1
|
Li Y, Hunter A, Wakeel MM, Sun G, Lau RWK, Broughton BRS, Pino IEO, Deng Z, Zhang T, Murthi P, Del Borgo MP, Widdop RE, Polo JM, Ricardo SD, Samuel CS. The renoprotective efficacy and safety of genetically-engineered human bone marrow-derived mesenchymal stromal cells expressing anti-fibrotic cargo. Stem Cell Res Ther 2024; 15:375. [PMID: 39443975 PMCID: PMC11515549 DOI: 10.1186/s13287-024-03992-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 10/09/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND Kidney fibrosis is a hallmark of chronic kidney disease (CKD) and compromises the viability of transplanted human bone marrow-derived mesenchymal stromal cells (BM-MSCs). Hence, BM-MSCs were genetically-engineered to express the anti-fibrotic and renoprotective hormone, human relaxin-2 (RLX) and green fluorescent protein (BM-MSCs-eRLX + GFP), which enabled BM-MSCs-eRLX + GFP delivery via a single intravenous injection. METHODS BM-MSCs were lentiviral-transduced with human relaxin-2 cDNA and GFP, under a eukaryotic translation elongation factor-1α promoter (BM-MSCs-eRLX + GFP) or GFP alone (BM-MSCs-eGFP). The ability of BM-MSCs-eRLX + GFP to differentiate, proliferate, migrate, produce RLX and cytokines was evaluated in vitro, whilst BM-MSC-eRLX + GFP vs BM-MSCs-eGFP homing to the injured kidney and renoprotective effects were evaluated in preclinical models of ischemia reperfusion injury (IRI) and high salt (HS)-induced hypertensive CKD in vivo. The long-term safety of BM-MSCs-RLX + GFP was also determined 9-months after treatment cessation in vivo. RESULTS When cultured for 3- or 7-days in vitro, 1 × 106 BM-MSCs-eRLX + GFP produced therapeutic RLX levels, and secreted an enhanced but finely-tuned cytokine profile without compromising their proliferation or differentiation capacity compared to naïve BM-MSCs. BM-MSCs-eRLX + GFP were identified in the kidney 2-weeks post-administration and retained the therapeutic effects of RLX in vivo. 1-2 × 106 BM-MSCs-eRLX + GFP attenuated the IRI- or therapeutically abrogated the HS-induced tubular epithelial damage and interstitial fibrosis, and significantly reduced the HS-induced hypertension, glomerulosclerosis and proteinuria. This was to an equivalent extent as RLX and BM-MSCs administered separately but to a broader extent than BM-MSCs-eGFP or the angiotensin-converting enzyme inhibitor, perindopril. Additionally, these renoprotective effects of BM-MSCs-eRLX + GFP were maintained in the presence of perindopril co-treatment, highlighting their suitability as adjunct therapies to ACE inhibition. Importantly, no major long-term adverse effects of BM-MSCs-eRLX + GFP were observed. CONCLUSIONS BM-MSCs-eRLX + GFP produced greater renoprotective and therapeutic efficacy over that of BM-MSCs-eGFP or ACE inhibition, and may represent a novel and safe treatment option for acute kidney injury and hypertensive CKD.
Collapse
Affiliation(s)
- Yifang Li
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
- Department of Pharmacology, Monash University, Clayton, VIC, 3800, Australia
| | - Alex Hunter
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
- Department of Pharmacology, Monash University, Clayton, VIC, 3800, Australia
| | - Miqdad M Wakeel
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
- Department of Pharmacology, Monash University, Clayton, VIC, 3800, Australia
| | - Guizhi Sun
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, 3800, Australia
| | - Ricky W K Lau
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
- Department of Pharmacology, Monash University, Clayton, VIC, 3800, Australia
| | - Brad R S Broughton
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
- Department of Pharmacology, Monash University, Clayton, VIC, 3800, Australia
| | - Ivan E Oyarce Pino
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
- Department of Pharmacology, Monash University, Clayton, VIC, 3800, Australia
| | - Zihao Deng
- Department of Medicine (Alfred Hospital), Central Clinical School, Monash University, Melbourne, VIC, 3004, Australia
| | - Tingfang Zhang
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
- Department of Pharmacology, Monash University, Clayton, VIC, 3800, Australia
| | - Padma Murthi
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
- Department of Pharmacology, Monash University, Clayton, VIC, 3800, Australia
| | - Mark P Del Borgo
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
- Department of Pharmacology, Monash University, Clayton, VIC, 3800, Australia
| | - Robert E Widdop
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
- Department of Pharmacology, Monash University, Clayton, VIC, 3800, Australia
| | - Jose M Polo
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, 3800, Australia
- Adelaide Centre for Epigenetics, School of Biomedicine, The University of Adelaide, Adelaide, SA, 5005, Australia
- The South Australian Immunogenomics Cancer Institute, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Sharon D Ricardo
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia.
