1
|
Ha AW, Meliton LN, Chen W, Wang L, Maienschein‐Cline M, Jacobson JR, Letsiou E, Dudek SM. Epigenetic mechanisms mediate cytochrome P450 1A1 expression and lung endothelial injury caused by MRSA in vitro and in vivo. FASEB J 2024; 38:e70205. [PMID: 39588951 PMCID: PMC11590412 DOI: 10.1096/fj.202401812r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/16/2024] [Accepted: 11/14/2024] [Indexed: 11/27/2024]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a common cause of severe pneumonia and acute respiratory distress syndrome (ARDS). To advance our mechanistic understanding of this important pathogen, we characterized the effects of MRSA-induced epigenetic modification of histone 3 lysine 9 acetylation (H3K9ac), an activator of gene transcription, on lung endothelial cells (EC), a critical site of ARDS pathophysiology. Chromatin immunoprecipitation and sequencing (ChIP-seq) analysis revealed that MRSA induces H3K9ac in the promoter regions of multiple genes, with the highest ranked peak annotated to the CYP1A1 gene. Subsequent experiments confirm that MRSA increases CYP1A1 protein and mRNA expression, and its enzymatic activity in EC. Epigenetic inhibitors (C646, RVX-208) reduce MRSA-induced CYP1A1 expression and inflammatory responses, including cytokine release and adhesion molecule expression. Inhibition of the Aryl hydrocarbon receptor (Ahr), a known mediator of CYP1A1 expression, blocks MRSA-induced upregulation of CYP1A1 mRNA and protein expression, enzyme activity, and cytokine release. Reduction of CYP1A1 protein expression by siRNA or inhibition of its activity by rhapontigenin attenuated MRSA-induced EC permeability and inflammatory responses. In a mouse model of MRSA-induced acute lung injury (ALI), inhibition of CYP1A1 activity by rhapontigenin improved multiple indices of ALI, including bronchoalveolar lavage (BAL) protein concentration, cytokine levels, and markers of endothelial damage. Analysis of publicly available data suggests upregulation of CYP1A1 expression in ARDS patients compared to ICU controls. In summary, these studies provide new insights into MRSA-induced lung injury and identify a novel functional role for epigenetic upregulation of CYP1A1 in lung EC during ARDS pathogenesis.
Collapse
Affiliation(s)
- Alison W. Ha
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of MedicineUniversity of Illinois ChicagoChicagoIllinoisUSA
| | - Lucille N. Meliton
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of MedicineUniversity of Illinois ChicagoChicagoIllinoisUSA
| | - Weiguo Chen
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of MedicineUniversity of Illinois ChicagoChicagoIllinoisUSA
| | - Lichun Wang
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of MedicineUniversity of Illinois ChicagoChicagoIllinoisUSA
| | - Mark Maienschein‐Cline
- Research Informatics Core, Research Resources CenterUniversity of Illinois ChicagoChicagoIllinoisUSA
| | - Jeffrey R. Jacobson
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of MedicineUniversity of Illinois ChicagoChicagoIllinoisUSA
| | - Eleftheria Letsiou
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of MedicineUniversity of Illinois ChicagoChicagoIllinoisUSA
| | - Steven M. Dudek
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of MedicineUniversity of Illinois ChicagoChicagoIllinoisUSA
| |
Collapse
|
2
|
Petrova M, Margasyuk S, Vorobeva M, Skvortsov D, Dontsova O, Pervouchine DD. BRD2 and BRD3 genes independently evolved RNA structures to control unproductive splicing. NAR Genom Bioinform 2024; 6:lqad113. [PMID: 38226395 PMCID: PMC10789245 DOI: 10.1093/nargab/lqad113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/13/2023] [Accepted: 12/28/2023] [Indexed: 01/17/2024] Open
Abstract
The mammalian BRD2 and BRD3 genes encode structurally related proteins from the bromodomain and extraterminal domain protein family. The expression of BRD2 is regulated by unproductive splicing upon inclusion of exon 3b, which is located in the region encoding a bromodomain. Bioinformatic analysis indicated that BRD2 exon 3b inclusion is controlled by a pair of conserved complementary regions (PCCR) located in the flanking introns. Furthermore, we identified a highly conserved element encoding a cryptic poison exon 5b and a previously unknown PCCR in the intron between exons 5 and 6 of BRD3, however, outside of the homologous bromodomain. Minigene mutagenesis and blockage of RNA structure by antisense oligonucleotides demonstrated that RNA structure controls the rate of inclusion of poison exons. The patterns of BRD2 and BRD3 expression and splicing show downregulation upon inclusion of poison exons, which become skipped in response to transcription elongation slowdown, further confirming a role of PCCRs in unproductive splicing regulation. We conclude that BRD2 and BRD3 independently acquired poison exons and RNA structures to dynamically control unproductive splicing. This study describes a convergent evolution of regulatory unproductive splicing mechanisms in these genes, providing implications for selective modulation of their expression in therapeutic applications.
Collapse
Affiliation(s)
- Marina Petrova
- Skolkovo Institute of Science and Technology, Bolshoy Bulvar, 30, str. 1, Moscow 121205, Russia
| | - Sergey Margasyuk
- Skolkovo Institute of Science and Technology, Bolshoy Bulvar, 30, str. 1, Moscow 121205, Russia
| | - Margarita Vorobeva
- Faculty of Chemistry, Moscow State University, GSP-1, 1-3 Leninskiye Gory, Moscow 119991, Russia
| | - Dmitry Skvortsov
- Skolkovo Institute of Science and Technology, Bolshoy Bulvar, 30, str. 1, Moscow 121205, Russia
- Faculty of Chemistry, Moscow State University, GSP-1, 1-3 Leninskiye Gory, Moscow 119991, Russia
| | - Olga A Dontsova
- Skolkovo Institute of Science and Technology, Bolshoy Bulvar, 30, str. 1, Moscow 121205, Russia
- Faculty of Chemistry, Moscow State University, GSP-1, 1-3 Leninskiye Gory, Moscow 119991, Russia
| | - Dmitri D Pervouchine
- Skolkovo Institute of Science and Technology, Bolshoy Bulvar, 30, str. 1, Moscow 121205, Russia
| |
Collapse
|
3
|
Iten M, Gschwend C, Ostini A, Cameron DR, Goepfert C, Berger D, Haenggi M. BET-inhibitor DYB-41 reduces pulmonary inflammation and local and systemic cytokine levels in LPS-induced acute respiratory distress syndrome: an experimental rodent study. Intensive Care Med Exp 2024; 12:19. [PMID: 38407669 PMCID: PMC10897099 DOI: 10.1186/s40635-024-00604-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/16/2024] [Indexed: 02/27/2024] Open
Abstract
BACKGROUND Acute respiratory distress syndrome (ARDS) is a form of respiratory failure stemming from various underlying conditions that ultimately lead to inflammation and lung fibrosis. Bromodomain and Extra-Terminal motif (BET) inhibitors are a class of medications that selectively bind to the bromodomains of BET motif proteins, effectively reducing inflammation. However, the use of BET inhibitors in ARDS treatment has not been previously investigated. In our study, we induced ARDS in rats using endotoxin and administered a BET inhibitor. We evaluated the outcomes by examining inflammation markers and lung histopathology. RESULTS Nine animals received treatment, while 12 served as controls. In the lung tissue of treated animals, we observed a significant reduction in TNFα levels (549 [149-977] pg/mg vs. 3010 [396-5529] pg/mg; p = 0.009) and IL-1β levels (447 [369-580] pg/mg vs. 662 [523-924] pg/mg; p = 0.012), although IL-6 and IL-10 levels showed no significant differences. In the blood, treated animals exhibited a reduced TNFα level (25 [25-424] pg/ml vs. 900 [285-1744] pg/ml, p = 0.016), but IL-1β levels were significantly higher (1254 [435-2474] pg/ml vs. 384 [213-907] pg/ml, p = 0.049). No differences were observed in IL-6 and IL-10 levels. There were no significant variations in lung tissue levels of TGF-β, SP-D, or RAGE. Histopathological analysis revealed substantial damage, with notably less perivascular edema (3 vs 2; p = 0.0046) and visually more inflammatory cells. However, two semi-quantitative histopathologic scoring systems did not indicate significant differences. CONCLUSIONS These preliminary findings suggest a potential beneficial effect of BET inhibitors in the treatment of acute lung injury and ARDS. Further validation and replication of these results with a larger cohort of animals, in diverse models, and using different BET inhibitors are needed to explore their clinical implications.
Collapse
Affiliation(s)
- Manuela Iten
- Department of Intensive Care Medicine, Inselspital, University Hospital Bern, Freiburgstrasse 16, 3010, Bern, Switzerland.
| | - Camille Gschwend
- Department of Intensive Care Medicine, Inselspital, University Hospital Bern, Freiburgstrasse 16, 3010, Bern, Switzerland
| | - Alessandro Ostini
- Department of Intensive Care Medicine, Inselspital, University Hospital Bern, Freiburgstrasse 16, 3010, Bern, Switzerland
- Department of Intensive Care Medicine, Cantonal Hospital Aarau, Tellstrasse 25, 5001, Aarau, Switzerland
| | - David Robert Cameron
- Department of Intensive Care Medicine, Inselspital, University Hospital Bern, Freiburgstrasse 16, 3010, Bern, Switzerland
| | - Christine Goepfert
- COMPATH, Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Laenggassstrasse 122, 3012, Bern, Switzerland
| | - David Berger
- Department of Intensive Care Medicine, Inselspital, University Hospital Bern, Freiburgstrasse 16, 3010, Bern, Switzerland
| | - Matthias Haenggi
- Department of Intensive Care Medicine, Inselspital, University Hospital Bern, Freiburgstrasse 16, 3010, Bern, Switzerland
| |
Collapse
|
4
|
Zhao C, Luo Q, Huang J, Su S, Zhang L, Zheng D, Chen M, Lin X, Zhong J, Li L, Ling K, Zhang S. Extracellular Vesicles Derived from Human Adipose-Derived Mesenchymal Stem Cells Alleviate Sepsis-Induced Acute Lung Injury through a MicroRNA-150-5p-Dependent Mechanism. ACS Biomater Sci Eng 2024; 10:946-959. [PMID: 38154081 DOI: 10.1021/acsbiomaterials.3c00614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2023]
Abstract
Extracellular vesicles (EVs) derived from human adipose mesenchymal stem cells (hADSCs) may exert a therapeutic benefit in alleviating sepsis-induced organ dysfunction by delivering cargos that include RNAs and proteins to target cells. The current study aims to explore the protective effect of miR-150-5p delivered by hADSC-EVs on sepsis-induced acute lung injury (ALI). We noted low expression of miR-150-5p in plasma and bronchoalveolar lavage fluid samples from patients with sepsis-induced ALI. The hADSC-EVs were isolated and subsequently cocultured with macrophages. It was established that hADSC-EVs transferred miR-150-5p to macrophages, where miR-150-5p targeted HMGA2 to inhibit its expression and, consequently, inactivated the MAPK pathway. This effect contributed to the promotion of M2 polarization of macrophages and the inhibition of proinflammatory cytokines. Further, mice were made septic by cecal ligation and puncture in vivo and treated with hADSC-EVs to elucidate the effect of hADSC-EVs on sepsis-induced ALI. The in vivo experimental results confirmed a suppressive role of hADSC-EVs in sepsis-induced ALI. Our findings suggest that hADSC-EV-mediated transfer of miR-150-5p may be a novel mechanism underlying the paracrine effects of hADSC-EVs on the M2 polarization of macrophages in sepsis-induced ALI.
Collapse
Affiliation(s)
- Chengkuan Zhao
- Department of Pharmacy, Guangzhou Red Cross Hospital, Jinan University, Guangzhou 510220, P.R. China
| | - Qianhua Luo
- Department of Pharmacology, Guangdong Second Provincial General Hospital, Guangzhou 510317, P.R. China
- Jinshazhou Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510168, P.R. China
| | - Jianxiang Huang
- College of Pharmacy, Jinan University, Guangzhou 510220, P.R. China
| | - Siman Su
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, P.R. China
| | - Lijuan Zhang
- Department of Pharmacy, YueBei People's Hospital (YueBei People's Hospital affiliated to Shantou University Medical College), ShaoGuan 512000, P.R. China
| | - Danling Zheng
- Department of Pharmacy, Guangzhou Red Cross Hospital, Jinan University, Guangzhou 510220, P.R. China
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, P.R. China
| | - Meini Chen
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, P.R. China
| | - Xinyue Lin
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, P.R. China
| | - Jialin Zhong
- Department of Pharmacy, Guangzhou Red Cross Hospital, Jinan University, Guangzhou 510220, P.R. China
| | - Li Li
- Department of Pharmacy, Guangzhou Red Cross Hospital, Jinan University, Guangzhou 510220, P.R. China
| | - Kai Ling
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, P.R. China
| | - Shuyao Zhang
- Department of Pharmacy, Guangzhou Red Cross Hospital, Jinan University, Guangzhou 510220, P.R. China
| |
Collapse
|
5
|
Sun J, Wang XH, Song FH, Li DY, Gao SJ, Zhang LQ, Wu JY, Liu DQ, Wang LW, Zhou YQ, Mei W. Inhibition of Brd4 alleviates osteoarthritis pain via suppression of neuroinflammation and activation of Nrf2-mediated antioxidant signalling. Br J Pharmacol 2023; 180:3194-3214. [PMID: 37485568 DOI: 10.1111/bph.16195] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 05/02/2023] [Accepted: 05/03/2023] [Indexed: 07/25/2023] Open
Abstract
BACKGROUND AND PURPOSE Osteoarthritis (OA) pain remains a major clinical problem. It is urgent to identify novel therapeutic approaches for OA pain states. Bromodomain and extra-terminal (BET) protein inhibitors have robust anti-inflammatory effects in several pain models. However, the underlying mechanisms of these inhibitors in OA pain have not been determined. We, therefore, investigated the effects and the underlying mechanism(s) of BET inhibition on pain-related behaviours in a rat model of OA. EXPERIMENTAL APPROACH The OA model was established by intra-articular injection of monosodium iodoacetate (MIA) in rat knees. Pain behaviours were assessed in rats by hindlimb weight-bearing asymmetry, mechanical allodynia and thermal hyperalgesia. Possible mechanisms underlying BET inhibition were explored in the MIA-induced OA pain model in the spinal cord and dorsal root ganglia (DRG). KEY RESULTS Inhibiting bromodomain-containing protein 4 (Brd4) with either JQ1 or MS417, or using AAV2/9-shRNA-Brd4-EGFP-mediated knockdown of Brd4 genes, significantly attenuated MIA-induced pain behaviours. Brd4 inhibition suppressed NF-κB and NF-κB-mediated inflammatory cytokines in both the spinal cord and DRG in rats with MIA-induced OA pain. Brd4 inhibition also attenuated the oxidative stress and promoted nuclear factor erythroid-2-related factor 2 (Nrf2)-dependent antioxidant genes in both the spinal cord and DRG in our odel of MIA-induced OA pain. CONCLUSIONS AND IMPLICATIONS In conclusion, Brd4 inhibition alleviated MIA-induced OA pain in rats, via suppression of neuroinflammation and activation of Nrf2-mediated antioxidant signalling. Although our model does not perfectly represent how OA develops in humans, inhibition of Brd4 may provide novel insights into possible treatments for OA pain.
Collapse
Affiliation(s)
- Jia Sun
- Department of Anesthesiology, Xuzhou Central Hospital, Xuzhou, China
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xing-He Wang
- Department of Anesthesiology, Xuzhou Central Hospital, Xuzhou, China
| | - Fan-He Song
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dan-Yang Li
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shao-Jie Gao
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Long-Qing Zhang
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jia-Yi Wu
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dai-Qiang Liu
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li-Wei Wang
- Department of Anesthesiology, Xuzhou Central Hospital, Xuzhou, China
| | - Ya-Qun Zhou
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Mei
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
6
|
Guo X, Olajuyin A, Tucker TA, Idell S, Qian G. BRD4 as a Therapeutic Target in Pulmonary Diseases. Int J Mol Sci 2023; 24:13231. [PMID: 37686037 PMCID: PMC10487829 DOI: 10.3390/ijms241713231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/21/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
Bromodomain and extra-terminal domain (BET) proteins are epigenetic modulators that regulate gene transcription through interacting with acetylated lysine residues of histone proteins. BET proteins have multiple roles in regulating key cellular functions such as cell proliferation, differentiation, inflammation, oxidative and redox balance, and immune responses. As a result, BET proteins have been found to be actively involved in a broad range of human lung diseases including acute lung inflammation, asthma, pulmonary arterial hypertension, pulmonary fibrosis, and chronic obstructive pulmonary disease (COPD). Due to the identification of specific small molecular inhibitors of BET proteins, targeting BET in these lung diseases has become an area of increasing interest. Emerging evidence has demonstrated the beneficial effects of BET inhibitors in preclinical models of various human lung diseases. This is, in general, largely related to the ability of BET proteins to bind to promoters of genes that are critical for inflammation, differentiation, and beyond. By modulating these critical genes, BET proteins are integrated into the pathogenesis of disease progression. The intrinsic histone acetyltransferase activity of bromodomain-containing protein 4 (BRD4) is of particular interest, seems to act independently of its bromodomain binding activity, and has implication in some contexts. In this review, we provide a brief overview of the research on BET proteins with a focus on BRD4 in several major human lung diseases, the underlying molecular mechanisms, as well as findings of targeting BET proteins using pharmaceutical inhibitors in different lung diseases preclinically.
Collapse
Affiliation(s)
| | | | | | | | - Guoqing Qian
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX 75708, USA; (X.G.); (A.O.); (T.A.T.); (S.I.)
| |
Collapse
|
7
|
Zhu Y, Ni H, Chen Q, Qian H, Fang Y, Gao R, Liu B. Inhibition of BRD4 expression attenuates the inflammatory response and apoptosis by downregulating the HMGB-1/NF-κB signaling pathway following traumatic brain injury in rats. Neurosci Lett 2023; 812:137385. [PMID: 37423465 DOI: 10.1016/j.neulet.2023.137385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/27/2023] [Accepted: 07/05/2023] [Indexed: 07/11/2023]
Abstract
Neuroinflammation plays an important part in secondary traumatic brain injury (TBI). Bromodomain-4 (BRD4) exerts specific proinflammatory effects in various neuropathological conditions. However, the underlying mechanism of action of BRD4 after TBI is not known. We measured BRD4 expression after TBI and investigated its possible mechanism of action. We established a model of craniocerebral injury in rats. After different intervention measures, we used western blotting, immunofluorescence, real-time reverse transcription-quantitative polymerase chain reaction, neuronal apoptosis, and behavioral tests to evaluate the effect of BRD4 on brain injury. At 72 h after brain injury, BRD4 overexpression aggravated the neuroinflammatory response, neuronal apoptosis, neurological dysfunction, and blood-brain-barrier damage, whereas upregulating expression of HMGB-1 and NF-κB had the opposite effect. Glycyrrhizic acid could reverse the proinflammatory effect of BRD4 overexpression upon TBI. Our results suggest that: (i) BRD4 may have a proinflammatory role in secondary brain injury through the HMGB-1/NF-κB signaling pathway; (ii) inhibition of BRD4 expression may play a part in secondary brain injury. BRD4 could be targeted therapy strategy for brain injury.
Collapse
Affiliation(s)
- Yongkui Zhu
- Department of Intensive Care Unit, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou, China
| | - Haibo Ni
- Department of Neurosurgery, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou, China; Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Qian Chen
- Department of Intensive Care Unit, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou, China
| | - Huan Qian
- Department of Anesthesia, Zhangjiagang Hospital of Traditional Medicine, Suzhou, China
| | - Yiling Fang
- Department of General Practice, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou, China
| | - Rong Gao
- Department of Neurosurgery, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou, China.
| | - Bofei Liu
- Department of Intensive Care Unit, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
8
|
Mumby S, Perros F, Grynblat J, Manaud G, Papi A, Casolari P, Caramori G, Humbert M, John Wort S, Adcock IM. Differential responses of pulmonary vascular cells from PAH patients and controls to TNFα and the effect of the BET inhibitor JQ1. Respir Res 2023; 24:193. [PMID: 37516840 PMCID: PMC10386603 DOI: 10.1186/s12931-023-02499-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 07/23/2023] [Indexed: 07/31/2023] Open
Abstract
BACKGROUND Pulmonary arterial hypertension (PAH) encompasses a group of diseases characterized by raised pulmonary vascular resistance, resulting from vascular remodelling and inflammation. Bromodomain and extra-terminal (BET) proteins are required for the expression of a subset of NF-κB-induced inflammatory genes which can be inhibited by the BET mimic JQ1+. We hypothesised that JQ+ would supress TNFα-driven inflammatory responses in human pulmonary vascular cells from PAH patients. METHODS Immunohistochemical staining of human peripheral lung tissue (N = 14 PAH and N = 12 non-PAH) was performed for the BET proteins BRD2 and 4. Human pulmonary microvascular endothelial cells (HPMEC) and pulmonary artery smooth muscle cells (HPASMC) from PAH patients (N = 4) and non-PAH controls (N = 4) were stimulated with TNFα in presence or absence of JQ1+ or its inactive isomer JQ1-. IL-6 and -8 mRNA was measured by RT-qPCR and protein levels by ELISA. Chromatin immunoprecipitation analysis was performed using EZ-ChIP™ and NF-κB p65 activation determined using a TransAm kit. MTT assay was used to measure cell viability. RESULTS Nuclear staining of BRD2 and BRD4 was significantly (p < 0.0001) increased in the lung vascular endothelial and smooth muscle cells from PAH patients compared to controls with normal lung function. TNFα-driven IL-6 release from both HPMECs and HPASMCs was greater in PAH cells than control cells. Levels of CXCL8/IL-8 protein release was higher in PAH HPASMCs than in control cells with similar release observed in HPMECs. TNFα-induced recruitment of activated NF-κB p65 to the IL-6 and CXCL8/IL-8 promoters were similar in both cell types and between subject groups. JQ1+ suppressed TNFα-induced IL-6 and CXCL8/IL-8 release and mRNA expression to a comparable extent in control and PAH HPMECs and HPASMCs. JQ1 had a greater efficacy on IL-6 release in HPMEC and on CXCL8/IL-8 release in HPASMC. CONCLUSION BET inhibition decreases TNFα driven inflammation in primary pulmonary vascular cells. The anti-inflammatory actions of JQ1 suggests distinct cell-specific regulatory control of these genes. BET proteins could be a target for future therapies for PAH.
Collapse
Affiliation(s)
- Sharon Mumby
- Respiratory Science, NHLI, Imperial College London, London, UK.
| | - Frederic Perros
- Inserm UMR-S 999, Hôpital Marie Lannelongue, Groupe Hospitalier Paris Saint Joseph, Université Paris-Saclay, Le Plessis-Robinson, France
- CarMeN Laboratory, INSERM U1060, INRAE U1397, Université Claude Bernard Lyon1, Pierre-Bénite, France
| | - Julien Grynblat
- Inserm UMR-S 999, Hôpital Marie Lannelongue, Groupe Hospitalier Paris Saint Joseph, Université Paris-Saclay, Le Plessis-Robinson, France
| | - Gregoire Manaud
- Inserm UMR-S 999, Hôpital Marie Lannelongue, Groupe Hospitalier Paris Saint Joseph, Université Paris-Saclay, Le Plessis-Robinson, France
| | - Alberto Papi
- Interdepartmental Study Center for Inflammatory and Smoke-Related Airway Diseases, Cardiorespiratory and Internal Medicine Section, University of Ferrara, Ferrara, Italy
| | - Paolo Casolari
- Interdepartmental Study Center for Inflammatory and Smoke-Related Airway Diseases, Cardiorespiratory and Internal Medicine Section, University of Ferrara, Ferrara, Italy
| | - Gaetano Caramori
- Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e Delle Immagini Morfologiche e Funzionali (BIOMORF), Università Degli Studi di Messina, Messina, Italy
| | - Marc Humbert
- Inserm UMR-S 999, Hôpital Marie Lannelongue, Groupe Hospitalier Paris Saint Joseph, Université Paris-Saclay, Le Plessis-Robinson, France
- Department of Respiratory and Intensive Care Medicine, AP-HP, Hôpital Bicêtre, Pulmonary Hypertension National Referral Center, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - S John Wort
- Respiratory Science, NHLI, Imperial College London, London, UK
- National Pulmonary Hypertension Service, Royal Brompton Hospital, London, UK
| | - Ian M Adcock
- Respiratory Science, NHLI, Imperial College London, London, UK
| |
Collapse
|
9
|
Krošel M, Moser L, Houtman M, Friščić J, Tomšič M, Distler O, Hoffmann MH, Ospelt C, Klein K. Bromodomain Protein Inhibitors Reorganize the Chromatin of Synovial Fibroblasts. Cells 2023; 12:cells12081149. [PMID: 37190058 DOI: 10.3390/cells12081149] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 03/28/2023] [Accepted: 04/10/2023] [Indexed: 05/17/2023] Open
Abstract
Bromodomain- and extra-terminal domain (BET) proteins are epigenetic reader proteins that regulate transcription of their target genes by binding to acetylated histone side chains. Small molecule inhibitors, such as I-BET151, have anti-inflammatory properties in fibroblast-like synoviocytes (FLS) and in animal models of arthritis. Here, we investigated whether BET inhibition can also affect the levels of histone modifications, a novel mechanism underlying BET protein inhibition. On the one hand, FLSs were treated with I-BET151 (1 µM) for 24 h in absence and presence of TNF. On the other hand, FLSs were washed with PBS after 48 h of I-BET151 treatment, and the effects were measured 5 days after I-BET151 treatment or after an additional 24 h stimulation with TNF (5 d + 24 h). Mass spectrometry analysis indicated that I-BET151 induced profound changes in histone modifications, with a global reduction in acetylation on different histone side chains 5 days after treatment. We confirmed changes on acetylated histone side chains in independent samples by Western blotting. I-BET151 treatment reduced mean TNF-induced levels of total acetylated histone 3 (acH3), H3K18ac, and H3K27ac. In line with these changes, the TNF-induced expression of BET protein target genes was suppressed 5 d after I-BET151 treatment. Our data indicate that BET inhibitors not only prevent the reading of acetylated histones but directly influence overall chromatin organization, in particular after stimulation with TNF.
Collapse
Affiliation(s)
- Monika Krošel
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland
- Department of Rheumatology, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Larissa Moser
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland
| | - Miranda Houtman
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland
| | - Jasna Friščić
- Department of Dermatology, Allergy, and Venereology, University of Lübeck, 23562 Lübeck, Germany
| | - Matija Tomšič
- Department of Rheumatology, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Oliver Distler
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland
| | - Markus H Hoffmann
- Department of Dermatology, Allergy, and Venereology, University of Lübeck, 23562 Lübeck, Germany
| | - Caroline Ospelt
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland
| | - Kerstin Klein
- Department of BioMedical Research, University of Bern, 3008 Bern, Switzerland
- Department of Rheumatology and Immunology, Inselspital, Bern University Hospital, 3008 Bern, Switzerland
| |
Collapse
|
10
|
The Role of Bromodomain and Extraterminal (BET) Proteins in Controlling the Phagocytic Activity of Microglia In Vitro: Relevance to Alzheimer's Disease. Int J Mol Sci 2022; 24:ijms24010013. [PMID: 36613460 PMCID: PMC9820364 DOI: 10.3390/ijms24010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/10/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
The correct phagocytic activity of microglia is a prerequisite for maintaining homeostasis in the brain. In the analysis of mechanisms regulating microglial phagocytosis, we focused on the bromodomain and extraterminal domain (BET) proteins: Brd2, Brd3, and Brd4, the acetylation code readers that control gene expression in cooperation with transcription factors. We used pharmacological (JQ1) and genetic (siRNA) inhibition of BET proteins in murine microglial cell line BV2. Inhibition of BET proteins reduced the phagocytic activity of BV2, as determined by using a fluorescent microspheres-based assay and fluorescently labelled amyloid-beta peptides. Gene silencing experiments demonstrated that all brain-existing BET isoforms control phagocytosis in microglia. From a set of 84 phagocytosis-related genes, we have found the attenuation of the expression of 14: Siglec1, Sirpb1a, Cd36, Clec7a, Itgam, Tlr3, Fcgr1, Cd14, Marco, Pld1, Fcgr2b, Anxa1, Tnf, Nod1, upon BET inhibition. Further analysis of the mRNA level of other phagocytosis-related genes which were involved in the pathomechanism of Alzheimer's disease demonstrated that JQ1 significantly reduced the expression of Cd33, Trem2, and Zyx. Our results indicate the important role of BET proteins in controlling microglial phagocytosis; therefore, targeting BET may be the efficient method of modulating microglial activity.
Collapse
|
11
|
Influence of Shear Stress, Inflammation and BRD4 Inhibition on Human Endothelial Cells: A Holistic Proteomic Approach. Cells 2022; 11:cells11193086. [PMID: 36231049 PMCID: PMC9563250 DOI: 10.3390/cells11193086] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/26/2022] [Accepted: 09/28/2022] [Indexed: 11/17/2022] Open
Abstract
Atherosclerosis is an important risk factor in the development of cardiovascular diseases. In addition to increased plasma lipid concentrations, irregular/oscillatory shear stress and inflammatory processes trigger atherosclerosis. Inhibitors of the transcription modulatory bromo- and extra-terminal domain (BET) protein family (BETi) could offer a possible therapeutic approach due to their epigenetic mechanism and anti-inflammatory properties. In this study, the influence of laminar shear stress, inflammation and BETi treatment on human endothelial cells was investigated using global protein expression profiling by ion mobility separation-enhanced data independent acquisition mass spectrometry (IMS-DIA-MS). For this purpose, primary human umbilical cord derived vascular endothelial cells were treated with TNFα to mimic inflammation and exposed to laminar shear stress in the presence or absence of the BRD4 inhibitor JQ1. IMS-DIA-MS detected over 4037 proteins expressed in endothelial cells. Inflammation, shear stress and BETi led to pronounced changes in protein expression patterns with JQ1 having the greatest effect. To our knowledge, this is the first proteomics study on primary endothelial cells, which provides an extensive database for the effects of shear stress, inflammation and BETi on the endothelial proteome.
Collapse
|
12
|
Shi X, Wang Y, Zhang L, Zhao W, Dai X, Yang YG, Zhang X. Targeting bromodomain and extra-terminal proteins to inhibit neuroblastoma tumorigenesis through regulating MYCN. Front Cell Dev Biol 2022; 10:1021820. [PMID: 36187481 PMCID: PMC9523081 DOI: 10.3389/fcell.2022.1021820] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 09/01/2022] [Indexed: 11/13/2022] Open
Abstract
Bromodomain and extra-terminal domain (BET) family proteins play important roles in regulating the expression of multiple proto-oncogenes by recognizing acetylation of histones and non-histone proteins including transcription factors, which subsequently promote tumor cell proliferation, survival, metastasis and immune escape. Therefore, BET family proteins are considered attractive therapeutic targets in various cancers. Currently, blocking of the BET proteins is a widely used therapeutic strategy for MYCN amplified high-risk neuroblastoma. Here, we summarized and reviewed the recent research progresses for the critical function of BET proteins, as an epigenetic reader, on tumorigenesis and the therapeutic potential of the BET/BRD4 inhibitors on MYCN amplified neuroblastoma. We also discussed the combined therapeutic strategies for BET inhibitor-resistant neuroblastoma.
Collapse
|
13
|
Borgonetti V, Meacci E, Pierucci F, Romanelli MN, Galeotti N. Dual HDAC/BRD4 Inhibitors Relieves Neuropathic Pain by Attenuating Inflammatory Response in Microglia After Spared Nerve Injury. Neurotherapeutics 2022; 19:1634-1648. [PMID: 35501470 PMCID: PMC9606187 DOI: 10.1007/s13311-022-01243-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2022] [Indexed: 10/18/2022] Open
Abstract
Despite the effort on developing new treatments, therapy for neuropathic pain is still a clinical challenge and combination therapy regimes of two or more drugs are often needed to improve efficacy. Accumulating evidence shows an altered expression and activity of histone acetylation enzymes in chronic pain conditions and restoration of these aberrant epigenetic modifications promotes pain-relieving activity. Recent studies showed a synergistic activity in neuropathic pain models by combination of histone deacetylases (HDACs) and bromodomain and extra-terminal domain (BET) inhibitors. On these premises, the present study investigated the pharmacological profile of new dual HDAC/BRD4 inhibitors, named SUM52 and SUM35, in the spared nerve injury (SNI) model in mice as innovative strategy to simultaneously inhibit HDACs and BETs. Intranasal administration of SUM52 and SUM35 attenuated thermal and mechanical hypersensitivity in the absence of locomotor side effects. Both dual inhibitors showed a preferential interaction with BRD4-BD2 domain, and SUM52 resulted the most active compound. SUM52 reduced microglia-mediated spinal neuroinflammation in spinal cord sections of SNI mice as showed by reduction of IBA1 immunostaining, inducible nitric oxide synthase (iNOS) expression, p65 nuclear factor-κB (NF-κB) and p38 MAPK over-phosphorylation. A robust decrease of the spinal proinflammatory cytokines content (IL-6, IL-1ß) was also observed after SUM52 treatment. Present results, showing the pain-relieving activity of HDAC/BRD4 dual inhibitors, indicate that the simultaneous modulation of BET and HDAC activity by a single molecule acting as multi-target agent might represent a promise for neuropathic pain relief.
Collapse
Affiliation(s)
- Vittoria Borgonetti
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Viale G. Pieraccini 6, 50139, Florence, Italy
| | - Elisabetta Meacci
- Department of Experimental and Clinical Biomedical Sciences, "Mario Serio"-Unit of Biochemical Sciences and Molecular Biology, University of Florence, Viale GB Morgagni 50, 50134, Florence, Italy
| | - Federica Pierucci
- Department of Experimental and Clinical Biomedical Sciences, "Mario Serio"-Unit of Biochemical Sciences and Molecular Biology, University of Florence, Viale GB Morgagni 50, 50134, Florence, Italy
| | - Maria Novella Romanelli
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Via Ugo Schiff 6, 50019, Sesto Fiorentino, Italy
| | - Nicoletta Galeotti
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Viale G. Pieraccini 6, 50139, Florence, Italy.
| |
Collapse
|
14
|
WKYMVm/FPR2 Alleviates Spinal Cord Injury by Attenuating the Inflammatory Response of Microglia. Mediators Inflamm 2022; 2022:4408099. [PMID: 35935810 PMCID: PMC9348919 DOI: 10.1155/2022/4408099] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/11/2022] [Indexed: 11/17/2022] Open
Abstract
Spinal cord injury (SCI) is a common traumatic disease of the nervous system. The pathophysiological process of SCI includes primary injury and secondary injuries. An excessive inflammatory response leads to secondary tissue damage, which in turn exacerbates cellular and organ dysfunction. Due to the irreversibility of primary injury, current research on SCI mainly focuses on secondary injury, and the inflammatory response is considered the primary target. Thus, modulating the inflammatory response has been suggested as a new strategy for the treatment of SCI. In this study, microglial cell lines, primary microglia, and a rat SCI model were used, and we found that WKYMVm/FPR2 plays an anti-inflammatory role and reduces tissue damage after SCI by suppressing the extracellular signal-regulated kinases 1 and 2 (ERK1/2) and nuclear factor-κB (NF-κB) signaling pathways. FPR2 was activated by WKYMVm, suppressing the secretion of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interleukin-1β (IL-1β) by inhibiting M1 microglial polarization. Moreover, FPR2 activation by WKYMVm could reduce structural disorders and neuronal loss in SCI rats. Overall, this study illustrated that the activation of FPR2 by WKYMVm repressed M1 microglial polarization by suppressing the ERK1/2 and NF-κB signaling pathways to alleviate tissue damage and locomotor decline after SCI. These findings provide further insight into SCI and help identify novel treatment strategies.
Collapse
|
15
|
Banham GD, Lee CYC, Ferdinand JR, Matthews RJ, Jing C, Smithers N, Prinjha RK, Clatworthy MR. Bromodomain Inhibitors Modulate FcγR-Mediated Mononuclear Phagocyte Activation and Chemotaxis. Front Immunol 2022; 13:885101. [PMID: 35619690 PMCID: PMC9127238 DOI: 10.3389/fimmu.2022.885101] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 04/14/2022] [Indexed: 11/18/2022] Open
Abstract
IgG antibodies form immune complexes (IC) that propagate inflammation and tissue damage in autoimmune diseases such as systemic lupus erythematosus. IgG IC engage Fcγ receptors (FcγR) on mononuclear phagocytes (MNP), leading to widespread changes in gene expression that mediate antibody effector function. Bromodomain and extra-terminal domain (BET) proteins are involved in governing gene transcription. We investigated the capacity of BET protein inhibitors (iBET) to alter IgG FcγR-mediated MNP activation. We found that iBET dampened IgG IC-induced pro-inflammatory gene expression and decreased activating FcγR expression on MNPs, reducing their ability to respond to IgG IC. Despite FcγR downregulation, iBET-treated macrophages demonstrated increased phagocytosis of protein antigen, IgG IC, and apoptotic cells. iBET also altered cell morphology, generating more amoeboid MNPs with reduced adhesion. iBET treatment impaired chemotaxis towards a CCL19 gradient in IC-stimulated dendritic cells (DC) in vitro, and inhibited IC-induced DC migration to draining lymph nodes in vivo, in a DC-intrinsic manner. Altogether, our data show that iBET modulates FcγR-mediated MNP activation and migration, revealing the therapeutic potential of BET protein inhibition in antibody-mediated diseases.
Collapse
Affiliation(s)
- Gemma D. Banham
- Molecular Immunity Unit, Department of Medicine, Medical Research Council Laboratory of Molecular Biology, University of Cambridge, Cambridge, United Kingdom
| | - Colin Y. C. Lee
- Molecular Immunity Unit, Department of Medicine, Medical Research Council Laboratory of Molecular Biology, University of Cambridge, Cambridge, United Kingdom
- Cellular Genetics, Wellcome Sanger Institute, Cambridge, United Kingdom
| | - John R. Ferdinand
- Molecular Immunity Unit, Department of Medicine, Medical Research Council Laboratory of Molecular Biology, University of Cambridge, Cambridge, United Kingdom
| | - Rebeccah J. Matthews
- Molecular Immunity Unit, Department of Medicine, Medical Research Council Laboratory of Molecular Biology, University of Cambridge, Cambridge, United Kingdom
| | - Chenzhi Jing
- Molecular Immunity Unit, Department of Medicine, Medical Research Council Laboratory of Molecular Biology, University of Cambridge, Cambridge, United Kingdom
| | - Nicholas Smithers
- Epinova DPU, Immuno-Inflammation Centre of Excellence for Drug Discovery, GlaxoSmithKline, Medicines Research Centre, Stevenage, United Kingdom
| | - Rab K. Prinjha
- Epinova DPU, Immuno-Inflammation Centre of Excellence for Drug Discovery, GlaxoSmithKline, Medicines Research Centre, Stevenage, United Kingdom
| | - Menna R. Clatworthy
- Molecular Immunity Unit, Department of Medicine, Medical Research Council Laboratory of Molecular Biology, University of Cambridge, Cambridge, United Kingdom
- Cellular Genetics, Wellcome Sanger Institute, Cambridge, United Kingdom
| |
Collapse
|
16
|
Nikkar R, Esmaeili-Bandboni A, Badrikoohi M, Babaei P. Effects of inhibiting astrocytes and BET/BRD4 chromatin reader on spatial memory and synaptic proteins in rats with Alzheimer's disease. Metab Brain Dis 2022; 37:1119-1131. [PMID: 35244824 DOI: 10.1007/s11011-022-00940-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 02/21/2022] [Indexed: 10/18/2022]
Abstract
Communication between astrocytes and neurons has a profound effect on the pathophysiology of Alzheimer's disease (AD). Astrocytes regulate homeostasis and increase synaptic plasticity in physiological situations, however, they become activated during the progression of AD. Whether or not these reactions are supportive or detrimental for the central nervous system have not been understood yet. Considering epigenetic regulation of neuroinflammatory genes by chromatin readers, particularly bromodomain and extraterminal domain (BET) family, here we examined the effect of chronic co-inhibition of astrocytes metabolism (with fluorocitrate) and also BRD4 (with JQ1) on cognition deficit at early stages of AD. Forty adult male Wistar rats underwent stereotaxic cannulation for inducing AD by intrahippocampal injection of Aβ1-42 (4 μg/8 μl/rat). Then animals were divided into five groups of Saline+DMSO, Aβ + saline+DMSO, Aβ + JQ1, Aβ + FC (fluorocitrate), and Aβ + JQ1 + FC and received the related treatments. Two weeks later, spatial memory was recorded by Morris Water Maze (MWM), and the levels of phosphorylated cyclic-AMP response element binding protein (CREB), postsynaptic density 95 (PSD95), synaptophysin (SYP), and tumor necrosis factor-alpha (TNF-α) were measured in the hippocampus by western blotting and RT-qPCR. Administration of JQ1 significantly improved both acquisition and retrieval of spatial memory, which were evident by decreased escape latency and increased total time spent (TTS) in target quadrant, and significant rise in p-CREB, PSD95, and synaptophysin compared with Aβ + saline+DMSO group. In contrast, both groups receiving FC demonstrated memory decline, and reduction in p-CREB, PSD95 and synaptophysin in parallel with increase in TNF-α. Our data indicate that chronic inhibition of BRD4 significantly restores memory impaired by amyloid β partly via CREB signaling and upregulating synaptic proteins of PSD95 and synaptophysin. However, inhibition of astrocytes nullifies the memory-boosting effects of JQ1 and reduces CREB/PSD95/synaptophysin levels in hippocampus.
Collapse
Affiliation(s)
- Rastin Nikkar
- Cellular &Molecular Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
- Neuroscience Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Aghil Esmaeili-Bandboni
- Department of Medical Genetics, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
- Medical Biotechnology Research Center, School of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Mahshid Badrikoohi
- Cellular &Molecular Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
- Department of Physiology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Parvin Babaei
- Cellular &Molecular Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran.
- Neuroscience Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran.
- Department of Physiology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|
17
|
Hua T, Wang H, Fan X, An N, Li J, Song H, Kong E, Li Y, Yuan H. BRD4 Inhibition Attenuates Inflammatory Pain by Ameliorating NLRP3 Inflammasome-Induced Pyroptosis. Front Immunol 2022; 13:837977. [PMID: 35154163 PMCID: PMC8826720 DOI: 10.3389/fimmu.2022.837977] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 01/07/2022] [Indexed: 12/13/2022] Open
Abstract
Chronic pain, such as persistent inflammatory pain, remains a public health problem that has no effective treatment at present. Bromodomain-containing protein 4 (BRD4) inhibition, induced by JQ1 injection or BRD4 knockdown, has been used to attenuate inflammatory pain; However, it remains elusive whether BRD4 aggravates inflammatory pain by regulating inflammasome. Western blot and immunofluorescence staining showed that BRD4 expression increased after administration of complete Freund’s adjuvant (CFA) and reached its peak on day 3. Immunofluorescence staining showed that BRD4 was mainly colocalized with NeuN-positive neurons in the spinal cord, which was accompanied by upregulation of inflammasome component proteins, such as NLRP3, gasdermin D, and caspase-1. JQ1 was intrathecally injected into mice 1 h before CFA administration, and the mechanical and thermal hyperalgesia levels were measured on days 1, 3, and 7 after CFA administration. CFA-induced inflammatory pain, paw inflammation, and swelling were attenuated by pre-treatment with JQ1. To our knowledge, this study was the first to prove that NLRP3 inflammasome-induced neuronal pyroptosis participates in inflammatory pain. BRD4 inhibition decreased the expression of pyroptosis-related proteins by inhibiting the activation of NF-κB signaling pathway, both in vivo and in vitro. Taken together, BRD4 inhibition exerted analgesic and anti-inflammatory effects against inflammatory pain by inhibiting NF-κB and inflammasome activation, which protected neural cells from pyroptosis.
Collapse
Affiliation(s)
- Tong Hua
- Department of Anesthesiology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Haowei Wang
- Department of Anesthesiology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Xiaoyi Fan
- National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, China
| | - Ni An
- Chinese People's Liberation Army, Liao Yang, China
| | - Jian Li
- Department of Anesthesiology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Honghao Song
- Department of Anesthesiology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Erliang Kong
- Department of Anesthesiology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Yongchang Li
- Department of Anesthesiology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Hongbin Yuan
- Department of Anesthesiology, Changzheng Hospital, Naval Medical University, Shanghai, China.,National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, China
| |
Collapse
|
18
|
Liu W, Ou Y, Yang Y, Zhang X, Huang L, Wang X, Wu B, Huang M. Inhibitory Effect of Punicalagin on Inflammatory and Angiogenic Activation of Human Umbilical Vein Endothelial Cells. Front Pharmacol 2021; 12:727920. [PMID: 34867335 PMCID: PMC8636678 DOI: 10.3389/fphar.2021.727920] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 10/20/2021] [Indexed: 12/17/2022] Open
Abstract
Punicalagin, a major ellagitannin isolated from pomegranate, is proved to have various pharmacological activities with an undefined therapy mechanism. The objective of this research was to demonstrate the effect of punicalagin on anti-inflammatory and angiogenic activation in human umbilical vein endothelial cells (HUVECs) and their potential mechanisms. Endothelial-leukocyte adhesion assay was applied to evaluate primary cultures of HUVECs activation following tumor necrosis factor alpha (TNF-α) treatment. The endothelial cell proliferation, migration, permeability and tube formation were assessed by EdU assay, wound migration assay, trans-endothelial electrical resistances (TEER) assay, and capillary-like tube formation assay, respectively. In addition, the expression of relevant proteins was assessed using Western blot analysis. We confirmed that punicalagin could reduce the adhesion of human monocyte cells to HUVECs in vitro and in vivo. Further, punicalagin decreased the expression of mRNA and proteins of ICAM-1 and VCAM-1 in HUVECs. Moreover, punicalagin inhibited permeability, proliferation, migration, and tube formation in VEGF-induced HUVECs, suppressed IKK-mediated activation of NF-κB signaling in TNF-α-induced endothelial cells, and inhibited vascular endothelial growth factor receptor 2 (VEGFR2) activation and downstream p-PAK1. Our findings indicated that punicalagin might have a protective effect on HUVECs activation, which suggested that punicalagin functions through an endothelial mediated mechanism for treating various disorders such as, cancer, rheumatoid arthritis, and cardiovascular disease.
Collapse
Affiliation(s)
- Wei Liu
- Shenzhen Stomatology Hospital (Pingshan) of Southern Medical University, Shenzhen, China
| | - Yanghui Ou
- Department of Digestive Medicine Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Yumeng Yang
- School of Stomatology, Southern Medical University, Guangzhou, China
| | - Xuemei Zhang
- Department of Nephrology, Center of Nephrology and Urology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Liqi Huang
- Department of Nephrology, Center of Nephrology and Urology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Xiaohua Wang
- Department of Nephrology, Center of Nephrology and Urology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Buling Wu
- Shenzhen Stomatology Hospital (Pingshan) of Southern Medical University, Shenzhen, China.,School of Stomatology, Southern Medical University, Guangzhou, China
| | - Mingcheng Huang
- Department of Nephrology, Center of Nephrology and Urology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| |
Collapse
|
19
|
Liu Y, Zhou J, Luo Y, Li J, Shang L, Zhou F, Yang S. Honokiol alleviates LPS-induced acute lung injury by inhibiting NLRP3 inflammasome-mediated pyroptosis via Nrf2 activation in vitro and in vivo. Chin Med 2021; 16:127. [PMID: 34844623 PMCID: PMC8628413 DOI: 10.1186/s13020-021-00541-z] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 11/19/2021] [Indexed: 01/11/2023] Open
Abstract
Background Honokiol (HKL) has been reported to ameliorate lipopolysaccharide (LPS)-induced acute lung injury (ALI). However, its potential mechanism of its protective effects remains unclear. In this study, the protective mechanism of HKL on LPS-induced ALI was explored in vivo and in vitro. Methods In vivo, the SD rats were intratracheally instilled with LPS (5 mg/kg) to establish an acute lung injury model and then treated with HKL (1.25/2.5/5 mg/kg) or ML385 (30 mg/kg) intraperitoneally. In vitro, the human bronchial epithelial cell line (BEAS-2B) was stimulated with LPS and ATP to induce pyroptosis and treated with HKL (12.5/25/50 μM). Small interfering RNA (siRNA) technique was used to knockdown Nrf2 in BEAS-2B cells. The protein and mRNA expression levels of Nrf2, HO-1, NLRP3, ASC, CASP1, and GSDMD in cells and lung tissues were detected by western blot and real time-PCR. The expression levels of interleukin (IL)-1β, IL-18, MPO, MDA, and SOD in bronchoalveolar lavage fluid (BALF) and supernatant were determined by ELISA. The degree of pathological injury of lung tissue was evaluated by H&E staining. Results The results showed that HKL could alleviate oxidative stress and inflammatory responses by regulating the levels of MPO, MDA, SOD, IL-1β, IL-18 in supernatant. And it could also inhibit the expression levels of NLRP3, ASC, CASP1, GSDMD via activation of Nrf2 in BEAS-2B cells. Further studies revealed that HKL could attenuate the pathological injury in LPS-induced ALI rats, and the molecular mechanism was consistent with the results in vitro. Conclusions Our study demonstrated that HKL could alleviate LPS-induced ALI by reducing the oxidative stress and inhibiting NLRP3 inflammasome-mediated pyroptosis, which was partly dependent on the Nrf2 activation. Graphical Abstract ![]()
Collapse
Affiliation(s)
- Yuhan Liu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jiabin Zhou
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yingying Luo
- School of Clinical Medical, Hubei University of Chinese Medicine, Wuhan, 430060, China
| | - Jinxiao Li
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Luorui Shang
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Fangyuan Zhou
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Shenglan Yang
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
20
|
Gong Z, Liu G, Liu W, Zou H, Song R, Zhao H, Yuan Y, Gu J, Bian J, Zhu J, Liu Z. The epigenetic regulator BRD4 is involved in cadmium-triggered inflammatory response in rat kidney. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 224:112620. [PMID: 34392152 DOI: 10.1016/j.ecoenv.2021.112620] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/05/2021] [Accepted: 08/08/2021] [Indexed: 06/13/2023]
Abstract
Cadmium (Cd) has been described as a potential inflammatory inducer, while increasing evidence shows that inappropriate inflammation is a contributing factor to kidney injury. Hence, research on Cd-triggered inflammatory response is of great significance for elucidating the mechanism of Cd-induced nephrotoxicity. Bromodomain-containing 4 (BRD4) is an important epigenetic regulator involved in the development of many inflammatory diseases, but its regulatory roles in Cd-triggered inflammatory response remain to be clarified. Here, we found that treatment with Cd in Sprague-Dawley rats (2 mg/kg bw, i.p., 5 consecutive days) and in rat kidney cell line (NRK-52E, 0-10 μM, 12 h) induced the transcription of inflammatory cytokines, which could be reduced by JQ1 (BRD4 inhibitor, 25 mg/kg bw, i.p., 3 consecutive days in vivo; 0.5 μM, 12 h in vitro) or BRD4 small interfering RNA (siRNA, in vitro), suggesting that BRD4 participates in Cd-triggered inflammatory response. Next, our study clarified the roles of BRD4 in Cd-triggered inflammatory response. The inhibition of BRD4 decreased Cd-promoted NF-κB nuclear translocation and activation in vivo and in vitro. Cd increased the acetylation level of RelA K310 and enhanced BRD4 binding to acetylated NF-κB RelA in vivo and in vitro, which were abrogated by inhibiting BRD4. In summary, our study suggests that BRD4 is involved in Cd-triggered transcription of inflammatory cytokines by mediating the activation of NF-κB signaling pathway and increasing itself binding to acetylated NF-κB RelA in rat kidney, therefore, BRD4 could be a potential therapeutic target for Cd-induced renal diseases.
Collapse
Affiliation(s)
- Zhonggui Gong
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, PR China; Jiangsu Key Laboratory of Zoonosis, Yangzhou, PR China
| | - Gang Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, PR China; Jiangsu Key Laboratory of Zoonosis, Yangzhou, PR China
| | - Wenjing Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, PR China; Jiangsu Key Laboratory of Zoonosis, Yangzhou, PR China
| | - Hui Zou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, PR China; Jiangsu Key Laboratory of Zoonosis, Yangzhou, PR China
| | - Ruilong Song
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, PR China; Jiangsu Key Laboratory of Zoonosis, Yangzhou, PR China
| | - Hongyan Zhao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, PR China; Jiangsu Key Laboratory of Zoonosis, Yangzhou, PR China
| | - Yan Yuan
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, PR China; Jiangsu Key Laboratory of Zoonosis, Yangzhou, PR China
| | - Jianhong Gu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, PR China; Jiangsu Key Laboratory of Zoonosis, Yangzhou, PR China
| | - Jianchun Bian
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, PR China; Jiangsu Key Laboratory of Zoonosis, Yangzhou, PR China
| | - Jiaqiao Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, PR China; Jiangsu Key Laboratory of Zoonosis, Yangzhou, PR China.
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, PR China; Jiangsu Key Laboratory of Zoonosis, Yangzhou, PR China.
| |
Collapse
|
21
|
Liu Q, Yang M, Zhang L, Zhang R, Huang X, Wang X, Du W, Hou J. Metformin inhibits cholesterol‑induced adhesion molecule expression via activating the AMPK signaling pathway in vascular smooth muscle cells. Mol Med Rep 2021; 24:709. [PMID: 34396446 PMCID: PMC8383040 DOI: 10.3892/mmr.2021.12348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 06/23/2021] [Indexed: 11/24/2022] Open
Abstract
Recruitment of lymphocytes to the vascular wall contributes to the pathogenesis of atherosclerosis (AS). The expression of cellular adhesion molecules, such as vascular cell adhesion molecule-1 and intercellular adhesion molecule-1, serves a critical role in mediating lymphocyte adhesion to the vascular wall. Cholesterol loading induces the expression of adhesion molecules in vascular smooth muscle cells (VSMCs), but the underlying mechanism is not completely understood. The present study aimed to investigate the mechanism underlying the effects of cholesterol on adhesion molecule expression, and whether metformin protected VSMCs against cholesterol-induced functional alterations. Human VSMCs were loaded with cholesterol and different concentrations of metformin. The expression levels of adhesion molecules were assessed via reverse transcription-quantitative PCR and western blotting. Reactive oxygen species (ROS) accumulation and levels were quantified via fluorescence assays and spectrophotometry, respectively. AMP-activated protein kinase (AMPK), p38 MAPK and NF-κB signaling pathway-related protein expression levels were evaluated via western blotting. Compared with the control group, cholesterol loading significantly upregulated adhesion molecule expression levels on VSMCs by increasing intracellular ROS levels and activating the p38 MAPK and NF-κB signaling pathways. Metformin decreased cholesterol-induced VSMC damage by activating the AMPK signaling pathway, and suppressing p38 MAPK and NF-κB signaling. The present study indicated the therapeutic potential of metformin for VSMC protection, reduction of monocyte adhesion, and ultimately, the prevention and treatment of AS.
Collapse
Affiliation(s)
- Qi Liu
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Mengyue Yang
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Lu Zhang
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Ruoxi Zhang
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Xingtao Huang
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Xuedong Wang
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Wenjuan Du
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Jingbo Hou
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| |
Collapse
|
22
|
Noguchi T, Hidaka K, Kobayashi S, Matsumoto K, Yoshioka M, Hu X, Maloney DJ, Yang SM, Kato S. A quinazoline-based bromodomain inhibitor, CN210, ameliorates indomethacin-induced ileitis in mice by inhibiting inflammatory cytokine expression. Drug Dev Res 2021; 82:1235-1246. [PMID: 34075610 DOI: 10.1002/ddr.21838] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 05/22/2021] [Accepted: 05/22/2021] [Indexed: 12/24/2022]
Abstract
Inhibitors of bromodomain and extra-terminal motif (BET) proteins are emerging epigenetic therapeutics that suppress gene expressions that drive cancer and inflammation. The present study examined anti-inflammatory effects of a quinazoline-based BET inhibitor, CN210, in a murine ileitis model. CN210 was given orally 30 min before and 24 h after a subcutaneous administration of indomethacin. Macroscopic and histological evidences of ileitis, mucosal myeloperoxidase (MPO) activity and cytokine expressions were evaluated 48 h after the indomethacin administration. To further characterize the anti-inflammatory pathways modulated by CN210, its effects on RAW264 cells treated with lipopolysaccharide (LPS) were investigated. Competitive ligand binding and docking studies of CN210 to CREB-binding protein (CBP) and p300 were also performed. Oral administration of CN210 significantly reduced the severity of ileitis, normalized both proinflammatory MPO activity and concomitant cytokine expressions induced by indomethacin administration. Furthermore, CN210 attenuated the expression of cytokines and reversed the activation of nuclear factor κB (NF-κB) and mitogen-activated protein kinases (MAPK) induced by LPS. Competitive ligand binding assays showed that CN210 bound to the bromodomains of two paralogous histone acetyltransferases, CBP and p300, in addition to the bromodomains of BET proteins. Docking studies of CN210 to the bromodomains of CBP and p300 showed a similarity to the binding mode of SGC-CBP30, a specific CBP/p300 inhibitor. CN210 ameliorates indomethacin-induced ileitis by inhibiting the expression of inflammatory cytokines through the attenuation of NF-κB and MAPK pathways. CN210 thus represents a new mode of therapy for non-steroidal anti-inflammatory drug-induced ileitis and inflammatory bowel disease.
Collapse
Affiliation(s)
- Takehisa Noguchi
- Division of Pathological Sciences, Department of Pharmacology and Experimental Therapeutics, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Kyosuke Hidaka
- Division of Pathological Sciences, Department of Pharmacology and Experimental Therapeutics, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Satsuki Kobayashi
- Division of Pathological Sciences, Department of Pharmacology and Experimental Therapeutics, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Kenjiro Matsumoto
- Division of Pathological Sciences, Department of Pharmacology and Experimental Therapeutics, Kyoto Pharmaceutical University, Kyoto, Japan
| | | | - Xin Hu
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA
| | - David J Maloney
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA
| | - Shyh-Ming Yang
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA
| | - Shinichi Kato
- Division of Pathological Sciences, Department of Pharmacology and Experimental Therapeutics, Kyoto Pharmaceutical University, Kyoto, Japan
| |
Collapse
|
23
|
Dutzmann J, Haertlé M, Daniel JM, Kloss F, Musmann RJ, Kalies K, Knöpp K, Pilowski C, Sirisko M, Sieweke JT, Bauersachs J, Sedding DG, Gegel S. BET bromodomain-containing epigenetic reader proteins regulate vascular smooth muscle cell proliferation and neointima formation. Cardiovasc Res 2021; 117:850-862. [PMID: 32353113 DOI: 10.1093/cvr/cvaa121] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 12/27/2019] [Accepted: 04/23/2020] [Indexed: 12/20/2022] Open
Abstract
AIMS Recent studies revealed that the bromodomain and extra-terminal (BET) epigenetic reader proteins resemble key regulators in the underlying pathophysiology of cancer, diabetes, or cardiovascular disease. However, whether they also regulate vascular remodelling processes by direct effects on vascular cells is unknown. In this study, we investigated the effects of the BET proteins on human smooth muscle cell (SMC) function in vitro and neointima formation in response to vascular injury in vivo. METHODS AND RESULTS Selective inhibition of BETs by the small molecule (+)-JQ1 dose-dependently reduced proliferation and migration of SMCs without apoptotic or toxic effects. Flow cytometric analysis revealed a cell cycle arrest in the G0/G1 phase in the presence of (+)-JQ1. Microarray- and pathway analyses revealed a substantial transcriptional regulation of gene sets controlled by the Forkhead box O (FOXO1)1-transcription factor. Silencing of the most significantly regulated FOXO1-dependent gene, CDKN1A, abolished the antiproliferative effects. Immunohistochemical colocalization, co-immunoprecipitation, and promoter-binding ELISA assay data confirmed that the BET protein BRD4 directly binds to FOXO1 and regulates FOXO1 transactivational capacity. In vivo, local application of (+)-JQ1 significantly attenuated SMC proliferation and neointimal lesion formation following wire-induced injury of the femoral artery in C57BL/6 mice. CONCLUSION Inhibition of the BET-containing protein BRD4 after vascular injury by (+)-JQ1 restores FOXO1 transactivational activity, subsequent CDKN1A expression, cell cycle arrest and thus prevents SMC proliferation in vitro and neointima formation in vivo. Inhibition of BET epigenetic reader proteins might thus represent a promising therapeutic strategy to prevent adverse vascular remodelling.
Collapse
MESH Headings
- Animals
- Azepines/pharmacology
- Carotid Artery Injuries/genetics
- Carotid Artery Injuries/metabolism
- Carotid Artery Injuries/pathology
- Cell Cycle Checkpoints
- Cell Cycle Proteins/antagonists & inhibitors
- Cell Cycle Proteins/genetics
- Cell Cycle Proteins/metabolism
- Cell Proliferation/drug effects
- Cells, Cultured
- Coronary Vessels/drug effects
- Coronary Vessels/metabolism
- Coronary Vessels/pathology
- Cyclin-Dependent Kinase Inhibitor p21/genetics
- Cyclin-Dependent Kinase Inhibitor p21/metabolism
- Disease Models, Animal
- Forkhead Box Protein O1/genetics
- Forkhead Box Protein O1/metabolism
- Heterocyclic Compounds, 4 or More Rings/metabolism
- Humans
- Male
- Mice, Inbred C57BL
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/injuries
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Neointima
- Nuclear Proteins/antagonists & inhibitors
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Proteins/antagonists & inhibitors
- Proteins/genetics
- Proteins/metabolism
- Signal Transduction
- Transcription Factors/antagonists & inhibitors
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Triazoles/pharmacology
- Vascular System Injuries/genetics
- Vascular System Injuries/metabolism
- Vascular System Injuries/pathology
- Mice
Collapse
Affiliation(s)
- Jochen Dutzmann
- Mid-Germany Heart Center, Division of Cardiology, Angiology, and Intensive Medical Care, University Hospital Halle, Martin-Luther-University Halle-Wittenberg, Ernst-Grube-Straße 40, 06120 Halle, Germany
- Department of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Marco Haertlé
- Department of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Jan-Marcus Daniel
- Mid-Germany Heart Center, Division of Cardiology, Angiology, and Intensive Medical Care, University Hospital Halle, Martin-Luther-University Halle-Wittenberg, Ernst-Grube-Straße 40, 06120 Halle, Germany
- Department of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Frederik Kloss
- Department of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Robert-Jonathan Musmann
- Department of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Katrin Kalies
- Mid-Germany Heart Center, Division of Cardiology, Angiology, and Intensive Medical Care, University Hospital Halle, Martin-Luther-University Halle-Wittenberg, Ernst-Grube-Straße 40, 06120 Halle, Germany
| | - Kai Knöpp
- Mid-Germany Heart Center, Division of Cardiology, Angiology, and Intensive Medical Care, University Hospital Halle, Martin-Luther-University Halle-Wittenberg, Ernst-Grube-Straße 40, 06120 Halle, Germany
- Department of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Claudia Pilowski
- Mid-Germany Heart Center, Division of Cardiology, Angiology, and Intensive Medical Care, University Hospital Halle, Martin-Luther-University Halle-Wittenberg, Ernst-Grube-Straße 40, 06120 Halle, Germany
| | - Mirja Sirisko
- Department of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Jan-Thorben Sieweke
- Department of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Johann Bauersachs
- Department of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Daniel G Sedding
- Mid-Germany Heart Center, Division of Cardiology, Angiology, and Intensive Medical Care, University Hospital Halle, Martin-Luther-University Halle-Wittenberg, Ernst-Grube-Straße 40, 06120 Halle, Germany
- Department of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Simona Gegel
- Department of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| |
Collapse
|
24
|
Chen L, Zhong X, Cao W, Mao M, Li W, Yang H, Li M, Shi M, Zhang Y, Deng Y, Zu X, Liu J. JQ1 as a BRD4 Inhibitor Blocks Inflammatory Pyroptosis-Related Acute Colon Injury Induced by LPS. Front Immunol 2021; 12:609319. [PMID: 33679744 PMCID: PMC7930386 DOI: 10.3389/fimmu.2021.609319] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 01/06/2021] [Indexed: 12/12/2022] Open
Abstract
Endotoxemia is a severe inflammation response induced by infection especially bacterial endotoxin translocation, which severely increases mortality in combination with acute colon injury. Bromodomain-containing protein 4 (BRD4) is an important Bromo and Extra-Terminal (BET) protein to participate in inflammatory responses. However, it is still unknown about the specific connection between BRD4 and inflammation-related pyroptosis in endotoxemia colon. Here, through evaluating the mucous morphology and the expression of tight junction proteins such as occludin and ZO1, we found the upregulation of BRD4 in damaged colon with poor tight junction in an endotoxemia mouse model induced by lipopolysaccharides (LPS). Firstly, the BRD4 inhibitor JQ1 was used to effectively protect colon tight junction in endotoxemia. As detected, high levels of pro-inflammation cytokines IL6, IL1β and IL18 in endotoxemia colon were reversed by JQ1 pretreatment. In addition, JQ1 injection reduced endotoxemia-induced elevation of the phosphorylated NF κB and NLRP3/ASC/caspase 1 inflammasome complex in colon injury. Furthermore, activated pyroptosis markers gasdermins in endotoxemia colon were also blocked by JQ1 pretreatment. Together, our data indicate that BRD4 plays a critical role in regulating pyroptosis-related colon injury induced by LPS, and JQ1 as a BRD4 inhibitors can effectively protect colon from endotoxemia-induced inflammation injury.
Collapse
Affiliation(s)
- Ling Chen
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Xiaolin Zhong
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Wenyu Cao
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, China
| | - Mingli Mao
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Wei Li
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, China
| | - Hui Yang
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, China
| | - Menglin Li
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Mengmeng Shi
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, China
| | - Yuan Zhang
- Department of Pathology, Hengyang Medical School, University of South China, Hengyang, China
| | - Yincheng Deng
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, China
| | - Xuyu Zu
- Department of Tumor Research, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Jianghua Liu
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of University of South China, Hengyang, China
| |
Collapse
|
25
|
Tang YC, Gottlieb A. Explainable drug sensitivity prediction through cancer pathway enrichment. Sci Rep 2021; 11:3128. [PMID: 33542382 PMCID: PMC7862690 DOI: 10.1038/s41598-021-82612-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 01/20/2021] [Indexed: 02/06/2023] Open
Abstract
Computational approaches to predict drug sensitivity can promote precision anticancer therapeutics. Generalizable and explainable models are of critical importance for translation to guide personalized treatment and are often overlooked in favor of prediction performance. Here, we propose PathDSP: a pathway-based model for drug sensitivity prediction that integrates chemical structure information with enrichment of cancer signaling pathways across drug-associated genes, gene expression, mutation and copy number variation data to predict drug response on the Genomics of Drug Sensitivity in Cancer dataset. Using a deep neural network, we outperform state-of-the-art deep learning models, while demonstrating good generalizability a separate dataset of the Cancer Cell Line Encyclopedia as well as provide explainable results, demonstrated through case studies that are in line with current knowledge. Additionally, our pathway-based model achieved a good performance when predicting unseen drugs and cells, with potential utility for drug development and for guiding individualized medicine.
Collapse
Affiliation(s)
- Yi-Ching Tang
- Center for Precision Health, School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Assaf Gottlieb
- Center for Precision Health, School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
| |
Collapse
|
26
|
Borgonetti V, Galeotti N. Combined inhibition of histone deacetylases and BET family proteins as epigenetic therapy for nerve injury-induced neuropathic pain. Pharmacol Res 2021; 165:105431. [PMID: 33529752 DOI: 10.1016/j.phrs.2021.105431] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/18/2020] [Accepted: 01/09/2021] [Indexed: 02/07/2023]
Abstract
Current treatments for neuropathic pain have often moderate efficacy and present unwanted effects showing the need to develop effective therapies. Accumulating evidence suggests that histone acetylation plays essential roles in chronic pain and the analgesic activity of histone deacetylases (HDACs) inhibitors is documented. Bromodomain and extra-terminal domain (BET) proteins are epigenetic readers that interact with acetylated lysine residues on histones, but little is known about their implication in neuropathic pain. Thus, the current study was aimed to investigate the effect of the combination of HDAC and BET inhibitors in the spared nerve injury (SNI) model in mice. Intranasal administration of i-BET762 (BET inhibitor) or SAHA (HDAC inhibitor) attenuated thermal and mechanical hypersensitivity and this antiallodynic activity was improved by co-administration of both drugs. Spinal cord sections of SNI mice showed an increased expression of HDAC1 and Brd4 proteins and combination produced a stronger reduction compared to each epigenetic agent alone. SAHA and i-BET762, administered alone or in combination, counteracted the SNI-induced microglia activation by inhibiting the expression of IBA1, CD11b, inducible nitric oxide synthase (iNOS), the activation of nuclear factor-κB (NF-κB) and signal transducer and activator of transcription-1 (STAT1) with comparable efficacy. Conversely, the epigenetic inhibitors showed a modest effect on spinal proinflammatory cytokines content that was significantly potentiated by their combination. Present results indicate a key role of acetylated histones and their recruitment by BET proteins on microglia-mediated spinal neuroinflammation. Targeting neuropathic pain with the combination of HDAC and BET inhibitors may represent a promising new therapeutic option.
Collapse
Affiliation(s)
- Vittoria Borgonetti
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Viale G. Pieraccini 6, 50139, Florence, Italy
| | - Nicoletta Galeotti
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Viale G. Pieraccini 6, 50139, Florence, Italy.
| |
Collapse
|
27
|
Wang N, Wu R, Tang D, Kang R. The BET family in immunity and disease. Signal Transduct Target Ther 2021; 6:23. [PMID: 33462181 PMCID: PMC7813845 DOI: 10.1038/s41392-020-00384-4] [Citation(s) in RCA: 167] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/27/2020] [Accepted: 10/20/2020] [Indexed: 12/19/2022] Open
Abstract
Innate immunity serves as the rapid and first-line defense against invading pathogens, and this process can be regulated at various levels, including epigenetic mechanisms. The bromodomain and extraterminal domain (BET) family of proteins consists of four conserved mammalian members (BRD2, BRD3, BRD4, and BRDT) that regulate the expression of many immunity-associated genes and pathways. In particular, in response to infection and sterile inflammation, abnormally expressed or dysfunctional BETs are involved in the activation of pattern recognition receptor (e.g., TLR, NLR, and CGAS) pathways, thereby linking chromatin machinery to innate immunity under disease or pathological conditions. Mechanistically, the BET family controls the transcription of a wide range of proinflammatory and immunoregulatory genes by recognizing acetylated histones (mainly H3 and H4) and recruiting transcription factors (e.g., RELA) and transcription elongation complex (e.g., P-TEFb) to the chromatin, thereby promoting the phosphorylation of RNA polymerase II and subsequent transcription initiation and elongation. This review covers the accumulating data about the roles of the BET family in innate immunity, and discusses the attractive prospect of manipulating the BET family as a new treatment for disease.
Collapse
Affiliation(s)
- Nian Wang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Runliu Wu
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA.
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
28
|
Inhibition of BRD4 Reduces Neutrophil Activation and Adhesion to the Vascular Endothelium Following Ischemia Reperfusion Injury. Int J Mol Sci 2020; 21:ijms21249620. [PMID: 33348732 PMCID: PMC7767067 DOI: 10.3390/ijms21249620] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/11/2020] [Accepted: 12/14/2020] [Indexed: 02/08/2023] Open
Abstract
Renal ischemia reperfusion injury (IRI) is associated with inflammation, including neutrophil infiltration that exacerbates the initial ischemic insult. The molecular pathways involved are poorly characterized and there is currently no treatment. We performed an in silico analysis demonstrating changes in NFκB-mediated gene expression in early renal IRI. We then evaluated NFκB-blockade with a BRD4 inhibitor on neutrophil adhesion to endothelial cells in vitro, and tested BRD4 inhibition in an in vivo IRI model. BRD4 inhibition attenuated neutrophil adhesion to activated endothelial cells. In vivo, IRI led to increased expression of cytokines and adhesion molecules at 6 h post-IRI with sustained up-regulated expression to 48 h post-IRI. These effects were attenuated, in part, with BRD4 inhibition. Absolute neutrophil counts increased significantly in the bone marrow, blood, and kidney 24 h post-IRI. Activated neutrophils increased in the blood and kidney at 6 h post-IRI and remained elevated in the kidney until 48 h post-IRI. BRD4 inhibition reduced both total and activated neutrophil counts in the kidney. IRI-induced tubular injury correlated with neutrophil accumulation and was reduced by BRD4 inhibition. In summary, BRD4 inhibition has important systemic and renal effects on neutrophils, and these effects are associated with reduced renal injury.
Collapse
|
29
|
Zhang Q, Sun J, Fu Y, He W, Li Y, Tan H, Xu H, Jiang X. Guttiferone K Exerts the Anti-inflammatory Effect on Mycobacterium Tuberculosis- (H37Ra-) Infected Macrophages by Targeting the TLR/IRAK-1 Mediated Akt and NF- κB Pathway. Mediators Inflamm 2020; 2020:8528901. [PMID: 33100904 PMCID: PMC7569438 DOI: 10.1155/2020/8528901] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/26/2020] [Accepted: 09/16/2020] [Indexed: 12/15/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) remains a great threat to global health, killing more people than any other single infectious agent and causing uncontrollable inflammation in the host. Poorly controlled inflammatory processes can be deleterious and result in immune exhaustion. The current tuberculosis (TB) control is facing the challenge of drugs deficiency, especially in the context of increasingly multidrug resistant (MDR) TB. Under this circumstance, alternative host-directed therapy (HDT) emerges timely which can be exploited to improve the efficacy of TB treatment and disease prognosis by targeting the host. Here, we established the in vitro infection model of Mtb macrophages with H37Ra strain to seek effective anti-TB active agent. The present study showed that Guttiferone K, isolated from Garcinia yunnanensis, could significantly inhibit Mtb-induced inflammation in RAW264.7 and primary peritoneal macrophages. It was evidenced by the decreased production of inflammatory mediators, including interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2). Further studies with immunoblotting and immunofluorescence revealed that Guttiferone K obviously inhibits the nuclear factor-kappa B (NF-κB) both in RAW264.7 and primary peritoneal macrophages relying on the TLR/IRAK-1 pathway. Guttiferone K could also suppress the NLRP3 inflammasome activity and induce autophagy by inhibiting the protein kinase B (p-Akt) and mammalian target of rapamycin (mTOR) phosphorylation at Ser473 and Ser2448 in both cell lines. Thus, Guttiferone K possesses significant anti-inflammatory effect, alleviating Mtb-induced inflammation with an underlying mechanism that targeting on the TLR/IRAK-1 pathway and inhibiting the downstream NF-κB and Akt/mTOR signaling pathways. Together, Guttiferone K can be an anti-inflammatory agent candidate for the design of new adjunct HDT drugs fighting against tuberculosis.
Collapse
Affiliation(s)
- Qingwen Zhang
- Center for Traditional Chinese Medicine and Immunology Research, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, 201203 Shanghai, China
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine & Health Sciences, 201318 Shanghai, China
| | - Jinxia Sun
- Center for Traditional Chinese Medicine and Immunology Research, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, 201203 Shanghai, China
| | - Yan Fu
- Center for Traditional Chinese Medicine and Immunology Research, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, 201203 Shanghai, China
| | - Weigang He
- Center for Traditional Chinese Medicine and Immunology Research, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, 201203 Shanghai, China
| | - Yinhong Li
- Center for Traditional Chinese Medicine and Immunology Research, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, 201203 Shanghai, China
| | - Hongsheng Tan
- Clinical Research Center, Shanghai Jiao Tong University School of Medicine, 200240 Shanghai, China
| | - Hongxi Xu
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 201203 Shanghai, China
| | - Xin Jiang
- Center for Traditional Chinese Medicine and Immunology Research, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, 201203 Shanghai, China
| |
Collapse
|
30
|
Chen L, Liu Y, Zheng XS, Zheng H, Liu PP, Yang XX, Liu Y. Alarmins from conjunctival fibroblasts up-regulate matrix metalloproteinases in corneal fibroblasts. Int J Ophthalmol 2020; 13:1031-1038. [PMID: 32685388 DOI: 10.18240/ijo.2020.07.03] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 03/20/2020] [Indexed: 01/10/2023] Open
Abstract
AIM To explore the effects of alarmins produced by necrotic human conjunctival fibroblasts on the release of matrix metalloproteinases (MMPs) by human corneal fibroblasts (HCFs). METHODS A necrotic cell supernatant (NHCS) was prepared by subjecting human conjunctival fibroblasts to three cycles of freezing and thawing. The amounts of interleukin (IL)-1β and tumor necrosis factor (TNF)-α in NHCS were determined by enzyme-linked immunosorbent assays. HCFs exposed to NHCS or other agents in culture were assayed for the release of MMPs as well as for intracellular signaling by immunoblot analysis. The abundance of MMP mRNAs in HCFs was examined by reverse transcription and real-time polymerase chain reaction analysis. RESULTS NHCS increased the release of MMP-1 and MMP-3 by HCFs as well as the amounts of the corresponding mRNAs in the cells. NHCS also induced activation of mitogen-activated protein kinase (MAPK) signaling pathways mediated by extracellular signal-regulated kinase (ERK), p38, and c-Jun NH2-terminal kinase (JNK) as well as elicited that of the nuclear factor (NF)-κB signaling pathway by promoting phosphorylation of the endogenous NF-κB inhibitor IκB-α. Inhibitors of MAPK and NF-κB signaling as well as IL-1 and TNF-α receptor antagonists attenuated the NHCS-induced release of MMP-1 and MMP-3 by HCFs. Furthermore, IL-1β and TNF-α were both detected in NHCS, and treatment of HCFs with these cytokines induced the release of MMP-1 and MMP-3 in a concentration-dependent manner. CONCLUSION Alarmins, including IL-1β and TNF-α, produced by necrotic human conjunctival fibroblasts triggered MMP release in HCFs through activation of MAPK and NF-κB signaling. IL-1β and TNF-α are therefore potential therapeutic targets for the amelioration of corneal stromal degradation in severe ocular burns.
Collapse
Affiliation(s)
- Lin Chen
- Department of Ophthalmology, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, Guangdong Province, China
| | - Ye Liu
- Department of Pathology, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, Guangdong Province, China
| | - Xiao-Shuo Zheng
- Department of Ophthalmology, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, Guangdong Province, China
| | - Hui Zheng
- Department of Ophthalmology, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, Guangdong Province, China
| | - Ping-Ping Liu
- Department of Ophthalmology, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, Guangdong Province, China
| | - Xiu-Xia Yang
- Department of Ophthalmology, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, Guangdong Province, China
| | - Yang Liu
- Department of Ophthalmology, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, Guangdong Province, China
| |
Collapse
|
31
|
β-Sitosterol Alleviates Inflammatory Response via Inhibiting the Activation of ERK/p38 and NF- κB Pathways in LPS-Exposed BV2 Cells. BIOMED RESEARCH INTERNATIONAL 2020; 2020:7532306. [PMID: 32596368 PMCID: PMC7273476 DOI: 10.1155/2020/7532306] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 04/14/2020] [Accepted: 04/28/2020] [Indexed: 12/15/2022]
Abstract
Neurodegenerative disease is a disease state in which neurons in the spinal cord and brain are lost. Studies show that sustained neuroinflammatory reactions release toxic factors, damage neurons, and lead to neurodegenerative diseases. Therefore, inhibiting neuroinflammation may be an effective measure to alleviate neurodegenerative diseases. Microglia is an important participant in the neuroinflammatory response. β-Sitosterol (BS) is widely found in various vegetable oils, nuts, and other plant seeds. Studies have found that BS has a wide range of anti-inflammatory effects in peritoneal macrophages and other peripheral tissues. However, no studies have reported the effect of BS that impacts microglia activity. Herein, we further study the effect of BS on impacts microglia activity. Firstly, BV2, a murine microglial cell, was treated with different concentrations of BS prior to stimulation of LPS, and then the inflammatory mediators and the expression of related signaling molecules were tested. The inflammatory response results illustrated that BS treatment can reduce the LPS-induced expression of inflammatory mediators (interleukin-6 (IL-6), inducible nitric oxide (iNOS), tumor necrosis factor-α (TNF-α), and cyclooxygenase-2(COX-2)). The related signaling pathway analysis demonstrated that BS treatment can inhibit the LPS-induced activation of p38, ERK, and NF-κB pathways. To sum up, the results demonstrated that BS impacts microglia activity via repressing the activation of p38, ERK, and NF-κB pathways.
Collapse
|
32
|
Lin S, Du L. The therapeutic potential of BRD4 in cardiovascular disease. Hypertens Res 2020; 43:1006-1014. [PMID: 32409773 DOI: 10.1038/s41440-020-0459-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 03/11/2020] [Accepted: 04/02/2020] [Indexed: 12/11/2022]
Abstract
Bromodomain-containing protein 4 (BRD4) is a member of the bromodomain and extra terminal (BET) protein family that has gained wide attention in the field of cancer due to its role in the formation of super enhancers (SEs) and the regulation of oncogene expression. However, there is increasing evidence that BRD4 also plays a pivotal role in a variety of cardiovascular diseases, suggesting that understanding the mechanisms of BRD4 in these diseases is important to advance studies and clinical treatment. In this article, we summarize the mechanisms of BRD4 in cardiovascular diseases, including pulmonary arterial hypertension, heart failure, atherosclerosis, and hypertension. In addition, we discuss small molecule inhibitors of BRD4 as novel therapeutic strategies for cardiovascular diseases.
Collapse
Affiliation(s)
- Shigang Lin
- Department of Neonatology, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lizhong Du
- Department of Neonatology, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
33
|
Tan YF, Wang M, Chen ZY, Wang L, Liu XH. Inhibition of BRD4 prevents proliferation and epithelial-mesenchymal transition in renal cell carcinoma via NLRP3 inflammasome-induced pyroptosis. Cell Death Dis 2020; 11:239. [PMID: 32303673 PMCID: PMC7165180 DOI: 10.1038/s41419-020-2431-2] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 03/23/2020] [Accepted: 03/24/2020] [Indexed: 01/16/2023]
Abstract
BRD4 has long been implicated in many different pathological processes, in particular, the development of cancer and inflammation. Pyroptosis is a newly recognized type of inflammatory programmed cell death. However, the correlation between BRD4 and pyroptosis in renal cell carcinoma (RCC) remains elusive. The present study demonstrates that BRD4 expression levels are markedly upregulated, while pyroptosis-associated proteins are significantly reduced, in RCC tissues and cells. Inhibition of BRD4, via either genetic knockdown or use of bromodomain inhibitor JQ1, prevented cell proliferation and epithelial-mesenchymal transition (EMT) progression and induced caspase-1-dependent pyroptosis in RCC both in vitro and in vivo. In addition, BRD4 inhibition suppressed proliferation and EMT though pyroptosis in vitro and in vivo. Moreover, NLRP3, which mediates caspase-1-dependent pyroptosis, was increased upon BRD4 inhibition. Furthermore, the transcriptional activity of NLRP3 was enhanced by BRD4 inhibition, and this enhancement was blocked by activation of NF-κB phosphorylation, indicating that NF-κB is an upstream regulator of NLRP3. Collectively, these results show that BRD4 inhibition prevents cell proliferation and EMT, and exerts an antitumor effect in RCC by activating the NF-κB-NLRP3-caspase-1 pyroptosis signaling pathway. Thus, BRD4 is a potential target for RCC treatment, and JQ1 shows promise as a therapeutic agent for this disease.
Collapse
Affiliation(s)
- Yi-Fan Tan
- Department of Urology, Renmin Hospital of Wuhan University, 430060, Wuhan, Hubei, China
| | - Min Wang
- Department of Urology, Renmin Hospital of Wuhan University, 430060, Wuhan, Hubei, China.
| | - Zhi-Yuan Chen
- Department of Urology, Renmin Hospital of Wuhan University, 430060, Wuhan, Hubei, China.
| | - Lei Wang
- Department of Urology, Renmin Hospital of Wuhan University, 430060, Wuhan, Hubei, China
| | - Xiu-Heng Liu
- Department of Urology, Renmin Hospital of Wuhan University, 430060, Wuhan, Hubei, China
| |
Collapse
|
34
|
Liang J, Yuan S, Wang X, Lei Y, Zhang X, Huang M, Ouyang H. Attenuation of pristimerin on TNF-α-induced endothelial inflammation. Int Immunopharmacol 2020; 82:106326. [PMID: 32135490 DOI: 10.1016/j.intimp.2020.106326] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 01/30/2020] [Accepted: 02/14/2020] [Indexed: 12/28/2022]
Abstract
OBJECTIVE Pristimerin is known to have anti-cancer and anti-inflammatory activities; however, its therapeutic mechanism has not been described. In this study, to investigate the therapeutic mechanism of pristimerin, we examined the effect of pristimerin on TNF-α-induced endothelial inflammatory response both in vitro and in vivo. METHODS Leukocyte-endothelium Adhesion Assay was use to evaluate the endothelial cell-monocyte interaction. Western blotting was used to confirm protein expression. NF-κB p65 nuclear translocation in endothelial cells was detected using immunofluorescent microscopy. In vivo leukocyte infiltration was evaluated using acute lung inflammation model. RESULTS Pristimerin profoundly inhibited TNF-α-induced adhesion of monocytes to human endothelial cells and the leukocyte transmigration. Pristimerin dramatically inhibited the expression of TNF-α-induced endothelial adhesion molecules (intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1)) and the pro-inflammatory cytokine (IL-6, IL-8 and monocyte chemoattractant protein-1 (MCP-1)). Pristimerin suppressed the penetration of the leukocyte in the acute lung injury mice model. Furthermore, pristimerin also suppressed the TNF-α-activated Nuclear factor kappa B (NF-κB) activation. CONCLUSIONS Pristimerin has the anti-inflammatory properties in endothelial cells, at least in part, through the suppression of NF-κB activation, which may have a potential therapeutic effects for inflammatory vascular diseases.
Collapse
Affiliation(s)
- Jiang Liang
- Collaborative Innovation Center of Miao Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China; Department of Rheamatology and Hematology, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Shiwen Yuan
- Department of Rheumatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Xiaohua Wang
- Department of Nephrology,Kidney and Urology Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, ShenZhen, Guandong, China
| | - Yan Lei
- Department of Nephrology,Kidney and Urology Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, ShenZhen, Guandong, China
| | - Xuemei Zhang
- Department of Nephrology,Kidney and Urology Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, ShenZhen, Guandong, China
| | - Mingcheng Huang
- Department of Nephrology,Kidney and Urology Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, ShenZhen, Guandong, China.
| | - Hui Ouyang
- Department of Digestive Medicine Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, ShenZhen, Guandong, China.
| |
Collapse
|
35
|
Huang Y, Wang Y, Xu J, Feng J, He X. Propacin, a coumarinolignoid isolated from durian, inhibits the lipopolysaccharide-induced inflammatory response in macrophages through the MAPK and NF-κB pathways. Food Funct 2020; 11:596-605. [DOI: 10.1039/c9fo02202c] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Durian, known as the king of fruits, is rich in nutrients and bioactive phytochemicals.
Collapse
Affiliation(s)
- Yuying Huang
- School of Pharmacy
- Guangdong Pharmaceutical University
- Guangzhou 510006
- China
| | - Yihai Wang
- School of Pharmacy
- Guangdong Pharmaceutical University
- Guangzhou 510006
- China
- Guangdong Engineering Research Center for Lead Compounds & Drug Discovery
| | - Jingwen Xu
- School of Pharmacy
- Guangdong Pharmaceutical University
- Guangzhou 510006
- China
- Guangdong Engineering Research Center for Lead Compounds & Drug Discovery
| | - Jianying Feng
- School of Pharmacy
- Guangdong Pharmaceutical University
- Guangzhou 510006
- China
| | - Xiangjiu He
- School of Pharmacy
- Guangdong Pharmaceutical University
- Guangzhou 510006
- China
- Guangdong Engineering Research Center for Lead Compounds & Drug Discovery
| |
Collapse
|
36
|
Phillipou AN, Lay CS, Carver CE, Messenger C, Evans JP, Lewis AJ, Gordon LJ, Mahmood M, Greenhough LA, Sammon D, Cheng AT, Chakraborty S, Jones EJ, Lucas SCC, Gatfield KM, Brierley DJ, Craggs PD. Cellular Target Engagement Approaches to Monitor Epigenetic Reader Domain Interactions. SLAS DISCOVERY 2019; 25:163-175. [PMID: 31875412 DOI: 10.1177/2472555219896278] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Malfunctions in the basic epigenetic mechanisms such as histone modifications, DNA methylation, and chromatin remodeling are implicated in a number of cancers and immunological and neurodegenerative conditions. Within GlaxoSmithKline (GSK) we have utilized a number of variations of the NanoBRET technology for the direct measurement of compound-target engagement within native cellular environments to drive high-throughput, routine structure-activity relationship (SAR) profiling across differing epigenetic targets. NanoBRET is a variation of the bioluminescence resonance energy transfer (BRET) methodology utilizing proteins of interest fused to either NanoLuc, a small, high-emission-intensity luciferase, or HaloTag, a modified dehalogenase enzyme that can be selectively labeled with a fluorophore. The combination of these two technologies has enabled the application of NanoBRET to biological systems such as epigenetic protein-protein interactions, which have previously been challenging. By synergizing target engagement assays with more complex primary cell phenotypic assays, we have been able to demonstrate compound-target selectivity profiles to enhance cellular potency and offset potential liability risks. Additionally, we have shown that in the absence of a robust, cell phenotypic assay, it is possible to utilize NanoBRET target engagement assays to aid chemistry in progressing at a higher scale than would have otherwise been achievable. The NanoBRET target engagement assays utilized have further shown an excellent correlation with more reductionist biochemical and biophysical assay systems, clearly demonstrating the possibility of using such assay systems at scale, in tandem with, or in preference to, lower-throughput cell phenotypic approaches.
Collapse
Affiliation(s)
- Alexander N Phillipou
- Medicine Design, Medicinal Science and Technology, GlaxoSmithKline, Stevenage, Hertfordshire, UK
| | - Charles S Lay
- Medicine Design, Medicinal Science and Technology, GlaxoSmithKline, Stevenage, Hertfordshire, UK
| | - Charlotte E Carver
- Medicine Design, Medicinal Science and Technology, GlaxoSmithKline, Stevenage, Hertfordshire, UK
| | - Cassie Messenger
- Medicine Design, Medicinal Science and Technology, GlaxoSmithKline, Stevenage, Hertfordshire, UK
| | - John P Evans
- Medicine Design, Medicinal Science and Technology, GlaxoSmithKline, Stevenage, Hertfordshire, UK
| | - Antonia J Lewis
- Medicine Design, Medicinal Science and Technology, GlaxoSmithKline, Stevenage, Hertfordshire, UK
| | - Laurie J Gordon
- Medicine Design, Medicinal Science and Technology, GlaxoSmithKline, Stevenage, Hertfordshire, UK
| | - Mahnoor Mahmood
- Medicine Design, Medicinal Science and Technology, GlaxoSmithKline, Stevenage, Hertfordshire, UK
| | - Luke A Greenhough
- Medicine Design, Medicinal Science and Technology, GlaxoSmithKline, Stevenage, Hertfordshire, UK
| | - Douglas Sammon
- Medicine Design, Medicinal Science and Technology, GlaxoSmithKline, Stevenage, Hertfordshire, UK
| | - Aaron T Cheng
- Functional Genomics, Medicinal Science and Technology, GlaxoSmithKline, Collegeville, PA, USA
| | - Syandan Chakraborty
- Functional Genomics, Medicinal Science and Technology, GlaxoSmithKline, Collegeville, PA, USA
| | - Emma J Jones
- Medicine Design, Medicinal Science and Technology, GlaxoSmithKline, Stevenage, Hertfordshire, UK
| | - Simon C C Lucas
- Epigenetics Research Unit, GlaxoSmithKline, Stevenage, Hertfordshire, UK
| | - Kelly M Gatfield
- Medicine Design, Medicinal Science and Technology, GlaxoSmithKline, Stevenage, Hertfordshire, UK
| | - David J Brierley
- Medicine Design, Medicinal Science and Technology, GlaxoSmithKline, Stevenage, Hertfordshire, UK
| | - Peter D Craggs
- Medicine Design, Medicinal Science and Technology, GlaxoSmithKline, Stevenage, Hertfordshire, UK
| |
Collapse
|
37
|
Wang X, Gao S, Dai L, Wang Z, Wu H. Identification of key microRNAs in the carotid arteries of ApoE -/- mice exposed to disturbed flow. Hereditas 2019; 156:35. [PMID: 31719822 PMCID: PMC6833270 DOI: 10.1186/s41065-019-0112-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 10/23/2019] [Indexed: 11/24/2022] Open
Abstract
Background Atherosclerosis (AS) is one of the main causes of cardiovascular disease. AS plaques often occur in blood vessels with oscillatory blood flow and their formation can be regulated by microRNAs (miRNAs). The aim of this study is to identify the key miRNAs and molecular pathways involved in this pathological process. Methods In this study, gene chip data obtained from the GEO database was analyzed using the LIMMA package to find differentially expressed miRNAs (DE miRNAs) in the carotid arteries of ApoE−/− mice exposed to different blood flow rates. Predicted targets of the DE miRNAs were identified using the TargetScan, miRDB, and DIANA databases respectively, and the potential target genes (PTGs) were found by analyzing the common results of three databases. The DAVID database was used to enrich the PTGs based on gene ontology (GO) and pathway (Kyoto Encyclopedia of Genes and Genomes, KEGG), and the STRING database was used to uncover any protein-protein interactions (PPI) of the PTGs. Results The networks of the DE miRNAs-PTGs, Pathway-PTGs-DE miRNAs, and PTGs PPI, were constructed using Cytoscape, and 11 up-regulated and 13 down-regulated DE miRNAs and 1479 PTGs were found. GO results showed that PTGs were significantly enriched in functions such as transcriptional regulation and DNA binding. KEGG results showed that PTGs were significantly enriched in inflammation-related mitogen-activated protein kinase (MAPK) and AS-related FOXO pathways. The PPI network revealed some key target genes in the PTGs. Conclusions The analysis of key miRNAs and molecular pathways that regulate the formation of AS plaques induced by oscillatory blood flow will provide new ideas for AS treatment.
Collapse
Affiliation(s)
- Xinzhou Wang
- 1Laboratory of Cell Imaging, Henan University of Chinese Medicine, 6 Dongfeng Rd, Zhengzhou, 450002 Henan China
| | - Shuibo Gao
- 1Laboratory of Cell Imaging, Henan University of Chinese Medicine, 6 Dongfeng Rd, Zhengzhou, 450002 Henan China
| | - Liping Dai
- 2School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046 China
| | - Zhentao Wang
- 3Institute of Cardiovascular Disease, Henan University of Chinese Medicine, Zhengzhou, 450002 China
| | - Hong Wu
- 1Laboratory of Cell Imaging, Henan University of Chinese Medicine, 6 Dongfeng Rd, Zhengzhou, 450002 Henan China.,3Institute of Cardiovascular Disease, Henan University of Chinese Medicine, Zhengzhou, 450002 China
| |
Collapse
|
38
|
Morgado-Pascual JL, Rayego-Mateos S, Tejedor L, Suarez-Alvarez B, Ruiz-Ortega M. Bromodomain and Extraterminal Proteins as Novel Epigenetic Targets for Renal Diseases. Front Pharmacol 2019; 10:1315. [PMID: 31780938 PMCID: PMC6857099 DOI: 10.3389/fphar.2019.01315] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 10/15/2019] [Indexed: 12/11/2022] Open
Abstract
Epigenetic mechanisms, especially DNA methylation and histone modifications, are dynamic processes that regulate the gene expression transcriptional program in normal and diseased states. The bromodomain and extraterminal (BET) protein family (BRD2, BRD3, BRD4, and BRDT) are epigenetic readers that, via bromodomains, regulate gene transcription by binding to acetylated lysine residues on histones and master transcriptional factors. Experimental data have demonstrated the involvement of some BET proteins in many pathological conditions, including tumor development, infections, autoimmunity, and inflammation. Selective bromodomain inhibitors are epigenetic drugs that block the interaction between BET proteins and acetylated proteins, thus exerting beneficial effects. Recent data have described the beneficial effect of BET inhibition on experimental renal diseases. Emerging evidence underscores the importance of environmental modifications in the origin of pathological features in chronic kidney diseases (CKD). Several cellular processes such as oxidation, metabolic disorders, cytokines, inflammation, or accumulated uremic toxins may induce epigenetic modifications that regulate key processes involved in renal damage and in other pathological conditions observed in CKD patients. Here, we review how targeting bromodomains in BET proteins may regulate essential processes involved in renal diseases and in associated complications found in CKD patients, such as cardiovascular damage, highlighting the potential of epigenetic therapeutic strategies against BET proteins for CKD treatment and associated risks.
Collapse
Affiliation(s)
- Jose Luis Morgado-Pascual
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma Madrid, Madrid, Spain.,Red de Investigación Renal (REDinREN), Madrid, Spain
| | - Sandra Rayego-Mateos
- Red de Investigación Renal (REDinREN), Madrid, Spain.,Vascular and Renal Translational Research Group, Institut de Recerca Biomèdica de Lleida (IRBLleida), Lleida, Spain
| | - Lucia Tejedor
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma Madrid, Madrid, Spain.,Red de Investigación Renal (REDinREN), Madrid, Spain
| | - Beatriz Suarez-Alvarez
- Red de Investigación Renal (REDinREN), Madrid, Spain.,Translational Immunology Laboratory, Health Research Institute of the Principality of Asturias (ISPA), Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Marta Ruiz-Ortega
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma Madrid, Madrid, Spain.,Red de Investigación Renal (REDinREN), Madrid, Spain
| |
Collapse
|
39
|
Crosstalk between the Akt/mTORC1 and NF-κB signaling pathways promotes hypoxia-induced pulmonary hypertension by increasing DPP4 expression in PASMCs. Acta Pharmacol Sin 2019; 40:1322-1333. [PMID: 31316183 DOI: 10.1038/s41401-019-0272-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 06/10/2019] [Accepted: 06/11/2019] [Indexed: 12/19/2022]
Abstract
Abnormal wound healing by pulmonary artery smooth muscle cells (PASMCs) promotes vascular remodeling in hypoxia-induced pulmonary hypertension (HPH). Increasing evidence shows that both the mammalian target of rapamycin complex 1 (mTORC1) and nuclear factor-kappa B (NF-κB) are involved in the development of HPH. In this study, we explored the crosstalk between mTORC1 and NF-κB in PASMCs cultured under hypoxic condition and in a rat model of hypoxia-induced pulmonary hypertension (HPH). We showed that hypoxia promoted wound healing of PASMCs, which was dose-dependently blocked by the mTORC1 inhibitor rapamycin (5-20 nM). In PASMCs, hypoxia activated mTORC1, which in turn promoted the phosphorylation of NF-κB. Molecular docking revealed that mTOR interacted with IκB kinases (IKKs) and that was validated by immunoprecipitation. In vitro kinase assays and mass spectrometry demonstrated that mTOR phosphorylated IKKα and IKKβ separately. Inhibition of mTORC1 decreased the level of phosphorylated IKKα/β, thus reducing the phosphorylation and transcriptional activity of NF-κB. Bioinformatics study revealed that dipeptidyl peptidase-4 (DPP4) was a target gene of NF-κB; DPP4 inhibitor, sitagliptin (10-500 μM) effectively inhibited the abnormal wound healing of PASMCs under hypoxic condition. In the rat model of HPH, we showed that NF-κB activation (at 3 weeks) was preceded by mTOR signaling activation (after 1 or 2 weeks) in lungs, and administration of sitagliptin (1-5 mg/kg every day, ig) produced preventive effects against the development of HPH. In conclusion, hypoxia activates the crosstalk between mTORC1 and NF-κB, and increased DPP4 expression in PASMCs that leads to vascular remodeling. Sitagliptin, a DPP4 inhibitor, exerts preventive effect against HPH.
Collapse
|
40
|
Ren Y, Zhang Y, Wang Z, Wang C, Zhang H, Wang Y, Zhao Z. Role of Brd4 in the production of inflammatory cytokines in mouse macrophages treated with titanium particles. Can J Physiol Pharmacol 2019; 97:1028-1034. [PMID: 31330113 DOI: 10.1139/cjpp-2019-0142] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Brd4 protein is an important epigenetic regulator involved in the process of inflammatory cytokine production in many diseases. However, whether and how Brd4 participates in the process of wear-particle-induced inflammation remain unclear. This study aimed to investigate the potential role of Brd4 in titanium (Ti) particle-induced inflammatory cytokine production in mouse macrophage RAW264.7 cells. Our experiment detected Brd4 expressed in both normal synovium and periprosthetic osteolysis interface membrane, but the expression increased in the interface membrane as compared with that in normal synovium. Treatment with Ti particles significantly increased TNF-α, IL-6, and IL-1β production in RAW264.7 cells, which was inhibited by JQ1 or Brd4-siRNA. Ti particles enhanced the expression of Brd4, which was abrogated by JQ1. Ti particles enhanced NF-κB p65 and IKK phosphorylation and attenuated IκBα protein expression, which were abrogated by JQ1. Co-immunoprecipitation analysis indicated that Ti particles promoted the binding of Brd4 to acetylated NF-κB p65 (lysine-310), which was also abrogated in JQ1-treated RAW264.7 cells. In conclusion, Brd4 expression increases in interface membrane and Brd4 participates in the production of pro-inflammatory cytokines induced by Ti particles via promoting the activation of NF-κB signaling and binding to acetylated NF-κB p65 (lysine-310) in mouse macrophages.
Collapse
Affiliation(s)
- Yuanzhong Ren
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266061, China
| | - Yongtao Zhang
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266061, China
| | - Ze Wang
- Department of Emergency Medicine, Qingdao Haici Medical Group, Qingdao, Shandong, 266000, China
| | - Changyao Wang
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266061, China
| | - Haining Zhang
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266061, China
| | - Yingzhen Wang
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266061, China
| | - Zhiping Zhao
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266061, China
| |
Collapse
|
41
|
Tsujikawa LM, Fu L, Das S, Halliday C, Rakai BD, Stotz SC, Sarsons CD, Gilham D, Daze E, Wasiak S, Studer D, Rinker KD, Sweeney M, Johansson JO, Wong NCW, Kulikowski E. Apabetalone (RVX-208) reduces vascular inflammation in vitro and in CVD patients by a BET-dependent epigenetic mechanism. Clin Epigenetics 2019; 11:102. [PMID: 31300040 PMCID: PMC6626370 DOI: 10.1186/s13148-019-0696-z] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 06/11/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Apabetalone (RVX-208) is a bromodomain and extraterminal protein inhibitor (BETi) that in phase II trials reduced the relative risk (RR) of major adverse cardiac events (MACE) in patients with cardiovascular disease (CVD) by 44% and in diabetic CVD patients by 57% on top of statins. A phase III trial, BETonMACE, is currently assessing apabetalone's ability to reduce MACE in statin-treated post-acute coronary syndrome type 2 diabetic CVD patients with low high-density lipoprotein C. The leading cause of MACE is atherosclerosis, driven by dysfunctional lipid metabolism and chronic vascular inflammation (VI). In vitro studies have implicated the BET protein BRD4 as an epigenetic driver of inflammation and atherogenesis, suggesting that BETi may be clinically effective in combating VI. Here, we assessed apabetalone's ability to regulate inflammation-driven gene expression and cell adhesion in vitro and investigated the mechanism by which apabetalone suppresses expression. The clinical impact of apabetalone on mediators of VI was assessed with proteomic analysis of phase II CVD patient plasma. RESULTS In vitro, apabetalone prevented inflammatory (TNFα, LPS, or IL-1β) induction of key factors that drive endothelial activation, monocyte recruitment, adhesion, and plaque destabilization. BRD4 abundance on inflammatory and adhesion gene promoters and enhancers was reduced by apabetalone. BRD2-4 degradation by MZ-1 also prevented TNFα-induced transcription of monocyte and endothelial cell adhesion molecules and inflammatory mediators, confirming BET-dependent regulation. Transcriptional regulation by apabetalone translated into a reduction in monocyte adhesion to an endothelial monolayer. In a phase II trial, apabetalone treatment reduced the abundance of multiple VI mediators in the plasma of CVD patients (SOMAscan® 1.3 k). These proteins correlate with CVD risk and include adhesion molecules, cytokines, and metalloproteinases. Ingenuity® Pathway Analysis (IPA®) predicted that apabetalone inhibits pro-atherogenic regulators and pathways and prevents disease states arising from leukocyte recruitment. CONCLUSIONS Apabetalone suppressed gene expression of VI mediators in monocytes and endothelial cells by inhibiting BET-dependent transcription induced by multiple inflammatory stimuli. In CVD patients, apabetalone treatment reduced circulating levels of VI mediators, an outcome conducive with atherosclerotic plaque stabilization and MACE reduction. Inhibition of inflammatory and adhesion molecule gene expression by apabetalone is predicted to contribute to MACE reduction in the phase III BETonMACE trial.
Collapse
Affiliation(s)
- Laura M Tsujikawa
- Resverlogix Corp., 300, 4820 Richard Road SW, Calgary, AB, T3E 6 L1, Canada
| | - Li Fu
- Resverlogix Corp., 300, 4820 Richard Road SW, Calgary, AB, T3E 6 L1, Canada
| | - Shovon Das
- Resverlogix Corp., 300, 4820 Richard Road SW, Calgary, AB, T3E 6 L1, Canada
| | | | - Brooke D Rakai
- Resverlogix Corp., 300, 4820 Richard Road SW, Calgary, AB, T3E 6 L1, Canada
| | - Stephanie C Stotz
- Resverlogix Corp., 300, 4820 Richard Road SW, Calgary, AB, T3E 6 L1, Canada
| | | | - Dean Gilham
- Resverlogix Corp., 300, 4820 Richard Road SW, Calgary, AB, T3E 6 L1, Canada
| | - Emily Daze
- Resverlogix Corp., 300, 4820 Richard Road SW, Calgary, AB, T3E 6 L1, Canada
| | - Sylwia Wasiak
- Resverlogix Corp., 300, 4820 Richard Road SW, Calgary, AB, T3E 6 L1, Canada
| | - Deborah Studer
- Cellular and Molecular Bioengineering Research Lab, Libin Cardiovascular Institute of Alberta, University of Calgary, HMRB 358/361 3330 University Drive NW, Calgary, AB, T2N 4 N1, Canada
| | - Kristina D Rinker
- Cellular and Molecular Bioengineering Research Lab, Libin Cardiovascular Institute of Alberta, University of Calgary, HMRB 358/361 3330 University Drive NW, Calgary, AB, T2N 4 N1, Canada
| | - Michael Sweeney
- Resverlogix Inc., Suite 4010, 44 Montgomery Street, San Francisco, CA, 94104, USA
| | - Jan O Johansson
- Resverlogix Inc., Suite 4010, 44 Montgomery Street, San Francisco, CA, 94104, USA
| | - Norman C W Wong
- Resverlogix Corp., 300, 4820 Richard Road SW, Calgary, AB, T3E 6 L1, Canada
| | - Ewelina Kulikowski
- Resverlogix Corp., 300, 4820 Richard Road SW, Calgary, AB, T3E 6 L1, Canada.
| |
Collapse
|
42
|
A novel bromodomain inhibitor, CPI-203, serves as an HIV-1 latency-reversing agent by activating positive transcription elongation factor b. Biochem Pharmacol 2019; 164:237-251. [DOI: 10.1016/j.bcp.2019.04.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 04/07/2019] [Indexed: 01/12/2023]
|
43
|
I-BET151 suppresses osteoclast formation and inflammatory cytokines secretion by targetting BRD4 in multiple myeloma. Biosci Rep 2019; 39:BSR20181245. [PMID: 30455393 PMCID: PMC6522735 DOI: 10.1042/bsr20181245] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 10/24/2018] [Accepted: 11/03/2018] [Indexed: 12/30/2022] Open
Abstract
Background: Multiple myeloma (MM) is an incurable hematologic cancer, accompanied by excessive osteoclast formation and inflammatory cytokine secretion. The mechanisms by which bromodomain and extra-terminal domain (BET) protein inhibitor I-BET151 regulates osteoclast differentiation and inflammatory cytokine secretion in MM are largely unknown. Methods: The isolated peripheral blood mononuclear cells from normal or patients with MM were treated with receptor activator of NF-κB ligand (RANKL) and M-CSF to induce osteoclast differentiation. RAW 264.7 cells were treated with RANKL. I-BET151 was applied to investigate the effects of BRD4 inhibition on osteoclast formation and inflammatory cytokine secretion. Osteoclast formation was determined by tartrate-resistant acid phosphatase (TRACP) staining. The expression of osteoclast-specific genes TRACP, matrix metalloproteinase-9 (MMP-9), cathepsin K (Ctsk), and c-Src was tested using quantitative real-time PCR. And the level of inflammatory cytokines TNF-α, IL-1β, and IL-6 was assessed by ELISA. Tumor necrosis factor receptor-associated factor 6 (TRAF6), BRD4, nuclear and cytoplasm p65, IκB-α, nuclear factor of activated T cells cytoplasmic (NFATc1), and osteoprotegerin (OPG) expression were measured by Western blotting. RNAi technology was applied to knock down BET family member BRD4. Results: I-BET151 dose-dependently suppressed osteoclast formation, inhibited the levels of osteoclast-specific genes TRACP, MMP-9, Ctsk, and c-Src and inflammatory cytokines TNF-α, IL-1β, and IL-6 secretion in peripheral blood mononuclear cells and RAW 264.7. I-BET151 inhibited the protein levels of BRD4 and NFATc1, increased OPG expression, and suppressed IκB-α degradation and p65 nuclear translocation. Further, the effects of I-BET151 on osteoclast formation, osteoclast-specific genes expression, inflammatory cytokine secretion, and NF-κB inhibition were promoted by BRD4 knockdown. Conclusion: I-BET151 inhibits osteoclast formation and inflammatory cytokine secretion by targetting BRD4-mediated RANKL-NF-κB signal pathway and BRD4 inhibition might be beneficial for MM treatment.
Collapse
|
44
|
Maksylewicz A, Bysiek A, Lagosz KB, Macina JM, Kantorowicz M, Bereta G, Sochalska M, Gawron K, Chomyszyn-Gajewska M, