
The aim of the research was to assess the impact of O-1602—novel GPR55 and GPR18 agonist—in the rat model of detrusor overactivity (DO). Additionally, its effect on the level of specific biomarkers was examined. To stimulate DO, 0.75% retinyl acetate (RA) was administered to female rats’ bladders. O-1602, at a single dose of 0.25 mg/kg, was injected intra-arterially during conscious cystometry. Furthermore, heart rate, blood pressure, and urine production were monitored for 24 h, and the impact of O-1602 on the levels of specific biomarkers was evaluated. An exposure of the urothelium to RA changed cystometric parameters and enhanced the biomarker levels. O-1602 did not affect any of the examined cystometric parameters or levels of biomarkers in control rats. However, the O-1602 injection into animals with RA-induced DO ameliorated the symptoms of DO and caused a reversal in the described changes in the concentration of CGRP, OCT3, BDNF, and NGF to the levels observed in the control, while the values of ERK1/2 and VAChT were significantly lowered compared with the RA-induced DO group, but were still statistically higher than in the control. O-1602 can improve DO, and may serve as a promising novel substance for the pharmacotherapy of bladder diseases.
Collapse
|
11
|
GPR55-mediated effects on brain microvascular endothelial cells and the blood-brain barrier. Neuroscience 2019; 414:88-98. [PMID: 31279825 DOI: 10.1016/j.neuroscience.2019.06.039] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 06/26/2019] [Accepted: 06/27/2019] [Indexed: 12/31/2022]
Abstract
GPR55, an atypical cannabinoid receptor activated by lysophosphatidylinositol (LPI) has been involved in various physiological and pathological processes. We examined the effect of GPR55 activation on rat brain microvascular endothelial cells (RBMVEC), an essential component of the blood-brain barrier (BBB). GPR55 was detected in RBMVEC by western blot and immunocytochemistry. Treatment of RBMVEC with LPI increased cytosolic Ca2+ concentration, [Ca2+]i, in a concentration-dependent manner; the effect was abolished by the GPR55 antagonist, ML-193. Repetitive application of LPI induced tachyphylaxis. LPI-induced increase in [Ca2+]i was not sensitive to U-73122, a phospholipase C inhibitor, but was abolished by the blockade of voltage-gated Ca2+ channels or in Ca2+-free saline, indicating that Ca2+ influx was involved in this response. LPI induced a biphasic change in RBMVEC membrane potential: a fast depolarization followed by a long-lasting hyperpolarization. The hyperpolarization phase was prevented by apamin and charibdotoxin, inhibitors of small- and intermediate-conductance Ca2+-activated K+ channels (KCa). Immunofluorescence studies indicate that LPI produced transient changes in tight and adherens junctions proteins and F-actin stress fibers. LPI decreased the electrical resistance of RBMVEC monolayer assessed with Electric Cell-Substrate Impedance Sensing (ECIS) in a dose-dependent manner. In vivo studies indicate that systemic administration of LPI increased the permeability of the BBB, assessed with Evans Blue method. Taken together, our results indicate that GPR55 activation modulates the function of endothelial cells of brain microvessels, produces a transient reduction in endothelial barrier function and increases BBB permeability.
Collapse
|
12
|
Robertson‐Gray OJ, Walsh SK, Ryberg E, Jönsson‐Rylander A, Lipina C, Wainwright CL. l-α-Lysophosphatidylinositol (LPI) aggravates myocardial ischemia/reperfusion injury via a GPR55/ROCK-dependent pathway. Pharmacol Res Perspect 2019; 7:e00487. [PMID: 31149342 PMCID: PMC6533556 DOI: 10.1002/prp2.487] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 04/11/2019] [Accepted: 05/02/2019] [Indexed: 12/15/2022] Open
Abstract
The phospholipid l-α-lysophosphatidylinositol (LPI), an endogenous ligand for GPR55, is elevated in patients with acute coronary syndrome, and a GPR55 antagonist cannabidiol (CBD) reduces experimental ischemia/reperfusion (I/R) injury. While LPI activates multiple signaling pathways, little is known about which ones are important in cardiomyocytes. In this study we explored whether activation of the Rho kinase/ROCK/p38 MAPK pathway is responsible for LPI-induced extension of I/R injury. Using a high-throughput screening method (dynamic mass redistribution; DMR), mouse- and human-induced pluripotent stem cell (iPSC) cardiomyocytes exposed to LPI were shown to exhibit a rapid, sustained, and concentration-dependent (1 nmol L-1-30 μmol L-1) cellular response. Y-27632 (ROCK inhibitor; 10 & 50 μmol L-1) and CBD (1 μmol L-1) both abolished the DMR response to LPI (10 μmol L-1). In murine iPSC cardiomyocytes, LPI-induced ROCK and p38 MAPK phosphorylation, both of which were prevented by Y-27632 and CBD, but did not induce JNK activation or cleavage of caspase-3. In hearts isolated from wild type (WT) mice subjected to 30 minutes global I/R, LPI (10 μmol L-1) administered via the coronary circulation increased infarct size when applied prior to ischemia onset, but not when given at the time of reperfusion. The exacerbation of tissue injury by LPI was not seen in hearts from GPR55-/- mice or in the presence of Y-27632, confirming that injury is mediated via the GPR55/ROCK/p38 MAPK pathway. These findings suggest that raised levels of LPI in the vicinity of a developing infarct may worsen the outcome of AMI.
Collapse
Affiliation(s)
- Olivia J. Robertson‐Gray
- Cardiometabolic Health ResearchSchool of Pharmacy & Life SciencesRobert Gordon UniversityAberdeenScotlandUK
- Present address:
Institute of Cardiovascular & Medical SciencesCollege of MedicalVeterinary and Life SciencesUniversity of GlasgowGlasgowScotlandUK
| | - Sarah K. Walsh
- Cardiometabolic Health ResearchSchool of Pharmacy & Life SciencesRobert Gordon UniversityAberdeenScotlandUK
| | - Erik Ryberg
- Cardiovascular& Metabolic Disease IMEDAstraZeneca R&DMölndalSweden
| | | | - Christopher Lipina
- Division of Cell Signalling & ImmunologySchool of Life SciencesUniversity of DundeeDundeeScotlandUK
| | - Cherry L. Wainwright
- Cardiometabolic Health ResearchSchool of Pharmacy & Life SciencesRobert Gordon UniversityAberdeenScotlandUK
| |
Collapse
|
13
|
Zhang C, Wang K, Yang L, Liu R, Chu Y, Qin X, Yang P, Yu H. Lipid metabolism in inflammation-related diseases. Analyst 2019; 143:4526-4536. [PMID: 30128447 DOI: 10.1039/c8an01046c] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
There are thousands of lipid species existing in cells, which belong to eight different categories. Lipids are the essential building blocks of cells. Recent studies have started to unveil the important functions of lipids in regulating cell metabolism. However, we are still at a very early stage in fully understanding the physiological and pathological functions of lipids. The application of lipidomics for studying lipid metabolism can provide a direct readout of the cellular status and broadens our understanding of the mechanisms that underpin metabolic disease states. This review provides an introduction to lipid metabolism and its role in modulating homeostasis and immunity. We also describe representative applications of lipidomics for studying lipid metabolism in inflammation-related diseases.
Collapse
Affiliation(s)
- Cuiping Zhang
- Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Huizenga MN, Sepulveda-Rodriguez A, Forcelli PA. Preclinical safety and efficacy of cannabidivarin for early life seizures. Neuropharmacology 2019; 148:189-198. [PMID: 30633929 DOI: 10.1016/j.neuropharm.2019.01.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 11/26/2018] [Accepted: 01/02/2019] [Indexed: 01/25/2023]
Abstract
A significant proportion of neonatal and childhood seizures are poorly controlled by existing anti-seizure drugs (ASDs), likely due to prominent differences in ionic homeostasis and network connectivity between the immature and mature brain. In addition to the poor efficacy of current ASDs, many induce apoptosis, impair synaptic development, and produce behavioral deficits when given during early postnatal development. There is growing interest in new targets, such as cannabidiol (CBD) and its propyl analog cannabidivarin (CBDV) for early life indications. While CBD was recently approved for treatment of refractory childhood epilepsies, little is known about the efficacy or safety of CBDV. Here, we addressed this gap through a systematic evaluation of CBDV against multiple seizure models in postnatal day (P) 10 and 20 animals. We also evaluated the impact of CBDV on acute neurotoxicity in immature rats. CBDV (50-200 mg/kg) displayed an age and model-specific profile of anticonvulsant action. In P10 rats, CBDV suppressed seizures only in the pentylenetetrazole model. In P20 rats, CBDV suppressed seizures in the pentylenetetrazole, DMCM, and maximal electroshock models. Between P10 and P20, we identified significant increases in mRNA expression of TRPV1 in multiple brain regions; when CBDV was tested in P20 TRPV1 knockout mice, anticonvulsant effects were attenuated. Finally, CBDV treatment generally avoided induction of neuronal degeneration in immature rats. Together, the efficacy and safety profile of CBDV suggest it may have therapeutic value for early life seizures.
Collapse
Affiliation(s)
- Megan N Huizenga
- Department of Pharmacology and Physiology, Georgetown University, Washington, DC, United States
| | - Alberto Sepulveda-Rodriguez
- Department of Pharmacology and Physiology, Georgetown University, Washington, DC, United States; Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC, United States
| | - Patrick A Forcelli
- Department of Pharmacology and Physiology, Georgetown University, Washington, DC, United States; Department of Neuroscience, Georgetown University, Washington, DC, United States; Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC, United States.
| |
Collapse
|
15
|
Alhouayek M, Masquelier J, Muccioli GG. Lysophosphatidylinositols, from Cell Membrane Constituents to GPR55 Ligands. Trends Pharmacol Sci 2018; 39:586-604. [PMID: 29588059 DOI: 10.1016/j.tips.2018.02.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 02/20/2018] [Accepted: 02/28/2018] [Indexed: 12/25/2022]
Abstract
Lysophosphatidylinositols (LPIs) are membrane constituents that alter the properties of said membranes. However, recent data showing that the once orphan receptor, GPR55, can act as a receptor for LPIs has sparked a renewed interest in LPIs as bioactive lipids. As evidence supporting the importance of LPIs and/or GPR55 is continuously accumulating and because LPI levels are altered in a number of pathologies such as obesity and cancer, the coming years should bring new, exciting discoveries to this field. In this review, we discuss the recent work on LPIs and on their molecular target, the GPR55 receptor. First, we summarize the metabolism of LPIs before outlining the cellular pathways activated by GPR55. Then, we review the actions of LPIs and GPR55 that could have potential pharmacological or therapeutic applications in several pathophysiological settings, such as cancer, obesity, pain, and inflammation.
Collapse
Affiliation(s)
- Mireille Alhouayek
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, Université catholique de Louvain, 1200 Bruxelles, Belgium; These authors contributed equally to this work
| | - Julien Masquelier
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, Université catholique de Louvain, 1200 Bruxelles, Belgium; These authors contributed equally to this work
| | - Giulio G Muccioli
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, Université catholique de Louvain, 1200 Bruxelles, Belgium.
| |
Collapse
|
16
|
Sierra S, Luquin N, Navarro-Otano J. The endocannabinoid system in cardiovascular function: novel insights and clinical implications. Clin Auton Res 2017; 28:35-52. [PMID: 29222605 DOI: 10.1007/s10286-017-0488-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 11/28/2017] [Indexed: 12/18/2022]
Abstract
RATIONALE Cardiovascular disease is now recognized as the number one cause of death in the world, and the size of the population at risk continues to increase rapidly. The dysregulation of the endocannabinoid (eCB) system plays a central role in a wide variety of conditions including cardiovascular disorders. Cannabinoid receptors, their endogenous ligands, as well as enzymes conferring their synthesis and degradation, exhibit overlapping distributions in the cardiovascular system. Furthermore, the pharmacological manipulation of the eCB system has effects on blood pressure, cardiac contractility, and endothelial vasomotor control. Growing evidence from animal studies supports the significance of the eCB system in cardiovascular disorders. OBJECTIVE To summarize the literature surrounding the eCB system in cardiovascular function and disease and the new compounds that may potentially extend the range of available interventions. RESULTS Drugs targeting CB1R, CB2R, TRPV1 and PPARs are proven effective in animal models mimicking cardiovascular disorders such as hypertension, atherosclerosis and myocardial infarction. Despite the setback of two clinical trials that exhibited unexpected harmful side-effects, preclinical studies are accelerating the development of more selective drugs with promising results devoid of adverse effects. CONCLUSION Over the last years, increasing evidence from basic and clinical research supports the role of the eCB system in cardiovascular function. Whereas new discoveries are paving the way for the identification of novel drugs and therapeutic targets, the close cooperation of researchers, clinicians and pharmaceutical companies is needed to achieve successful outcomes.
Collapse
Affiliation(s)
- Salvador Sierra
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA. .,Department of Physiology and Biophysics, Molecular Medicine Research Building, Virginia Commonwealth University, 1220 East Broad Street, Richmond, VA, 23298, USA.
| | - Natasha Luquin
- Department of Medical Genomics, Royal Prince Alfred Hospital, Sydney, Australia
| | - Judith Navarro-Otano
- Neurology Service, Electromyography, Motor Control and Neuropathic Pain Unit, Hospital Clínic de Barcelona, University of Barcelona, Barcelona, Spain
| |
Collapse
|
17
|
Karpińska O, Baranowska-Kuczko M, Malinowska B, Kloza M, Kusaczuk M, Gęgotek A, Golec P, Kasacka I, Kozłowska H. Mechanisms of l-alpha-lysophosphatidylinositol-induced relaxation in human pulmonary arteries. Life Sci 2017; 192:38-45. [PMID: 29155298 DOI: 10.1016/j.lfs.2017.11.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 11/11/2017] [Accepted: 11/15/2017] [Indexed: 01/13/2023]
Abstract
AIMS l-Alpha-lysophosphatidylinositol (LPI) is an endogenous agonist of G protein-coupled receptor 55 (GPR55) which relaxes mesenteric arteries on activation. The aim of the present study was to determine the influence and underlying mechanisms of LPI-induced relaxation in human pulmonary arteries (hPAs). MAIN METHODS Functional studies were performed in isolated hPAs using organ bath technique. The expression of GPR55 in hPAs and bronchioles was determined by real-time qPCR, Western blot analysis, and immunohistochemistry. KEY FINDINGS LPI induced a concentration-dependent vasorelaxation in endothelium-intact hPAs. This effect was attenuated by the GPR55 antagonist CID16020046, the peroxisome proliferator-activated receptor-γ (PPARγ) antagonist GW9662, the putative endothelial cannabinoid receptor (CBe) antagonist O-1918 and the inhibitor of nitric oxide (NO) synthase (L-NAME). In addition, vasorelaxation was also attenuated by the presence of a high KCl concentration, selective blockers of small (KCa2.3; UCL1684), intermediate (KCa3.1; TRAM-34) and large conductance (KCa1.1; iberiotoxin) calcium-activated potassium channels and by endothelium denudation. However, vasorelaxation was not attenuated by the cannabinoid CB1 receptor antagonist AM251 or by the cyclooxygenase inhibitor indomethacin. SIGNIFICANCE The study showed that the LPI-induced vasorelaxation was endothelium-dependent and mediated by GPR55, PPARγ and CBe receptors, occurred in a NO- and calcium-activated potassium channel-dependent manner in isolated hPAs. LPI seems to possess positive, hypotensive properties in pulmonary vascular bed.
Collapse
Affiliation(s)
- Olga Karpińska
- Department of Experimental Physiology and Pathophysiology, Medical University of Białystok, Mickiewicza Str. 2A, 15-089 Białystok, Poland.
| | - Marta Baranowska-Kuczko
- Department of Experimental Physiology and Pathophysiology, Medical University of Białystok, Mickiewicza Str. 2A, 15-089 Białystok, Poland
| | - Barbara Malinowska
- Department of Experimental Physiology and Pathophysiology, Medical University of Białystok, Mickiewicza Str. 2A, 15-089 Białystok, Poland
| | - Monika Kloza
- Department of Experimental Physiology and Pathophysiology, Medical University of Białystok, Mickiewicza Str. 2A, 15-089 Białystok, Poland
| | - Magdalena Kusaczuk
- Department of Pharmaceutical Biochemistry, Medical University of Białystok, Mickiewicza Str. 2A, 15-089 Białystok, Poland
| | - Agnieszka Gęgotek
- Department of Inorganic and Analytical Chemistry, Medical University of Białystok, Mickiewicza Str. 2D, 15-222 Białystok, Poland
| | - Paweł Golec
- Department of Thoracic Surgery, Medical University of Białystok, M. Skłodowskiej-Curie Str. 24A, 15-276 Białystok, Poland
| | - Irena Kasacka
- Department of Histology and Cytophysiology, Medical University of Białystok, Mickiewicza Str. 2C, 15-222 Białystok, Poland
| | - Hanna Kozłowska
- Department of Experimental Physiology and Pathophysiology, Medical University of Białystok, Mickiewicza Str. 2A, 15-089 Białystok, Poland
| |
Collapse
|
18
|
Morales P, Reggio PH. An Update on Non-CB 1, Non-CB 2 Cannabinoid Related G-Protein-Coupled Receptors. Cannabis Cannabinoid Res 2017; 2:265-273. [PMID: 29098189 PMCID: PMC5665501 DOI: 10.1089/can.2017.0036] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The endocannabinoid system (ECS) has been shown to be of great importance in the regulation of numerous physiological and pathological processes. To date, two Class A G-protein-coupled receptors (GPCRs) have been discovered and validated as the main therapeutic targets of this system: the cannabinoid receptor type 1 (CB1), which is the most abundant neuromodulatory receptor in the brain, and the cannabinoid receptor type 2 (CB2), predominantly found in the immune system among other organs and tissues. Endogenous cannabinoid receptor ligands (endocannabinoids) and the enzymes involved in their synthesis, cell uptake, and degradation have also been identified as part of the ECS. However, its complex pharmacology suggests that other GPCRs may also play physiologically relevant roles in this therapeutically promising system. In the last years, GPCRs such as GPR18 and GPR55 have emerged as possible missing members of the cannabinoid family. This categorization still stimulates strong debate due to the lack of pharmacological tools to validate it. Because of their close phylogenetic relationship, the Class A orphan GPCRs, GPR3, GPR6, and GPR12, have also been associated with the cannabinoids. Moreover, certain endo-, phyto-, and synthetic cannabinoid ligands have displayed activity at other well-established GPCRs, including the opioid, adenosine, serotonin, and dopamine receptor families. In addition, the cannabinoid receptors have also been shown to form dimers with other GPCRs triggering cross-talk signaling under specific conditions. In this mini review, we aim to provide insight into the non-CB1, non-CB2 cannabinoid-related GPCRs that have been reported thus far. We consider the physiological relevance of these molecular targets in modulating the ECS.
Collapse
Affiliation(s)
- Paula Morales
- Chemistry and Biochemistry Department, UNC Greensboro, Greensboro, North Carolina
| | - Patricia H. Reggio
- Chemistry and Biochemistry Department, UNC Greensboro, Greensboro, North Carolina
| |
Collapse
|
19
|
Harada K, Kitaguchi T, Kamiya T, Aung KH, Nakamura K, Ohta K, Tsuboi T. Lysophosphatidylinositol-induced activation of the cation channel TRPV2 triggers glucagon-like peptide-1 secretion in enteroendocrine L cells. J Biol Chem 2017; 292:10855-10864. [PMID: 28533434 DOI: 10.1074/jbc.m117.788653] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 05/17/2017] [Indexed: 01/07/2023] Open
Abstract
The lysophosphatidylinositol (LPI) has crucial roles in multiple physiological processes, including insulin exocytosis from pancreatic islets. However, the role of LPI in secretion of glucagon-like peptide-1 (GLP-1), a hormone that enhances glucose-induced insulin secretion, is unclear. Here, we used the murine enteroendocrine L cell line GLUTag and primary murine small intestinal cells to elucidate the mechanism of LPI-induced GLP-1 secretion. Exogenous LPI addition increased intracellular Ca2+ concentrations ([Ca2+] i ) in GLUTag cells and induced GLP-1 secretion from both GLUTag and acutely prepared primary intestinal cells. The [Ca2+] i increase was suppressed by an antagonist for G protein-coupled receptor 55 (GPR55) and by silencing of GPR55 expression, indicating involvement of Gq and G12/13 signaling pathways in the LPI-induced increased [Ca2+] i levels and GLP-1 secretion. However, GPR55 agonists did not mimic many of the effects of LPI. We also found that phospholipase C inhibitor and Rho-associated kinase inhibitor suppressed the [Ca2+] i increase and that LPI increased the number of focal adhesions, indicating actin reorganization. Of note, blockage or silencing of transient receptor potential cation channel subfamily V member 2 (TRPV2) channels suppressed both the LPI-induced [Ca2+] i increase and GLP-1 secretion. Furthermore, LPI accelerated TRPV2 translocation to the plasma membrane, which was significantly suppressed by a GPR55 antagonist. These findings suggest that TRPV2 activation via actin reorganization induced by Gq and G12/13 signaling is involved in LPI-stimulated GLP-1 secretion in enteroendocrine L cells. Because GPR55 agonists largely failed to mimic the effects of LPI, its actions on L cells are at least partially independent of GPR55 activation.
Collapse
Affiliation(s)
- Kazuki Harada
- From the Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan
| | - Tetsuya Kitaguchi
- Cell Signaling Group, Waseda Bioscience Research Institute in Singapore (WABIOS), Singapore 138667, Singapore.,Comprehensive Research Organization, Waseda University, Tokyo 162-0041, Japan, and
| | - Taichi Kamiya
- From the Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan
| | - Kyaw Htet Aung
- National Research Institute for Child Health and Development, Tokyo 157-8535, Japan
| | - Kazuaki Nakamura
- National Research Institute for Child Health and Development, Tokyo 157-8535, Japan
| | - Kunihiro Ohta
- From the Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan
| | - Takashi Tsuboi
- From the Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan,
| |
Collapse
|
20
|
Bondarenko AI, Montecucco F, Panasiuk O, Sagach V, Sidoryak N, Brandt KJ, Mach F. GPR55 agonist lysophosphatidylinositol and lysophosphatidylcholine inhibit endothelial cell hyperpolarization via GPR-independent suppression of Na +-Ca 2+ exchanger and endoplasmic reticulum Ca 2+ refilling. Vascul Pharmacol 2017; 89:39-48. [PMID: 28064014 PMCID: PMC6520228 DOI: 10.1016/j.vph.2017.01.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 12/21/2016] [Accepted: 01/03/2017] [Indexed: 11/18/2022]
Abstract
Lysophosphatidylinositol (LPI) and lysophosphatidylcholine (LPC) are lipid signaling molecules that induce endothelium-dependent vasodilation. In addition, LPC suppresses acetylcholine (Ach)-induced responses. We aimed to determine the influence of LPC and LPI on hyperpolarizing responses in vitro and in situ endothelial cells (EC) and identify the underlying mechanisms. Using patch-clamp method, we show that LPI and LPC inhibit EC hyperpolarization to histamine and suppress Na+/Ca2+ exchanged (NCX) currents in a concentration-dependent manner. The inhibition is non-mode-specific and unaffected by intracellular GDPβS infusion and tempol, a superoxide dismutase mimetic. In excised mouse aorta, LPI strongly inhibits the sustained and the peak endothelial hyperpolarization induced by Ach, but not by SKA-31, an opener of Ca2+-dependent K+ channels of intermediate and small conductance. The hyperpolarizing responses to consecutive histamine applications are strongly reduced by NCX inhibition. In a Ca2+-re-addition protocol, bepridil, a NCX inhibitor, and KB-R7943, a blocker of reversed NCX, inhibit the hyperpolarizing responses to Ca2+-re-addition following Ca2+ stores depletion. These finding indicate that LPC and LPI inhibit endothelial hyperpolarization to Ach and histamine independently of G-protein coupled receptors and superoxide anions. Reversed NCX is critical for ER Ca2+ refilling in EC. The inhibition of NCX by LPI and LPC underlies diminished endothelium-dependent responses and endothelial dysfunction accompanied by increased levels of these lipids in the blood.
Collapse
Affiliation(s)
- Alexander I Bondarenko
- Circulatory Physiology Department, Bogomoletz Institute of Physiology NAS of Ukraine, Bogomoletz Str.4, 01024 Kiev, Ukraine; Medical University of Graz, Institute of Molecular Biology and Biochemistry, Graz 8010, Austria.
| | - Fabrizio Montecucco
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy; IRCCS AOU San Martino - IST Istituto Nazionale per la Ricerca sul Cancro, Largo Benzi 10, 16132 Genoa, Italy
| | - Olga Panasiuk
- Circulatory Physiology Department, Bogomoletz Institute of Physiology NAS of Ukraine, Bogomoletz Str.4, 01024 Kiev, Ukraine
| | - Vadim Sagach
- Circulatory Physiology Department, Bogomoletz Institute of Physiology NAS of Ukraine, Bogomoletz Str.4, 01024 Kiev, Ukraine
| | - Nataliya Sidoryak
- Department of Physiology of Human and Animals, Melitopol State Pedagogical University, Ukraine
| | - Karim J Brandt
- Division of Cardiology, Foundation for Medical Researches, Department of Internal Medicine, University of Geneva, Av. de la Roseraie 64, CH-1211 Geneva 4, Switzerland
| | - François Mach
- Division of Cardiology, Foundation for Medical Researches, Department of Internal Medicine, University of Geneva, Av. de la Roseraie 64, CH-1211 Geneva 4, Switzerland
| |
Collapse
|
21
|
Al Suleimani YM, Al Mahruqi AS. The endogenous lipid N-arachidonoyl glycine is hypotensive and nitric oxide-cGMP-dependent vasorelaxant. Eur J Pharmacol 2016; 794:209-215. [PMID: 27890711 DOI: 10.1016/j.ejphar.2016.11.040] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 11/13/2016] [Accepted: 11/23/2016] [Indexed: 10/20/2022]
Abstract
N-arachidonoyl glycine (NAGLY), is the endogenous lipid that activates the G protein-couple receptor 18 (GPR18) with vasodilatory activity in resistance arteries. This study investigates its hemodynamic effects and mechanisms of vasorelaxation. Hemodynamic effects of NAGLY in rats were assessed using a Biopac system and its vascular responses were assessed using a wire myograph. NAGLY (1mg/kg) decreased blood pressure by 69.4±5.5% and reduced renal blood flow by 88±12% and the effects were not sensitive to inhibition by O-1918 (3mg/kg). In resistant vessels, NAGLY (1-30µM) induced concentration- and endothelium-dependent vasorelaxation and the effect was inhibited by the nitric oxide synthase inhibitor, L-NAME (300µM), a cGMP synthase inhibitor, ODQ (10µM), the antagonists of "endothelial anandamide" receptor, rimonabant (3µM) and O-1918 (10µM) and the inhibitor of Na+/Ca2+ exchanger (NCX), KB-R7943 (10µM). On the other hand, NAGLY-induced vasorelaxation was not affected by CID 16020046 (GPR55 antagonist), AM 251 (cannabinoid CB1 receptor antagonist), AM 630 (cannabinoid CB2 receptor antagonist), capsazepine (TRPV1 antagonist), indomethacin (cyclooxygenase inhibitor), TRAM34 (IKCa channel blocker), iberiotoxin (BKCa channel blocker) and GW9662 (PPARɤ antagonist). At low concentrations of carbachol, NAGLY potentiated carbachol-induced vasorelaxation. NAGLY is an endothelium-dependent vasodilator and hypotensive lipid. The vasorelaxation is predominantly via activation of nitric oxide-cGMP pathway and NCX and probably mediated by the "endothelial anandamide" receptor, while the hypotensive effect of NAGLY appears not to involve the anandamide receptor. NAGLY also potentiates carbachol-induced vasorelaxation, the mechanism of which might involve stimulation of NO release.
Collapse
Affiliation(s)
- Yousuf M Al Suleimani
- Department of Pharmacology and Clinical Pharmacy, College of Medicine and Health Sciences, Sultan Qaboos University, 35, Alkoudh 123, Sultanate of Oman.
| | - Ahmed S Al Mahruqi
- Department of Pharmacology and Clinical Pharmacy, College of Medicine and Health Sciences, Sultan Qaboos University, 35, Alkoudh 123, Sultanate of Oman
| |
Collapse
|
22
|
Montecucco F, Bondarenko AI, Lenglet S, Burger F, Piscitelli F, Carbone F, Roth A, Liberale L, Dallegri F, Brandt KJ, Fraga-Silva RA, Stergiopulos N, Di Marzo V, Mach F. Treatment with the GPR55 antagonist CID16020046 increases neutrophil activation in mouse atherogenesis. Thromb Haemost 2016; 116:987-997. [PMID: 27465665 DOI: 10.1160/th16-02-0139] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 07/04/2016] [Indexed: 12/20/2022]
Abstract
Endocannabinoids modulate atherogenesis by triggering different receptors. Recently, orphan G protein-coupled receptors (GPRs) were suggested to be activated by endocannabinoids, possibly regulating vasorelaxation. Here, we investigated whether GPR55 antagonism with CID16020046 would impact on atherosclerotic size and inflammation in two mouse models of early and more advanced atherogenesis. Eleven-week old ApoE-/- mice were fed either a normal diet ([ND] for 16 weeks) or a high-cholesterol diet ([HD] for 11 weeks), resulting in different degrees of hypercholesterolaemia and size of atherosclerosis. CID16020046 (0.5 mg/kg) or vehicle were intraperitoneally administrated five times per week in the last three weeks before euthanasia. Treatment with CID1602004 was well-tolerated, but failed to affect atherosclerotic plaque and necrotic core size, fibrous cap thickness, macrophage and smooth muscle cell content as well as Th cell polarisation. In ND mice, treatment with CID1602004 was associated with increased chemokine production, neutrophil and MMP-9 intraplaque content as well as reduced collagen as compared to vehicle-treated animals. In HD mice, CID1602004 increased intraplaque MMP-9 and abrogated collagen content without affecting neutrophils. In vitro, serum from CID1602004-treated ND mice increased mouse neutrophil chemotaxis towards CXCL2 as compared to serum from vehicle-treated animals. CID1602004 dose-dependently induced neutrophil degranulation that was reverted by co-incubation with the GPR55 agonist Abn-CBD. In supernatants from degranulation experiments, increased levels of the endocannabinoid and putative GPR55 ligand anandamide (AEA) were found, suggesting its possible autocrine control of neutrophil activity. These results indicate that GPR55 is critical for the negative control of neutrophil activation in different phases of atherogenesis.
Collapse
Affiliation(s)
- Fabrizio Montecucco
- Prof. Fabrizio Montecucco, MD, PhD, First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy, Tel.: +39 010 353 86 94, Fax: +39 010 353 86 86, E-mail:
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
AL SULEIMANI YM, HILEY CR. Characterization of Calcium Signals Provoked by Lysophosphatidylinositol in Human Microvascular Endothelial Cells. Physiol Res 2016; 65:53-62. [DOI: 10.33549/physiolres.932962] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The lipid molecule, lysophosphatidylinositol (LPI), is hypothesised to form part of a novel lipid signalling system that involves the G protein-coupled receptor GPR55 and distinct intracellular signalling cascades in endothelial cells. This work aimed to study the possible mechanisms involved in LPI-evoked cytosolic Ca2+ mobilization in human brain microvascular endothelial cells. Changes in intracellular Ca2+ concentrations were measured using cell population Ca2+ assay. LPI evoked biphasic elevation of intracellular calcium concentration, a rapid phase and a sustained phase. The rapid phase was attenuated by the inhibitor of PLC (U 73122), inhibitor of IP3 receptors, 2-APB and the depletor of endoplasmic reticulum Ca2+ store, thapsigargin. The sustained phase, on the other hand, was enhanced by U 73122 and abolished by the RhoA kinase inhibitor, Y-27632. In conclusion, the Ca2+ signal evoked by LPI is characterised by a rapid phase of Ca2+ release from the endoplasmic reticulum, and requires activation of the PLC-IP3 signalling pathway. The sustained phase mainly depends on RhoA kinase activation. LPI acts as novel lipid signalling molecule in endothelial cells, and elevation of cytosolic Ca2+ triggered by it may present an important intracellular message required in gene expression and controlling of vascular tone.
Collapse
Affiliation(s)
- Y. M. AL SULEIMANI
- Department of Pharmacology and Clinical Pharmacy, College of Medicine and Health Sciences, Sultan Qaboos University, Sultanate of Oman
| | | |
Collapse
|
24
|
Lysophosphatidylinositol Signalling and Metabolic Diseases. Metabolites 2016; 6:metabo6010006. [PMID: 26784247 PMCID: PMC4812335 DOI: 10.3390/metabo6010006] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 01/07/2016] [Accepted: 01/11/2016] [Indexed: 11/28/2022] Open
Abstract
Metabolism is a chemical process used by cells to transform food-derived nutrients, such as proteins, carbohydrates and fats, into chemical and thermal energy. Whenever an alteration of this process occurs, the chemical balance within the cells is impaired and this can affect their growth and response to the environment, leading to the development of a metabolic disease. Metabolic syndrome, a cluster of several metabolic risk factors such as abdominal obesity, insulin resistance, high cholesterol and high blood pressure, and atherogenic dyslipidaemia, is increasingly common in modern society. Metabolic syndrome, as well as other diseases, such as diabetes, obesity, hyperlipidaemia and hypertension, are associated with abnormal lipid metabolism. Cellular lipids are the major component of cell membranes; they represent also a valuable source of energy and therefore play a crucial role for both cellular and physiological energy homeostasis. In this review, we will focus on the physiological and pathophysiological roles of the lysophospholipid mediator lysophosphatidylinositol (LPI) and its receptor G-protein coupled receptor 55 (GPR55) in metabolic diseases. LPI is a bioactive lipid generated by phospholipase A (PLA) family of lipases which is believed to play an important role in several diseases. Indeed LPI can affect various functions such as cell growth, differentiation and motility in a number of cell-types. Recently published data suggest that LPI plays an important role in different physiological and pathological contexts, including a role in metabolism and glucose homeostasis.
Collapse
|
25
|
Mechanisms of vasorelaxation induced by the cannabidiol analogue compound O-1602 in the rat small mesenteric artery. Eur J Pharmacol 2015; 765:107-14. [DOI: 10.1016/j.ejphar.2015.08.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Revised: 08/16/2015] [Accepted: 08/17/2015] [Indexed: 11/20/2022]
|
26
|
Meikle PJ, Barlow CK, Mellett NA, Mundra PA, Bonham MP, Larsen A, Cameron-Smith D, Sinclair A, Nestel PJ, Wong G. Postprandial Plasma Phospholipids in Men Are Influenced by the Source of Dietary Fat. J Nutr 2015; 145:2012-8. [PMID: 26180244 DOI: 10.3945/jn.115.210104] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 06/22/2015] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Postprandial lipemia represents a risk factor for chronic diseases, including type 2 diabetes. Little is known about the effect of dietary fat on the plasma lipidome in the postprandial period. OBJECTIVE The objective of this study was to assess the effect of dairy fat and soy oil on circulating postprandial lipids in men. METHODS Men (40-60 y old, nonsmokers; n = 16) were randomly assigned in a crossover design to consume 2 breakfast meals of dairy-based or soy oil-based foods. The changes in the plasma lipidome during the 4-h postprandial period were analyzed with electrospray ionization tandem mass spectrometry and included 316 lipid species in 23 classes and subclasses, representing sphingolipids, phospholipids, glycerolipids, and sterols. RESULTS Nonparametric Friedman tests showed significant changes in multiple plasma lipid classes, subclasses, and species in the postprandial period after both dairy and soy meals. No difference was found in triglyceridemia after each meal. However, 6 endogenous lipid classes increased after dairy but decreased after soy (P < 0.05), including ether-linked phospholipids and plasmalogens and sphingomyelin (not present in soy), dihexosylceramide, and GM3 ganglioside. Phosphatidylcholine and phosphatidylinositol were not affected by the soy meal but were significantly elevated after the dairy meal (8.3% and 16%, respectively; P < 0.05). CONCLUSIONS The changes in postprandial plasma phospholipids in men relate to the diet composition and the relative size of the endogenous phospholipid pools. Despite similar lipemic responses as measured by changes in triglyceride concentrations, the differential responses to dairy and soy meals derived through lipidomic analysis of phospholipids suggest differences in the metabolism of soybean oil and dairy fat. The increased concentrations of plasmalogens, with potential antioxidant capacity, in the postprandial period after dairy but not soy meals may represent a further important difference in the response to these sources of fat. The trial was registered at www.anzctr.org.au as ACTRN12610000562077.
Collapse
Affiliation(s)
- Peter J Meikle
- Metabolomics Laboratory, Baker IDI Heart and Diabetes Institute, Melbourne, Australia; and
| | - Christopher K Barlow
- Metabolomics Laboratory, Baker IDI Heart and Diabetes Institute, Melbourne, Australia; and
| | - Natalie A Mellett
- Metabolomics Laboratory, Baker IDI Heart and Diabetes Institute, Melbourne, Australia; and
| | - Piyushkumar A Mundra
- Metabolomics Laboratory, Baker IDI Heart and Diabetes Institute, Melbourne, Australia; and
| | | | - Amy Larsen
- School of Medicine, Deakin University, Geelong, Australia
| | | | | | - Paul J Nestel
- Metabolomics Laboratory, Baker IDI Heart and Diabetes Institute, Melbourne, Australia; and
| | - Gerard Wong
- Metabolomics Laboratory, Baker IDI Heart and Diabetes Institute, Melbourne, Australia; and
| |
Collapse
|
27
|
Kremshofer J, Siwetz M, Berghold VM, Lang I, Huppertz B, Gauster M. A role for GPR55 in human placental venous endothelial cells. Histochem Cell Biol 2015; 144:49-58. [PMID: 25869640 DOI: 10.1007/s00418-015-1321-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2015] [Indexed: 01/14/2023]
Abstract
Endocannabinoids and their G protein-coupled receptors have been suggested to play a key role in human pregnancy, by regulating important aspects such as implantation, decidualization, placentation and labor. G protein-coupled receptor 55 (GPR55) was previously postulated to be another cannabinoid receptor, since specific cannabinoids were shown to act independently of the classical cannabinoid receptors CB1 or CB2. Current knowledge about GPR55 expression and function in human placenta is very limited and motivated us to evaluate human placental GPR55 expression in relation to other human peripheral tissues and to analyze spatiotemporal GPR55 expression in human placenta. Gene expression analysis revealed low GPR55 levels in human placenta, when compared to spleen and lung, the organs showing highest GPR55 expression. Moreover, expression analysis showed 5.8 fold increased placental GPR55 expression at term compared to first trimester. Immunohistochemistry located GPR55 solely at the fetal endothelium of first trimester and term placentas. qPCR and immunocytochemistry consistently confirmed GPR55 expression in isolated primary placental arterial and venous endothelial cells. Incubation with L-α-lysophosphatidylinositol (LPI), the specific and functional ligand for GPR55, at a concentration of 1 µM, significantly enhanced migration of venous, but not arterial endothelial cells. LPI-enhanced migration was inhibited by the GPR55 antagonist O-1918, suggesting a role of the LPI-GPR55 axis in placental venous endothelium function.
Collapse
Affiliation(s)
- Julia Kremshofer
- Institute of Cell Biology, Histology and Embryology, Medical University Graz, Harrachgasse 21/VII, 8010, Graz, Austria
| | | | | | | | | | | |
Collapse
|