- Department of Pharmacology, Monash University, Clayton, VIC, 3800, Australia.
| | - Chrishan S Samuel
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia.
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia.
- Department of Pharmacology, Monash University, Clayton, VIC, 3800, Australia.
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, VIC, 3010, Australia.
| |
Collapse
|
2
|
Chakraborty A, Wang C, Hodgson-Garms M, Broughton BRS, Frith JE, Kelly K, Samuel CS. Induced pluripotent stem cell-derived mesenchymal stem cells reverse bleomycin-induced pulmonary fibrosis and related lung stiffness. Biomed Pharmacother 2024; 178:117259. [PMID: 39116786 DOI: 10.1016/j.biopha.2024.117259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/23/2024] [Accepted: 08/02/2024] [Indexed: 08/10/2024] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is characterised by lung scarring and stiffening, for which there is no effective cure. Based on the immunomodulatory and anti-fibrotic effects of induced pluripotent stem cell (iPSC) and mesenchymoangioblast-derived mesenchymal stem cells (iPSCs-MSCs), this study evaluated the therapeutic effects of iPSCs-MSCs in a bleomycin (BLM)-induced model of pulmonary fibrosis. Adult male C57BL/6 mice received a double administration of BLM (0.15 mg/day) 7-days apart and were then maintained for a further 28-days (until day-35), whilst control mice were administered saline 7-days apart and maintained for the same time-period. Sub-groups of BLM-injured mice were intravenously-injected with 1×106 iPSC-MSCs on day-21 alone or on day-21 and day-28 and left until day-35 post-injury. Measures of lung inflammation, fibrosis and compliance were then evaluated. BLM-injured mice presented with lung inflammation characterised by increased immune cell infiltration and increased pro-inflammatory cytokine expression, epithelial damage, lung transforming growth factor (TGF)-β1 activity, myofibroblast differentiation, interstitial collagen fibre deposition and topology (fibrosis), in conjunction with reduced matrix metalloproteinase (MMP)-to-tissue inhibitor of metalloproteinase (TIMP) ratios and dynamic lung compliance. All these measures were ameliorated by a single or once-weekly intravenous-administration of iPSC-MSCs, with the latter reducing dendritic cell infiltration and lung epithelial damage, whilst promoting anti-inflammatory interleukin (IL)-10 levels to a greater extent. Proteomic profiling of the conditioned media of cultured iPSC-MSCs that were stimulated with TNF-α and IFN-γ, revealed that these stem cells secreted protein levels of immunosuppressive factors that contributed to the anti-fibrotic and therapeutic potential of iPSCs-MSCs as a novel treatment option for IPF.
Collapse
Affiliation(s)
- Amlan Chakraborty
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute (BDI) and Department of Pharmacology, Monash University, Clayton, Victoria, Australia; Division of Immunology, Immunity to Infection and Respiratory Medicine, The University of Manchester, Manchester, England, UK
| | - Chao Wang
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute (BDI) and Department of Pharmacology, Monash University, Clayton, Victoria, Australia
| | - Margeaux Hodgson-Garms
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria, Australia
| | - Brad R S Broughton
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute (BDI) and Department of Pharmacology, Monash University, Clayton, Victoria, Australia
| | - Jessica E Frith
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria, Australia
| | - Kilian Kelly
- Cynata Therapeutics Ltd, Cremorne, Victoria, Australia
| | - Chrishan S Samuel
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute (BDI) and Department of Pharmacology, Monash University, Clayton, Victoria, Australia; Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
3
|
Somanader DVN, Zhao P, Widdop RE, Samuel CS. The involvement of the Wnt/β-catenin signaling cascade in fibrosis progression and its therapeutic targeting by relaxin. Biochem Pharmacol 2024; 223:116130. [PMID: 38490518 DOI: 10.1016/j.bcp.2024.116130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/06/2024] [Accepted: 03/12/2024] [Indexed: 03/17/2024]
Abstract
Organ scarring, referred to as fibrosis, results from a failed wound-healing response to chronic tissue injury and is characterised by the aberrant accumulation of various extracellular matrix (ECM) components. Once established, fibrosis is recognised as a hallmark of stiffened and dysfunctional tissues, hence, various fibrosis-related diseases collectively contribute to high morbidity and mortality in developed countries. Despite this, these diseases are ineffectively treated by currently-available medications. The pro-fibrotic cytokine, transforming growth factor (TGF)-β1, has emerged as the master regulator of fibrosis progression, owing to its ability to promote various factors and processes that facilitate rapid ECM synthesis and deposition, whilst negating ECM degradation. TGF-β1 signal transduction is tightly controlled by canonical (Smad-dependent) and non-canonical (MAP kinase- and Rho-associated protein kinase-dependent) intracellular protein activity, whereas its pro-fibrotic actions can also be facilitated by the Wnt/β-catenin pathway. This review outlines the pathological sequence of events and contributing roles of TGF-β1 in the progression of fibrosis, and how the Wnt/β-catenin pathway contributes to tissue repair in acute disease settings, but to fibrosis and related tissue dysfunction in synergy with TGF-β1 in chronic diseases. It also outlines the anti-fibrotic and related signal transduction mechanisms of the hormone, relaxin, that are mediated via its negative modulation of TGF-β1 and Wnt/β-catenin signaling, but through the promotion of Wnt/β-catenin activity in acute disease settings. Collectively, this highlights that the crosstalk between TGF-β1 signal transduction and the Wnt/β-catenin cascade may provide a therapeutic target that can be exploited to broadly treat and reverse established fibrosis.
Collapse
Affiliation(s)
- Deidree V N Somanader
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, Victoria 3800, Australia
| | - Peishen Zhao
- Drug Discovery Biology Program, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Robert E Widdop
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, Victoria 3800, Australia
| | - Chrishan S Samuel
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, Victoria 3800, Australia; Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, Victoria 3052, Australia.
| |
Collapse
|
4
|
Samuel CS, Bennett RG. Relaxin as an anti-fibrotic treatment: Perspectives, challenges and future directions. Biochem Pharmacol 2021; 197:114884. [PMID: 34968489 DOI: 10.1016/j.bcp.2021.114884] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 02/07/2023]
Abstract
Fibrosis refers to the scarring and hardening of tissues, which results from a failed immune system-coordinated wound healing response to chronic organ injury and which manifests from the aberrant accumulation of various extracellular matrix components (ECM), primarily collagen. Despite being a hallmark of prolonged tissue damage and related dysfunction, and commonly associated with high morbidity and mortality, there are currently no effective cures for its regression. An emerging therapy that meets several criteria of an effective anti-fibrotic treatment, is the recombinant drug-based form of the human hormone, relaxin (also referred to as serelaxin, which is bioactive in several other species). This review outlines the broad anti-fibrotic and related organ-protective roles of relaxin, mainly from studies conducted in preclinical models of ageing and fibrotic disease, including its ability to ameliorate several aspects of fibrosis progression and maturation, from immune cell infiltration, pro-inflammatory and pro-fibrotic cytokine secretion, oxidative stress, organ hypertrophy, cell apoptosis, myofibroblast differentiation and ECM production, to its ability to facilitate established ECM degradation. Studies that have compared and/or combined these therapeutic effects of relaxin with current standard of care medication have also been discussed, along with the main challenges that have hindered the translation of the anti-fibrotic efficacy of relaxin to the clinic. The review then outlines the future directions as to where scientists and several pharmaceutical companies that have recognized the therapeutic potential of relaxin are working towards, to progress its development as a treatment for human patients suffering from various fibrotic diseases.
Collapse
Affiliation(s)
- Chrishan S Samuel
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, Victoria 3800, Australia; Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria 3052, Australia.
| | - Robert G Bennett
- Research Service, Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA; Department of Internal Medicine, Division of Diabetes, Endocrinology & Metabolism, University of Nebraska Medical Center, Omaha, NE 68198-4130, USA.
| |
Collapse
|
5
|
Li Y, Chakraborty A, Broughton BRS, Ferens D, Widdop RE, Ricardo SD, Samuel CS. Comparing the renoprotective effects of BM-MSCs versus BM-MSC-exosomes, when combined with an anti-fibrotic drug, in hypertensive mice. Biomed Pharmacother 2021; 144:112256. [PMID: 34607108 DOI: 10.1016/j.biopha.2021.112256] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/15/2021] [Accepted: 09/26/2021] [Indexed: 12/29/2022] Open
Abstract
Fibrosis, a hallmark of chronic kidney disease (CKD), impairs the viability of human bone marrow derived-mesenchymal stromal cells (BM-MSCs) post-transplantation. To address this, we demonstrated that combining BM-MSCs with the anti-fibrotic drug, serelaxin (RLX), enhanced BM-MSC-induced renoprotection in preclinical CKD models. Given the increased interest and manufacturing advantages to using stem cell-derived exosomes (EXO) as therapeutics, this study determined whether RLX could enhance the therapeutic efficacy of BM-MSC-EXO, and compared the renoprotective effects of RLX and BM-MSC-EXO versus RLX and BM-MSCs in mice with hypertensive CKD. Adult male C57BL/6 mice were uninephrectomised, received deoxycorticosterone acetate and given saline to drink (1K/DOCA/salt) for 21 days. Control mice were uninephrectomised and given normal drinking water for the same time-period. Subgroups of 1K/DOCA/salt-hypertensive mice were then treated with either RLX (0.5 mg/kg/day) or BM-MSC-EXO (25 μg/mouse; equivalent to 1-2 × 106 BM-MSCs/mouse) alone; combinations of RLX and BM-MSC-EXO or BM-MSCs (1 × 106/mouse); or the mineralocorticoid receptor antagonist, spironolactone (20 mg/kg/day), from days 14-21. 1K/DOCA/salt-hypertensive mice developed kidney tubular damage, inflammation and fibrosis, and impaired kidney function 21 days post-injury. Whilst RLX alone attenuated the 1K/DOCA/salt-induced fibrosis, BM-MSC-EXO alone only diminished measures of tissue inflammation post-treatment. Comparatively, the combined effects of RLX and BM-MSC-EXO or BM-MSCs demonstrated similar anti-fibrotic efficacy, but RLX and BM-MSCs offered broader renoprotection over RLX and/or BM-MSC-EXO, and comparable effects to spironolactone. Only RLX and BM-MSCs, but not RLX and/or BM-MSC-EXO, also attenuated the 1K/DOCA/salt-induced hypertension. Hence, although RLX improved the renoprotective effects of BM-MSC-EXO, combining RLX with BM-MSCs provided a better therapeutic option for hypertensive CKD.
Collapse
Affiliation(s)
- Yifang Li
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, Victoria 3800, Australia
| | - Amlan Chakraborty
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, Victoria 3800, Australia
| | - Brad R S Broughton
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, Victoria 3800, Australia
| | - Dorota Ferens
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, Victoria 3800, Australia
| | - Robert E Widdop
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, Victoria 3800, Australia
| | - Sharon D Ricardo
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, Victoria 3800, Australia; Stem Cells and Development Program, Monash Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, Victoria 3800, Australia
| | - Chrishan S Samuel
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, Victoria 3800, Australia; Stem Cells and Development Program, Monash Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, Victoria 3800, Australia; Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria 3052, Australia.
| |
Collapse
|
6
|
Royce SG, Patel KP, Mao W, Zhu D, Lim R, Samuel CS. Serelaxin enhances the therapeutic effects of human amnion epithelial cell-derived exosomes in experimental models of lung disease. Br J Pharmacol 2019; 176:2195-2208. [PMID: 30883698 DOI: 10.1111/bph.14666] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 02/26/2019] [Accepted: 03/04/2019] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND AND PURPOSE There is growing interest in stem cell-derived exosomes for their therapeutic and regenerative benefits given their manufacturing and regulatory advantages over cell-based therapies. As existing fibrosis impedes the viability and efficacy of stem cell/exosome-based strategies for treating chronic diseases, here we tested the effects of the anti-fibrotic drug, serelaxin, on the therapeutic efficacy of human amnion epithelial cell (AEC)-derived exosomes in experimental lung disease. EXPERIMENTAL APPROACH Female Balb/c mice were subjected to either the 9.5-week model of ovalbumin and naphthalene (OVA/NA)-induced chronic allergic airway disease (AAD) or 3-week model of bleomycin (BLM)-induced pulmonary fibrosis; then administered increasing concentrations of AEC-exosomes (5 μg or 25μg), with or without serelaxin (0.5mg/kg/day) for 7-days. 1x106 AECs co-administered with serelaxin over the corresponding time-period were included for comparison in both models, as was pirfenidone-treatment of the BLM model. Control groups received saline/corn oil or saline, respectively. KEY RESULTS Both experimental models presented with significant tissue inflammation, remodelling, fibrosis and airway/lung dysfunction at the time-points studied. While AEC-exosome (5 μg or 25μg)-administration alone demonstrated some benefits in each model, serelaxin was required for AEC-exosomes (25μg) to rapidly normalise chronic AAD-induced airway fibrosis and airway reactivity, and BLM-induced lung inflammation, epithelial damage and subepithelial/basement membrane fibrosis. Combining serelaxin with AEC-exosomes (25μg) also demonstrated broader protection compared to co-administration of serelaxin with 1x106 AECs or pirfenidone. CONCLUSIONS AND IMPLICATIONS Serelaxin enhanced the therapeutic efficacy of AEC-exosomes in treating basement membrane-induced fibrosis and related airway dysfunction.
Collapse
Affiliation(s)
- Simon G Royce
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, Victoria, Australia.,Department of Medicine, Central Clinical School, Monash University, Clayton, Victoria, Australia
| | - Krupesh P Patel
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, Victoria, Australia
| | - WeiYi Mao
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, Victoria, Australia
| | - Dandan Zhu
- The Ritchie Centre, Hudson Institute of Medical Research and Department of Obstetrics and Gynecology, Monash University, Clayton, Victoria, Australia
| | - Rebecca Lim
- The Ritchie Centre, Hudson Institute of Medical Research and Department of Obstetrics and Gynecology, Monash University, Clayton, Victoria, Australia
| | - Chrishan S Samuel
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, Victoria, Australia.,Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
7
|
Royce SG, Mao W, Lim R, Kelly K, Samuel CS. iPSC- and mesenchymoangioblast-derived mesenchymal stem cells provide greater protection against experimental chronic allergic airways disease compared with a clinically used corticosteroid. FASEB J 2019; 33:6402-6411. [PMID: 30768365 DOI: 10.1096/fj.201802307r] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The airway remodeling (AWR) associated with chronic allergic airways disease (AAD)/asthma contributes to irreversible airway obstruction. This study compared and combined the antiremodeling and other effects of induced pluripotent stem cell and mesenchymoangioblast-derived mesenchymal stem cells (MCA-MSCs) with the corticosteroid dexamethasone (Dex) in experimental chronic AAD/asthma. Female BALB/c mice subjected to 11 wk of ovalbumin (Ova)-induced chronic AAD were intranasally administered MCA-MSCs (1 × 106 cells/mouse; once weekly on wk 10 and 11), Dex (0.5 mg/ml; once daily for 2 wk), or both combined. MCA-MSC detection and changes in airway inflammation (AI), AWR, and airway hyperresponsiveness (AHR) were measured at the end of wk 11. Mice with chronic AAD had significant AI, goblet cell metaplasia, epithelial damage/thickening, aberrant TGF-β1 levels, subepithelial myofibroblast accumulation, airway/lung fibrosis, and AHR (all P < 0.001 vs. healthy controls). MCA-MSCs were detected in the lungs up to 5-7 d postadministration and demonstrated modest anti-inflammatory but striking antifibrotic effects against Ova-induced AAD, effectively decreasing AHR by 70-75% (all P < 0.05 vs. Ova alone). In comparison, Dex predominantly demonstrated anti-inflammatory effects, decreasing AHR by ∼30%. Combining MCA-MSCs with Dex provided equivalent protection to that offered by either therapy alone. MCA-MSCs reduce chronic AAD-induced AWR and AHR to a greater extent than Dex and may act as a suitable adjunct therapy to corticosteroid treatment of asthma.-Royce, S. G., Mao, W., Lim, R., Kelly, K., Samuel, C. S. iPSC- and mesenchymoangioblast-derived mesenchymal stem cells provide greater protection against experimental chronic allergic airways disease compared with a clinically used corticosteroid.
Collapse
Affiliation(s)
- Simon G Royce
- Monash Biomedicine Discovery Institute Monash University, Clayton, Victoria, Australia.,Department of Pharmacology, Monash University, Clayton, Victoria, Australia.,Central Clinical School, Monash University, Clayton, Victoria, Australia
| | - WeiYi Mao
- Monash Biomedicine Discovery Institute Monash University, Clayton, Victoria, Australia.,Department of Pharmacology, Monash University, Clayton, Victoria, Australia
| | - Rebecca Lim
- The Ritchie Centre, Hudson Institute of Medical Research and Department of Obstetrics and Gynecology, Monash University, Clayton, Victoria, Australia
| | - Kilian Kelly
- Cynata Therapeutics, Carlton, Victoria, Australia
| | - Chrishan S Samuel
- Monash Biomedicine Discovery Institute Monash University, Clayton, Victoria, Australia.,Department of Pharmacology, Monash University, Clayton, Victoria, Australia.,Department of Biochemistry and Molecular Biology, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
8
|
Lam M, Royce SG, Samuel CS, Bourke JE. Serelaxin as a novel therapeutic opposing fibrosis and contraction in lung diseases. Pharmacol Ther 2018; 187:61-70. [PMID: 29447958 DOI: 10.1016/j.pharmthera.2018.02.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The most common therapies for asthma and other chronic lung diseases are anti-inflammatory agents and bronchodilators. While these drugs oppose disease symptoms, they do not reverse established structural changes in the airways and their therapeutic efficacy is reduced with increasing disease severity. The peptide hormone, relaxin, is a Relaxin Family Peptide Receptor 1 (RXFP1) receptor agonist with unique combined effects in the lung that differentiates it from these existing therapies. Relaxin has previously been reported to have cardioprotective effects in acute heart failure as well anti-fibrotic actions in several organs. This review focuses on recent experimental evidence of the beneficial effects of chronic relaxin treatment in animal models of airways disease demonstrating inhibition of airway hyperresponsiveness and reversal of established fibrosis, consistent with potential therapeutic benefit. Of particular interest, accumulating evidence demonstrates that relaxin can also acutely oppose contraction by reducing the release of mast cell-derived bronchoconstrictors and by directly eliciting bronchodilation. When used in combination, chronic and acute treatment with relaxin has been shown to enhance responsiveness to both glucocorticoids and β2-adrenoceptor agonists respectively. While the mechanisms underlying these beneficial actions remain to be fully elucidated, translation of these promising combined preclinical findings is critical in the development of relaxin as a novel alternative or adjunct therapeutic opposing multiple aspects of airway pathology in lung diseases.
Collapse
Affiliation(s)
- Maggie Lam
- Biomedicine Discovery Institute, Monash University, Melbourne, Australia; Department of Pharmacology, School of Biomedical Sciences, Monash University, Melbourne, Australia
| | - Simon G Royce
- Department of Medicine, Central Clinical School, Monash University, Melbourne, Australia
| | - Chrishan S Samuel
- Biomedicine Discovery Institute, Monash University, Melbourne, Australia; Department of Pharmacology, School of Biomedical Sciences, Monash University, Melbourne, Australia
| | - Jane E Bourke
- Biomedicine Discovery Institute, Monash University, Melbourne, Australia; Department of Pharmacology, School of Biomedical Sciences, Monash University, Melbourne, Australia.
| |
Collapse
|
9
|
Royce SG, Rele S, Broughton BRS, Kelly K, Samuel CS. Intranasal administration of mesenchymoangioblast-derived mesenchymal stem cells abrogates airway fibrosis and airway hyperresponsiveness associated with chronic allergic airways disease. FASEB J 2017. [PMID: 28626025 DOI: 10.1096/fj.201700178r] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Structural changes known as airway remodeling (AWR) characterize chronic/severe asthma and contribute to lung dysfunction. Thus, we assessed the in vivo efficacy of induced pluripotent stem cell and mesenchymoangioblast-derived mesenchymal stem cells (MCA-MSCs) on AWR in a murine model of chronic allergic airways disease (AAD)/asthma. Female Balb/c mice were subjected to a 9-wk model of ovalbumin (Ova)-induced chronic AAD and treated intravenously or intranasally with MCA-MSCs from weeks 9 to 11. Changes in airway inflammation (AI), AWR, and airway hyperresponsiveness (AHR) were assessed. Ova-injured mice presented with AI, goblet cell metaplasia, epithelial thickening, increased airway TGF-β1 levels, subepithelial myofibroblast and collagen accumulation, total lung collagen concentration, and AHR (all P < 0.001 vs. uninjured control group). Apart from epithelial thickness, all other parameters measured were significantly, although not totally, decreased by intravenous delivery of MCA-MSCs to Ova-injured mice. In comparison, intranasal delivery of MCA-MSCs to Ova-injured mice significantly decreased all parameters measured (all P < 0.05 vs. Ova group) and, most notably, normalized aberrant airway TGF-β1 levels, airway/lung fibrosis, and AHR to values measured in uninjured animals. MCA-MSCs also increased collagen-degrading gelatinase levels. Hence, direct delivery of MCA-MSCs offers great therapeutic benefit for the AWR and AHR associated with chronic AAD.-Royce, S. G., Rele, S., Broughton, B. R. S., Kelly, K., Samuel, C. S. Intranasal administration of mesenchymoangioblast-derived mesenchymal stem cells abrogates airway fibrosis and airway hyperresponsiveness associated with chronic allergic airways disease.
Collapse
Affiliation(s)
- Simon G Royce
- Fibrosis Laboratory, Monash University, Clayton, Victoria, Australia; .,Department of Medicine, Central Clinical School, Monash University, Prahran, Victoria, Australia; and
| | - Siddharth Rele
- Fibrosis Laboratory, Monash University, Clayton, Victoria, Australia
| | - Brad R S Broughton
- Cardiovascular and Pulmonary Pharmacology Group, Cardiovascular Disease Program, Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, Victoria, Australia
| | - Kilian Kelly
- Cynata Therapeutics, Armadale, Victoria, Australia
| | - Chrishan S Samuel
- Fibrosis Laboratory, Monash University, Clayton, Victoria, Australia;
| |
Collapse
|
10
|
Serelaxin improves the therapeutic efficacy of RXFP1-expressing human amnion epithelial cells in experimental allergic airway disease. Clin Sci (Lond) 2016; 130:2151-2165. [PMID: 27647937 DOI: 10.1042/cs20160328] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 09/12/2016] [Indexed: 11/17/2022]
Abstract
Current asthma therapies primarily target airway inflammation (AI) and suppress episodes of airway hyperresponsiveness (AHR) but fail to treat airway remodelling (AWR), which can develop independently of AI and contribute to irreversible airway obstruction. The present study compared the anti-remodelling and therapeutic efficacy of human bone marrow-derived mesenchymal stem cells (MSCs) to that of human amnion epithelial stem cells (AECs) in the setting of chronic allergic airways disease (AAD), in the absence or presence of an anti-fibrotic (serelaxin; RLX). Female Balb/c mice subjected to the 9-week model of ovalbumin (OVA)-induced chronic AAD, were either vehicle-treated (OVA alone) or treated with MSCs or AECs alone [intranasally (i.n.)-administered with 1×106 cells once weekly], RLX alone (i.n.-administered with 0.8 mg/ml daily) or a combination of MSCs or AECs and RLX from weeks 9-11 (n=6/group). Measures of AI, AWR and AHR were then assessed. OVA alone exacerbated AI, epithelial damage/thickness, sub-epithelial extracellular matrix (ECM) and total collagen deposition, markers of collagen turnover and AHR compared with that in saline-treated counterparts (all P<0.01 compared with saline-treated controls). RLX or AECs (but not MSCs) alone normalized epithelial thickness and partially diminished the OVA-induced fibrosis and AHR by ∼40-50% (all P<0.05 compared with OVA alone). Furthermore, the combination treatments normalized epithelial thickness, measures of fibrosis and AHR to that in normal mice, and significantly decreased AI. Although AECs alone demonstrated greater protection against the AAD-induced AI, AWR and AHR, compared with that of MSCs alone, combining RLX with MSCs or AECs reversed airway fibrosis and AHR to an even greater extent.
Collapse
|
11
|
Patel KP, Giraud AS, Samuel CS, Royce SG. Combining an epithelial repair factor and anti-fibrotic with a corticosteroid offers optimal treatment for allergic airways disease. Br J Pharmacol 2016; 173:2016-29. [PMID: 27060978 DOI: 10.1111/bph.13494] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 03/21/2016] [Accepted: 03/23/2016] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE We evaluated the extent to which individual versus combination treatments that specifically target airway epithelial damage [trefoil factor-2 (TFF2)], airway fibrosis [serelaxin (RLX)] or airway inflammation [dexamethasone (DEX)] reversed the pathogenesis of chronic allergic airways disease (AAD). EXPERIMENTAL APPROACH Following induction of ovalbumin (OVA)-induced chronic AAD in 6–8 week female Balb/c mice, animals were i.p. administered naphthalene (NA) on day 64 to induce epithelial damage, then received daily intranasal administration of RLX (0.8 mg·mL(−1)), TFF2 (0.5 mg·mL(−1)), DEX (0.5 mg·mL(−1)), RLX + TFF2 or RLX + TFF2 + DEX from days 67–74. On day 75, lung function was assessed by invasive plethysmography, before lung tissue was isolated for analyses of various measures. The control group was treated with saline + corn oil (vehicle for NA). KEY RESULTS OVA + NA-injured mice demonstrated significantly increased airway inflammation, airway remodelling (AWR) (epithelial damage/thickness; subepithelial myofibroblast differentiation, extracellular matrix accumulation and fibronectin deposition; total lung collagen concentration), and significantly reduced airway dynamic compliance (cDyn). RLX + TFF2 markedly reversed several measures of OVA + NA-induced AWR and normalized the reduction in cDyn. The combined effects of RLX + TFF2 + DEX significantly reversed peribronchial inflammation score, airway epithelial damage, subepithelial extracellular matrix accumulation/fibronectin deposition and total lung collagen concentration (by 50–90%) and also normalized the reduction of cDyn. CONCLUSIONS AND IMPLICATIONS Combining an epithelial repair factor and anti-fibrotic provides an effective means of treating the AWR and dysfunction associated with AAD/asthma and may act as an effective adjunct therapy to anti-inflammatory corticosteroids
Collapse
Affiliation(s)
- K P Patel
- Fibrosis Laboratory, Cardiovascular Disease Program, Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Vic., Australia
| | - A S Giraud
- Murdoch Children's Research Institute, University of Melbourne, Vic., Australia.,Department of Paediatrics, University of Melbourne, Vic., Australia
| | - C S Samuel
- Fibrosis Laboratory, Cardiovascular Disease Program, Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Vic., Australia
| | - S G Royce
- Fibrosis Laboratory, Cardiovascular Disease Program, Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Vic., Australia.,Respiratory Pharmacology Laboratory, Cardiovascular Disease Program, Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Vic., Australia
| |
Collapse
|