1
|
Ramasamy M, Venn ZL, Alomar FA, Namvaran A, Edagwa B, Gorantla S, Bidasee KR. Elevated Methylglyoxal: An Elusive Risk Factor Responsible for Early-Onset Cardiovascular Diseases in People Living with HIV-1 Infection. Viruses 2025; 17:547. [PMID: 40284990 PMCID: PMC12031240 DOI: 10.3390/v17040547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 04/03/2025] [Accepted: 04/05/2025] [Indexed: 04/29/2025] Open
Abstract
People living with HIV (PLWH) develop cardiovascular diseases (CVDs) about a decade earlier and at rates 2-3 times higher than the general population. At present, pharmacological strategies to delay the onset of CVDs in PLWH are unavailable, in part because of an incomplete understanding of its molecular causes. We and others recently uncovered elevated levels of the toxic glycolysis and inflammation-induced byproduct methylglyoxal (MG) in plasma from PLWH and from HIV-infected humanized mice (Hu-mice). We also found a reduction in expression of the primary MG-degrading enzyme glyoxalase I (Glo-I) in autopsied cardiac tissues from HIV-1-infected individuals and HIV-1-infected Hu-mice. Increasing the expression of Glo-I in HIV-1-infected Hu-mice not only attenuated heart failure but also reduced endothelial cell damage, increased the density of perfused microvessels, prevented microvascular leakage and micro-ischemia, and blunted the expression of the inflammation-induced protein vascular protein-1 (VAP-1), key mediators of CVDs. In this narrative review, we posit that elevated MG is a contributing cause for the early onset of CVDs in PLWH. Pharmacological strategies to prevent MG accumulation and delay the development of early-onset CVDs in PLWH are also discussed.
Collapse
Affiliation(s)
- Mahendran Ramasamy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68130, USA; (M.R.); (Z.L.V.); (A.N.); (B.E.); (S.G.)
| | - Zachary L. Venn
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68130, USA; (M.R.); (Z.L.V.); (A.N.); (B.E.); (S.G.)
| | - Fadhel A. Alomar
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia;
| | - Ali Namvaran
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68130, USA; (M.R.); (Z.L.V.); (A.N.); (B.E.); (S.G.)
| | - Benson Edagwa
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68130, USA; (M.R.); (Z.L.V.); (A.N.); (B.E.); (S.G.)
| | - Santhi Gorantla
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68130, USA; (M.R.); (Z.L.V.); (A.N.); (B.E.); (S.G.)
| | - Keshore R. Bidasee
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68130, USA; (M.R.); (Z.L.V.); (A.N.); (B.E.); (S.G.)
- Environment and Occupational Health, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Nebraska Redox Biology Center, Lincoln, NE 68503, USA
- Center for Heart and Vascular Research, Omaha, NE 68198, USA
| |
Collapse
|
2
|
Berends E, Vangrieken P, Amiri N, van de Waarenburg MPH, Scheijen JLJM, Hermes DJHP, Wouters K, van Oostenbrugge RJ, Schalkwijk CG, Foulquier S. Increased Levels of Circulating Methylglyoxal Have No Consequence for Cerebral Microvascular Integrity and Cognitive Function in Young Healthy Mice. Mol Neurobiol 2025; 62:4190-4202. [PMID: 39414727 PMCID: PMC11880179 DOI: 10.1007/s12035-024-04552-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 10/11/2024] [Indexed: 10/18/2024]
Abstract
Diabetes and other age-related diseases are associated with an increased risk of cognitive impairment, but the underlying mechanisms remain poorly understood. Methylglyoxal (MGO), a by-product of glycolysis and a major precursor in the formation of advanced glycation end-products (AGEs), is increased in individuals with diabetes and other age-related diseases and is associated with microvascular dysfunction. We now investigated whether increased levels of circulating MGO can lead to cerebral microvascular dysfunction, blood-brain barrier (BBB) dysfunction, and cognitive impairment. Mice were supplemented or not with 50 mM MGO in drinking water for 13 weeks. Plasma and cortical MGO and MGO-derived AGEs were measured with UPLC-MS/MS. Peripheral and cerebral microvascular integrity and inflammation were investigated. Cerebral blood flow and neurovascular coupling were investigated with laser speckle contrast imaging, and cognitive tests were performed. We found a 2-fold increase in plasma MGO and an increase in MGO-derived AGEs in plasma and cortex. Increased plasma MGO did not lead to cerebral microvascular dysfunction, inflammation, or cognitive decline. This study shows that increased concentrations of plasma MGO are not associated with cerebral microvascular dysfunction and cognitive impairment in healthy mice. Future research should focus on the role of endogenously formed MGO in cognitive impairment.
Collapse
Affiliation(s)
- Eline Berends
- Faculty of Health Medicine and Life Sciences, Department of Internal Medicine, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, the Netherlands
- CARIM, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, the Netherlands
| | - Philippe Vangrieken
- Faculty of Health Medicine and Life Sciences, Department of Internal Medicine, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, the Netherlands
- CARIM, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, the Netherlands
| | - Naima Amiri
- Faculty of Health Medicine and Life Sciences, Department of Internal Medicine, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, the Netherlands
- CARIM, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, the Netherlands
| | - Marjo P H van de Waarenburg
- Faculty of Health Medicine and Life Sciences, Department of Internal Medicine, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, the Netherlands
- CARIM, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, the Netherlands
| | - Jean L J M Scheijen
- Faculty of Health Medicine and Life Sciences, Department of Internal Medicine, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, the Netherlands
- CARIM, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, the Netherlands
| | - Denise J H P Hermes
- Department of Neuropsychology and Psychiatry, Maastricht University, Maastricht, the Netherlands
- MHeNs, School for Mental Health and Neurosciences, Maastricht University, Maastricht, the Netherlands
| | - Kristiaan Wouters
- Faculty of Health Medicine and Life Sciences, Department of Internal Medicine, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, the Netherlands
- CARIM, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, the Netherlands
| | - Robert J van Oostenbrugge
- CARIM, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, the Netherlands
- MHeNs, School for Mental Health and Neurosciences, Maastricht University, Maastricht, the Netherlands
- Department of Neurology, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Casper G Schalkwijk
- Faculty of Health Medicine and Life Sciences, Department of Internal Medicine, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, the Netherlands.
- CARIM, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, the Netherlands.
| | - Sébastien Foulquier
- CARIM, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, the Netherlands.
- MHeNs, School for Mental Health and Neurosciences, Maastricht University, Maastricht, the Netherlands.
- Faculty of Health Medicine and Life Sciences, Department of Pharmacology and Toxicology, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, the Netherlands.
| |
Collapse
|
3
|
Berends E, Pencheva MG, van de Waarenburg MPH, Scheijen JLJM, Hermes DJHP, Wouters K, van Oostenbrugge RJ, Foulquier S, Schalkwijk CG. Glyoxalase 1 overexpression improves neurovascular coupling and limits development of mild cognitive impairment in a mouse model of type 1 diabetes. J Physiol 2024; 602:6209-6223. [PMID: 39316027 DOI: 10.1113/jp286723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 09/02/2024] [Indexed: 09/25/2024] Open
Abstract
Diabetes is associated with cognitive impairment, but the underlying mechanism remains unclear. Methylglyoxal (MGO), a precursor to advanced glycation endproducts (AGEs), is elevated in diabetes and linked to microvascular dysfunction. In this study, overexpression of the MGO-detoxifying enzyme glyoxalase 1 (Glo1) was used in a mouse model of diabetes to explore whether MGO accumulation in diabetes causes cognitive impairment. Diabetes was induced with streptozotocin. Fasting blood glucose, cognitive function, cerebral blood flow, neurovascular coupling (NVC), Glo1 activity, MGO and AGEs were assessed. In diabetes, MGO-derived hydroimidazolone-1 increased in the cortex, and was decreased in Glo1-overexpressing mice compared to controls. Visuospatial memory was decreased in diabetes, but not in Glo1/diabetes. NVC response time was slightly increased in diabetes, and normalised in the Glo1-overexpressing group. No impact of diabetes or Glo1 overexpression on blood-brain barrier integrity or vascular density was observed. Diabetes induced a mild visuospatial memory impairment and slightly reduced NVC response speed and these effects were mitigated by Glo1. This study shows a link between MGO-related AGE accumulation and cerebrovascular/cognitive functions in diabetes. Modulation of the MGO-Glo1 pathway may be a novel intervention strategy in patients with diabetes who have cerebrovascular complications. KEY POINTS: Diabetes is associated with an increased risk of stroke, cognitive decline, depression and Alzheimer's disease, but the underlying mechanism remains unclear. Methylglyoxal (MGO), a highly reactive by-product of glycolysis, plays an important role in the development of diabetes-associated microvascular dysfunction in the periphery and is detoxified by the enzyme glyoxalase 1. Diabetes reduced visuospatial memory in mice and slowed the neurovascular coupling response speed, which was improved by overexpression of glyoxalase 1. MGO formation and MGO-derived advanced glycation endproduct (AGE) accumulation in the brain of diabetic mice are associated with a slight reduction in neurovascular coupling and mild cognitive impairment. The endogenous formation of MGO, and the accumulation of MGO-derived AGEs, might be a potential target in reducing the risk of vascular cognitive impairment in people with diabetes.
Collapse
Affiliation(s)
- Eline Berends
- Department of Internal Medicine, Maastricht University, Maastricht, the Netherlands
- CARIM, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, the Netherlands
| | - Margarita G Pencheva
- Department of Internal Medicine, Maastricht University, Maastricht, the Netherlands
- CARIM, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, the Netherlands
- Department of Biomedical Engineering, Maastricht University, Maastricht, the Netherlands
| | - Marjo P H van de Waarenburg
- Department of Internal Medicine, Maastricht University, Maastricht, the Netherlands
- CARIM, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, the Netherlands
| | - Jean L J M Scheijen
- Department of Internal Medicine, Maastricht University, Maastricht, the Netherlands
- CARIM, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, the Netherlands
| | - Denise J H P Hermes
- Department of Neuropsychology and Psychiatry, Maastricht University, Maastricht, the Netherlands
- MHeNs, School for Mental Health and Neurosciences, Maastricht University, Maastricht, the Netherlands
| | - Kristiaan Wouters
- Department of Internal Medicine, Maastricht University, Maastricht, the Netherlands
- CARIM, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, the Netherlands
| | - Robert J van Oostenbrugge
- CARIM, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, the Netherlands
- MHeNs, School for Mental Health and Neurosciences, Maastricht University, Maastricht, the Netherlands
- Department of Neurology, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Sébastien Foulquier
- CARIM, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, the Netherlands
- MHeNs, School for Mental Health and Neurosciences, Maastricht University, Maastricht, the Netherlands
- Department of Pharmacology and Toxicology, Maastricht University, Maastricht, the Netherlands
| | - Casper G Schalkwijk
- Department of Internal Medicine, Maastricht University, Maastricht, the Netherlands
- CARIM, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
4
|
Berends E, van Oostenbrugge RJ, Foulquier S, Schalkwijk CG. Methylglyoxal, a highly reactive dicarbonyl compound, as a threat for blood brain barrier integrity. Fluids Barriers CNS 2023; 20:75. [PMID: 37875994 PMCID: PMC10594715 DOI: 10.1186/s12987-023-00477-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/10/2023] [Indexed: 10/26/2023] Open
Abstract
The brain is a highly metabolically active organ requiring a large amount of glucose. Methylglyoxal (MGO), a by-product of glucose metabolism, is known to be involved in microvascular dysfunction and is associated with reduced cognitive function. Maintenance of the blood-brain barrier (BBB) is essential to maintain optimal brain function and a large amount of evidence indicates negative effects of MGO on BBB integrity. In this review, we summarized the current literature on the effect of MGO on the different cell types forming the BBB. BBB damage by MGO most likely occurs in brain endothelial cells and mural cells, while astrocytes are most resistant to MGO. Microglia on the other hand appear to be not directly influenced by MGO but rather produce MGO upon activation. Although there is clear evidence that MGO affects components of the BBB, the impact of MGO on the BBB as a multicellular system warrants further investigation. Diminishing MGO stress can potentially form the basis for new treatment strategies for maintaining optimal brain function.
Collapse
Affiliation(s)
- Eline Berends
- Department of Internal Medicine, Maastricht University, Universiteitssingel, Maastricht, 50 6229ER, The Netherlands
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Universiteitssingel 50, Maastricht, 6229ER, The Netherlands
| | - Robert J van Oostenbrugge
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Universiteitssingel 50, Maastricht, 6229ER, The Netherlands
- School for Mental Health and Neuroscience (MHeNs), Maastricht University, Universiteitssingel 40, Maastricht, 6229ER, The Netherlands
- Department of Neurology, Maastricht University Medical Centre (MUMC+), P. Debyelaan 25 6202AZ, Maastricht, The Netherlands
| | - Sébastien Foulquier
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Universiteitssingel 50, Maastricht, 6229ER, The Netherlands.
- Department of Neurology, Maastricht University Medical Centre (MUMC+), P. Debyelaan 25 6202AZ, Maastricht, The Netherlands.
- Department of Pharmacology and Toxicology, Maastricht University, Universiteitssingel 50 6229ER, Maastricht, The Netherlands.
| | - Casper G Schalkwijk
- Department of Internal Medicine, Maastricht University, Universiteitssingel, Maastricht, 50 6229ER, The Netherlands.
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Universiteitssingel 50, Maastricht, 6229ER, The Netherlands.
| |
Collapse
|
5
|
Atawia RT, Batori R, Jordan CR, Kennard S, Antonova G, Bruder-Nascimento T, Mehta V, Saeed MI, Patel VS, Fukai T, Ushio-Fukai M, Huo Y, Fulton DJR, de Chantemèle EJB. Type 1 Diabetes Impairs Endothelium-Dependent Relaxation Via Increasing Endothelial Cell Glycolysis Through Advanced Glycation End Products, PFKFB3, and Nox1-Mediated Mechanisms. Hypertension 2023; 80:2059-2071. [PMID: 37729634 PMCID: PMC10514399 DOI: 10.1161/hypertensionaha.123.21341] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 08/02/2023] [Indexed: 09/22/2023]
Abstract
BACKGROUND Type 1 diabetes (T1D) is a major cause of endothelial dysfunction. Although cellular bioenergetics has been identified as a new regulator of vascular function, whether glycolysis, the primary bioenergetic pathway in endothelial cells (EC), regulates vascular tone and contributes to impaired endothelium-dependent relaxation (EDR) in T1D remains unknown. METHODS Experiments were conducted in Akita mice with intact or selective deficiency in EC PFKFB3 (6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3), the main regulator of glycolysis. Seahorse analyzer and myography were employed to measure glycolysis and mitochondrial respiration, and EDR, respectively, in aortic explants. EC PFKFB3 (Ad-PFKFB3) and glycolysis (Ad-GlycoHi) were increased in situ via adenoviral transduction. RESULTS T1D increased EC glycolysis and elevated EC expression of PFKFB3 and NADPH oxidase Nox1 (NADPH oxidase homolog 1). Functionally, pharmacological and genetic inhibition of PFKFB3 restored EDR in T1D, while in situ aorta EC transduction with Ad-PFKFB3 or Ad-GlycoHi reproduced the impaired EDR associated with T1D. Nox1 inhibition restored EDR in aortic rings from Akita mice, as well as in Ad-PFKFB3-transduced aorta EC and lactate-treated wild-type aortas. T1D increased the expression of the advanced glycation end product precursor methylglyoxal in the aortas. Exposure of the aortas to methylglyoxal impaired EDR, which was prevented by PFKFB3 inhibition. T1D and exposure to methylglyoxal increased EC expression of HIF1α (hypoxia-inducible factor 1α), whose inhibition blunted methylglyoxal-mediated EC PFKFB3 upregulation. CONCLUSIONS EC bioenergetics, namely glycolysis, is a new regulator of vasomotion and excess glycolysis, a novel mechanism of endothelial dysfunction in T1D. We introduce excess methylglyoxal, HIF1α, and PFKFB3 as major effectors in T1D-mediated increased EC glycolysis.
Collapse
Affiliation(s)
- Reem T. Atawia
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Abasia, Cairo, Egypt
| | - Robert Batori
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Coleton R. Jordan
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Simone Kennard
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Galina Antonova
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | | | - Vinay Mehta
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Muhammad I. Saeed
- Department of Surgery, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Vijay S Patel
- Department of Surgery, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Tohru Fukai
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Masuko Ushio-Fukai
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Yuqing Huo
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - David JR Fulton
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | | |
Collapse
|
6
|
Matsumoto T, Yoshioka M, Yamada A, Taguchi K, Kobayashi T. Mechanisms underlying the methylglyoxal-induced enhancement of uridine diphosphate-mediated contraction in rat femoral artery. J Pharmacol Sci 2022; 150:100-109. [DOI: 10.1016/j.jphs.2022.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 07/17/2022] [Accepted: 07/28/2022] [Indexed: 11/17/2022] Open
|
7
|
Alomar FA, Alshakhs MN, Abohelaika S, Almarzouk HM, Almualim M, Al-Ali AK, Al-Muhanna F, Alomar MF, Alhaddad MJ, Almulaify MS, Alessa FS, Alsalman AS, Alaswad A, Bidasee SR, Alsaad HA, Alali RA, AlSheikh MH, Akhtar MS, Al Mohaini M, Alsalman AJ, Alturaifi H, Bidasee KR. Elevated plasma level of the glycolysis byproduct methylglyoxal on admission is an independent biomarker of mortality in ICU COVID-19 patients. Sci Rep 2022; 12:9510. [PMID: 35680931 PMCID: PMC9178541 DOI: 10.1038/s41598-022-12751-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 05/03/2022] [Indexed: 01/17/2023] Open
Abstract
Biomarkers to identify ICU COVID-19 patients at high risk for mortality are urgently needed for therapeutic care and management. Here we found plasma levels of the glycolysis byproduct methylglyoxal (MG) were 4.4-fold higher in ICU patients upon admission that later died (n = 33), and 1.7-fold higher in ICU patients that survived (n = 32),compared to uninfected controls (n = 30). The increased MG in patients that died correlated inversely with the levels of the MG-degrading enzyme glyoxalase-1 (r2 = - 0.50), and its co-factor glutathione (r2 = - 0.63), and positively with monocytes (r2 = 0.29). The inflammation markers, SSAO (r2 = 0.52), TNF-α (r2 = 0.41), IL-1β (r2 = 0.25), CRP (r2 = 0.26) also correlated positively with MG. Logistic regression analysis provides evidence of a significant relationship between the elevated MG upon admission into ICU and death (P < 0.0001), with 42% of the death variability explained. From these data we conclude that elevated plasma MG on admission is a novel independent biomarker that predicts mortality in ICU COVID-19 patients.
Collapse
Affiliation(s)
- Fadhel A Alomar
- Department of Pharmacology and Toxicology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P. O. Box 1982, Dammam, 31441, Saudi Arabia.
| | - Marai N Alshakhs
- Department of Internal Medicine, Dammam Medical Complex, Dammam, Saudi Arabia
| | - Salah Abohelaika
- Clinical Pharmacology Department, Qatif Central Hospital, Ministry of Health, Qatif, Saudi Arabia
| | - Hassan M Almarzouk
- Department of Internal Medicine, Dammam Medical Complex, Dammam, Saudi Arabia
| | - Mohammed Almualim
- Intenstive Care Unit, Qatif Central Hospital, Ministry of Health, Qatif, Saudi Arabia
| | - Amein K Al-Ali
- College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Fahad Al-Muhanna
- College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Mohammed F Alomar
- College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Mousa J Alhaddad
- Department of Internal Medicine, Dammam Medical Complex, Dammam, Saudi Arabia
| | | | - Faisal S Alessa
- Department of Internal Medicine, Dammam Medical Complex, Dammam, Saudi Arabia
| | - Ahmed S Alsalman
- Department of Internal Medicine, Dammam Medical Complex, Dammam, Saudi Arabia
| | - Ahmed Alaswad
- Clinical Pharmacology Department, Qatif Central Hospital, Ministry of Health, Qatif, Saudi Arabia
| | - Sean R Bidasee
- Departments of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Hassan A Alsaad
- Department of Pharmacology and Toxicology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P. O. Box 1982, Dammam, 31441, Saudi Arabia
| | - Rudaynah A Alali
- College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Mona H AlSheikh
- College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Mohammed S Akhtar
- College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Mohammed Al Mohaini
- Basic Sciences Department, College of Applied Medical Sciences, King Saud Bin Abdulaziz University for Health Sciences and King Abdullah International Medical Research Center, Al Ahsa, 31982, Saudi Arabia
| | - Abdulkhaliq J Alsalman
- Department of Clinical Pharmacy, Faculty of Pharmacy, Northern Border University, Rafha, Saudi Arabia
| | | | - Keshore R Bidasee
- Departments of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
8
|
Stratmann B. Dicarbonyl Stress in Diabetic Vascular Disease. Int J Mol Sci 2022; 23:6186. [PMID: 35682865 PMCID: PMC9181283 DOI: 10.3390/ijms23116186] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 02/07/2023] Open
Abstract
Late vascular complications play a prominent role in the diabetes-induced increase in morbidity and mortality. Diabetes mellitus is recognised as a risk factor driving atherosclerosis and cardiovascular mortality; even after the normalisation of blood glucose concentration, the event risk is amplified-an effect called "glycolytic memory". The hallmark of this glycolytic memory and diabetic pathology are advanced glycation end products (AGEs) and reactive glucose metabolites such as methylglyoxal (MGO), a highly reactive dicarbonyl compound derived mainly from glycolysis. MGO and AGEs have an impact on vascular and organ structure and function, contributing to organ damage. As MGO is not only associated with hyperglycaemia in diabetes but also with other risk factors for diabetic vascular complications such as obesity, dyslipidaemia and hypertension, MGO is identified as a major player in the development of vascular complications in diabetes both on micro- as well as macrovascular level. In diabetes mellitus, the detoxifying system for MGO, the glyoxalase system, is diminished, accounting for the increased MGO concentration and glycotoxic load. This overview will summarise current knowledge on the effect of MGO and AGEs on vascular function.
Collapse
Affiliation(s)
- Bernd Stratmann
- Herz- und Diabeteszentrum NRW, Diabeteszentrum, Ruhr Universität Bochum, 32545 Bad Oeynhausen, Germany
| |
Collapse
|
9
|
Dash PK, Alomar FA, Cox JL, McMillan J, Hackfort BT, Makarov E, Morsey B, Fox HS, Gendelman HE, Gorantla S, Bidasee KR. A Link Between Methylglyoxal and Heart Failure During HIV-1 Infection. Front Cardiovasc Med 2022; 8:792180. [PMID: 34970611 PMCID: PMC8712558 DOI: 10.3389/fcvm.2021.792180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 11/22/2021] [Indexed: 01/11/2023] Open
Abstract
Early-onset heart failure (HF) continues to be a major cause of morbidity and mortality in people living with human immunodeficiency virus type one (HIV-1) infection (PLWH), yet the molecular causes for this remain poorly understood. Herein NOD.Cg-PrkdcscidIl2rgtm1Wjl/SzJ humanized mice (Hu-mice), plasma from PLWH, and autopsied cardiac tissues from deceased HIV seropositive individuals were used to assess if there is a link between the glycolysis byproduct methylglyoxal (MG) and HF in the setting of HIV-1 infection. At five weeks post HIV infection, Hu-mice developed grade III-IV diastolic dysfunction (DD) with an associated two-fold increase in plasma MG. At sixteen-seventeen weeks post infection, cardiac ejection fraction and fractional shortening also declined by 26 and 35%, and plasma MG increased to four-fold higher than uninfected controls. Histopathological and biochemical analyses of cardiac tissues from Hu-mice 17 weeks post-infection affirmed MG increase with a concomitant decrease in expression of the MG-degrading enzyme glyoxalase-1 (Glo1). The endothelial cell marker CD31 was found to be lower, and coronary microvascular leakage and myocardial fibrosis were prominent. Increasing expression of Glo1 in Hu-mice five weeks post-infection using a single dose of an engineered AAV2/9 (1.7 × 1012 virion particles/kg), attenuated the increases in plasma and cardiac MG levels. Increasing Glo1 also blunted microvascular leakage, fibrosis, and HF seen at sixteen weeks post-infection, without changes in plasma viral loads. In plasma from virally suppressed PLWH, MG was also 3.7-fold higher. In autopsied cardiac tissues from seropositive, HIV individuals with low viral log, MG was 4.2-fold higher and Glo1 was 50% lower compared to uninfected controls. These data show for the first time a causal link between accumulation of MG and HF in the setting of HIV infection.
Collapse
Affiliation(s)
- Prasanta K Dash
- Departments of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| | - Fadhel A Alomar
- Department of Pharmacology and Toxicology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Jesse L Cox
- Departments of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, United States
| | - JoEllyn McMillan
- Departments of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| | - Bryan T Hackfort
- Departments of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Edward Makarov
- Departments of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| | - Brenda Morsey
- Departments of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, United States
| | - Howard S Fox
- Departments of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, United States
| | - Howard E Gendelman
- Departments of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| | - Santhi Gorantla
- Departments of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| | - Keshore R Bidasee
- Departments of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States.,Departments of Environment and Occupational Health, University of Nebraska Medical Center, Omaha, NE, United States.,Nebraska Redox Biology Center, Lincoln, NE, United States
| |
Collapse
|
10
|
Wang HL, Zhang CL, Qiu YM, Chen AQ, Li YN, Hu B. Dysfunction of the Blood-brain Barrier in Cerebral Microbleeds: from Bedside to Bench. Aging Dis 2021; 12:1898-1919. [PMID: 34881076 PMCID: PMC8612614 DOI: 10.14336/ad.2021.0514] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 05/14/2021] [Indexed: 02/06/2023] Open
Abstract
Cerebral microbleeds (CMBs) are a disorder of cerebral microvessels that are characterized as small (<10 mm), hypointense, round or ovoid lesions seen on T2*-weighted gradient echo MRI. There is a high prevalence of CMBs in community-dwelling healthy older people. An increasing number of studies have demonstrated the significance of CMBs in stroke, dementia, Parkinson's disease, gait disturbances and late-life depression. Blood-brain barrier (BBB) dysfunction is considered to be the event that initializes CMBs development. However, the pathogenesis of CMBs has not yet been clearly elucidated. In this review, we introduce the pathogenesis of CMBs, hypertensive vasculopathy and cerebral amyloid angiopathy, and review recent research that has advanced our understanding of the mechanisms underlying BBB dysfunction and CMBs presence. CMBs-associated risk factors can exacerbate BBB breakdown through the vulnerability of BBB anatomical and functional changes. Finally, we discuss potential pharmacological approaches to target the BBB as therapy for CMBs.
Collapse
Affiliation(s)
| | | | | | - An-qi Chen
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Ya-nan Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Bo Hu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
11
|
Alomar FA, Al-Rubaish A, Al-Muhanna F, Al-Ali AK, McMillan J, Singh J, Bidasee KR. Adeno-Associated Viral Transfer of Glyoxalase-1 Blunts Carbonyl and Oxidative Stresses in Hearts of Type 1 Diabetic Rats. Antioxidants (Basel) 2020; 9:E592. [PMID: 32640624 PMCID: PMC7402150 DOI: 10.3390/antiox9070592] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 07/01/2020] [Accepted: 07/02/2020] [Indexed: 02/06/2023] Open
Abstract
Accumulation of methylglyoxal (MG) arising from downregulation of its primary degrading enzyme glyoxalase-1 (Glo1) is an underlying cause of diabetic cardiomyopathy (DC). This study investigated if expressing Glo1 in rat hearts shortly after the onset of Type 1 diabetes mellitus (T1DM) would blunt the development of DC employing the streptozotocin-induced T1DM rat model, an adeno-associated virus containing Glo1 driven by the endothelin-1 promoter (AAV2/9-Endo-Glo1), echocardiography, video edge, confocal imaging, and biochemical/histopathological assays. After eight weeks of T1DM, rats developed DC characterized by a decreased E:A ratio, fractional shortening, and ejection fraction, and increased isovolumetric relaxation time, E: e' ratio, and circumferential and longitudinal strains. Evoked Ca2+ transients and contractile kinetics were also impaired in ventricular myocytes. Hearts from eight weeks T1DM rats had lower Glo1 and GSH levels, elevated carbonyl/oxidative stress, microvascular leakage, inflammation, and fibrosis. A single injection of AAV2/9 Endo-Glo1 (1.7 × 1012 viron particles/kg) one week after onset of T1DM, potentiated GSH, and blunted MG accumulation, carbonyl/oxidative stress, microvascular leakage, inflammation, fibrosis, and impairments in cardiac and myocyte functions that develop after eight weeks of T1DM. These new data indicate that preventing Glo1 downregulation by administering AAV2/9-Endo-Glo1 to rats one week after the onset of T1DM, blunted the DC that develops after eight weeks of diabetes by attenuating carbonyl/oxidative stresses, microvascular leakage, inflammation, and fibrosis.
Collapse
Affiliation(s)
- Fadhel A. Alomar
- Department of Pharmacology and Toxicology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Abdullah Al-Rubaish
- Department of Internal Medicine, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia; (A.A.-R.); (F.A.-M.)
| | - Fahad Al-Muhanna
- Department of Internal Medicine, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia; (A.A.-R.); (F.A.-M.)
| | - Amein K. Al-Ali
- Institute for Research and Medical Consultation, Imam Abdulrahman bin Faisal University, Dammam 31441, Saudi Arabia;
| | - JoEllyn McMillan
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5800, USA;
- Environmental, Agricultural and Occupational Health, University of Nebraska Medical Center, Omaha, NE 68198-5800, USA
| | - Jaipaul Singh
- College of Science and Technology, University of Central Lancashire, Preton PR1 2HE, England, UK;
| | - Keshore R. Bidasee
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5800, USA;
- Environmental, Agricultural and Occupational Health, University of Nebraska Medical Center, Omaha, NE 68198-5800, USA
- Nebraska Redox Biology Center, Lincoln, NE 68588-0662, USA
| |
Collapse
|
12
|
HIV-1-Associated Left Ventricular Cardiac Dysfunction in Humanized Mice. Sci Rep 2020; 10:9746. [PMID: 32546795 PMCID: PMC7297773 DOI: 10.1038/s41598-020-65943-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 04/27/2020] [Indexed: 12/25/2022] Open
Abstract
The molecular cause(s) for early onset heart failure in people living with HIV-1 infection (PLWH) remains poorly defined. Herein, longitudinal echocardiography was used to assess whether NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ mice reconstituted with human hematopoietic stem cells (Hu-NSG mice) and infected with HIV-1ADA can recapitulate the salient features of this progressive human disease. Four weeks post infection, Hu-NSG mice of both sexes developed left ventricular (LV) diastolic dysfunction (DD), with 25% exhibiting grade III/IV restrictive DD with mitral regurgitation. Increases in global longitudinal and circumferential strains and declines in LV ejection fraction and fractional shortening were observed eight weeks post infection. After twelve weeks of infection, 33% of Hu-NSG mice exhibited LV dyskinesia and dyssynchrony. Histopathological analyses of hearts seventeen weeks post infection revealed coronary microvascular leakage, fibrosis and immune cell infiltration into the myocardium. These data show for the first time that HIV-1ADA-infected Hu-NSG mice can recapitulate key left ventricular cardiac deficits and pathophysiological changes reported in humans with progressive HIV-1 infection. The results also suggest that HIV-1 infected Hu-NSG mice may be a useful model to screen for pharmacological agents to blunt LV dysfunction and associated pathophysiologic causes reported in PLWH.
Collapse
|
13
|
Dicarbonyl Stress and S-Glutathionylation in Cerebrovascular Diseases: A Focus on Cerebral Cavernous Malformations. Antioxidants (Basel) 2020; 9:antiox9020124. [PMID: 32024152 PMCID: PMC7071005 DOI: 10.3390/antiox9020124] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/25/2020] [Accepted: 01/29/2020] [Indexed: 02/07/2023] Open
Abstract
Dicarbonyl stress is a dysfunctional state consisting in the abnormal accumulation of reactive α-oxaldehydes leading to increased protein modification. In cells, post-translational changes can also occur through S-glutathionylation, a highly conserved oxidative post-translational modification consisting of the formation of a mixed disulfide between glutathione and a protein cysteine residue. This review recapitulates the main findings supporting a role for dicarbonyl stress and S-glutathionylation in the pathogenesis of cerebrovascular diseases, with specific emphasis on cerebral cavernous malformations (CCM), a vascular disease of proven genetic origin that may give rise to various clinical signs and symptoms at any age, including recurrent headaches, seizures, focal neurological deficits, and intracerebral hemorrhage. A possible interplay between dicarbonyl stress and S-glutathionylation in CCM is also discussed.
Collapse
|
14
|
Li W, Abdul Y, Ward R, Ergul A. Endothelin and diabetic complications: a brain-centric view. Physiol Res 2018; 67:S83-S94. [PMID: 29947530 DOI: 10.33549/physiolres.933833] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The global epidemic of diabetes is of significant concern. Diabetes associated vascular disease signifies the principal cause of morbidity and mortality in diabetic patients. It is also the most rapidly increasing risk factor for cognitive impairment, a silent disease that causes loss of creativity, productivity, and quality of life. Small vessel disease in the cerebral vasculature plays a major role in the pathogenesis of cognitive impairment in diabetes. Endothelin system, including endothelin-1 (ET-1) and the receptors (ET(A) and ET(B)), is a likely candidate that may be involved in many aspects of the diabetes cerebrovascular disease. In this review, we took a brain-centric approach and discussed the role of the ET system in cerebrovascular and cognitive dysfunction in diabetes.
Collapse
Affiliation(s)
- W Li
- Charlie Norwood Veterans Affairs Medical Center, Augusta, Georgia, USA, Department of Physiology, Augusta University, Augusta, Georgia, USA.
| | | | | | | |
Collapse
|
15
|
Coucha M, Abdelsaid M, Ward R, Abdul Y, Ergul A. Impact of Metabolic Diseases on Cerebral Circulation: Structural and Functional Consequences. Compr Physiol 2018; 8:773-799. [PMID: 29687902 DOI: 10.1002/cphy.c170019] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Metabolic diseases including obesity, insulin resistance, and diabetes have profound effects on cerebral circulation. These diseases not only affect the architecture of cerebral blood arteries causing adverse remodeling, pathological neovascularization, and vasoregression but also alter the physiology of blood vessels resulting in compromised myogenic reactivity, neurovascular uncoupling, and endothelial dysfunction. Coupled with the disruption of blood brain barrier (BBB) integrity, changes in blood flow and microbleeds into the brain rapidly occur. This overview is organized into sections describing cerebrovascular architecture, physiology, and BBB in these diseases. In each section, we review these properties starting with larger arteries moving into smaller vessels. Where information is available, we review in the order of obesity, insulin resistance, and diabetes. We also tried to include information on biological variables such as the sex of the animal models noted since most of the information summarized was obtained using male animals. © 2018 American Physiological Society. Compr Physiol 8:773-799, 2018.
Collapse
Affiliation(s)
- Maha Coucha
- South University, School of Pharmacy, Savannah, Georgia, USA
| | | | - Rebecca Ward
- Department of Neuroscience & Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Yasir Abdul
- Charlie Norwood VA Medical Center, Augusta, Georgia, USA.,Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Adviye Ergul
- Charlie Norwood VA Medical Center, Augusta, Georgia, USA.,Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| |
Collapse
|
16
|
Methylglyoxal-Glyoxalase 1 Balance: The Root of Vascular Damage. Int J Mol Sci 2017; 18:ijms18010188. [PMID: 28106778 PMCID: PMC5297820 DOI: 10.3390/ijms18010188] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 01/09/2017] [Accepted: 01/10/2017] [Indexed: 12/20/2022] Open
Abstract
The highly reactive dicarbonyl methylglyoxal (MGO) is mainly formed as byproduct of glycolysis. Therefore, high blood glucose levels determine increased MGO accumulation. Nonetheless, MGO levels are also increased as consequence of the ineffective action of its main detoxification pathway, the glyoxalase system, of which glyoxalase 1 (Glo1) is the rate-limiting enzyme. Indeed, a physiological decrease of Glo1 transcription and activity occurs not only in chronic hyperglycaemia but also with ageing, during which MGO accumulation occurs. MGO and its advanced glycated end products (AGEs) are associated with age-related diseases including diabetes, vascular dysfunction and neurodegeneration. Endothelial dysfunction is the first step in the initiation, progression and clinical outcome of vascular complications, such as retinopathy, nephropathy, impaired wound healing and macroangiopathy. Because of these considerations, studies have been centered on understanding the molecular basis of endothelial dysfunction in diabetes, unveiling a central role of MGO-Glo1 imbalance in the onset of vascular complications. This review focuses on the current understanding of MGO accumulation and Glo1 activity in diabetes, and their contribution on the impairment of endothelial function leading to diabetes-associated vascular damage.
Collapse
|
17
|
Alomar F, Singh J, Jang H, Rozanzki GJ, Shao CH, Padanilam BJ, Mayhan WG, Bidasee KR. Smooth muscle-generated methylglyoxal impairs endothelial cell-mediated vasodilatation of cerebral microvessels in type 1 diabetic rats. Br J Pharmacol 2016; 173:3307-3326. [PMID: 27611446 PMCID: PMC5738666 DOI: 10.1111/bph.13617] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 07/26/2016] [Accepted: 08/18/2016] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND AND PURPOSE Endothelial cell-mediated vasodilatation of cerebral arterioles is impaired in individuals with Type 1 diabetes (T1D). This defect compromises haemodynamics and can lead to hypoxia, microbleeds, inflammation and exaggerated ischaemia-reperfusion injuries. The molecular causes for dysregulation of cerebral microvascular endothelial cells (cECs) in T1D remains poorly defined. This study tests the hypothesis that cECs dysregulation in T1D is triggered by increased generation of the mitochondrial toxin, methylglyoxal, by smooth muscle cells in cerebral arterioles (cSMCs). EXPERIMENTAL APPROACH Endothelial cell-mediated vasodilatation, vascular transcytosis inflammation, hypoxia and ischaemia-reperfusion injury were assessed in brains of male Sprague-Dawley rats with streptozotocin-induced diabetes and compared with those in diabetic rats with increased expression of methylglyoxal-degrading enzyme glyoxalase-I (Glo-I) in cSMCs. KEY RESULTS After 7-8 weeks of T1D, endothelial cell-mediated vasodilatation of cerebral arterioles was impaired. Microvascular leakage, gliosis, macrophage/neutrophil infiltration, NF-κB activity and TNF-α levels were increased, and density of perfused microvessels was reduced. Transient occlusion of a mid-cerebral artery exacerbated ischaemia-reperfusion injury. In cSMCs, Glo-I protein was decreased, and the methylglyoxal-synthesizing enzyme, vascular adhesion protein 1 (VAP-1) and methylglyoxal were increased. Restoring Glo-I protein in cSMCs of diabetic rats to control levels via gene transfer, blunted VAP-1 and methylglyoxal increases, cECs dysfunction, microvascular leakage, inflammation, ischaemia-reperfusion injury and increased microvessel perfusion. CONCLUSIONS AND IMPLICATIONS Methylglyoxal generated by cSMCs induced cECs dysfunction, inflammation, hypoxia and exaggerated ischaemia-reperfusion injury in diabetic rats. Lowering methylglyoxal produced by cSMCs may be a viable therapeutic strategy to preserve cECs function and blunt deleterious downstream consequences in T1D.
Collapse
Affiliation(s)
- Fadhel Alomar
- Department of Pharmacology and Experimental NeuroscienceUniversity of Nebraska Medical CenterOmahaNEUSA
- Department of PharmacologyUniversity of DammamDammamSaudi Arabia
| | - Jaipaul Singh
- School of Forensic and Applied ScienceUniversity of Central LancashirePrestonUK
| | - Hee‐Seong Jang
- Department of Cellular and Integrative PhysiologyUniversity of Nebraska Medical CenterOmahaNEUSA
| | - George J Rozanzki
- Department of Cellular and Integrative PhysiologyUniversity of Nebraska Medical CenterOmahaNEUSA
- Nebraska Redox Biology CenterLincolnNEUSA
| | - Chun Hong Shao
- Department of Pharmacology and Experimental NeuroscienceUniversity of Nebraska Medical CenterOmahaNEUSA
| | - Babu J Padanilam
- Department of Cellular and Integrative PhysiologyUniversity of Nebraska Medical CenterOmahaNEUSA
| | - William G Mayhan
- Department of Basic Biomedical Sciences, Sanford School of MedicineUniversity of South DakotaVermillionSDUSA
| | - Keshore R Bidasee
- Department of Pharmacology and Experimental NeuroscienceUniversity of Nebraska Medical CenterOmahaNEUSA
- Department of Environmental, Agricultural and Occupational HealthUniversity of Nebraska Medical CenterOmahaNEUSA
- Nebraska Redox Biology CenterLincolnNEUSA
| |
Collapse
|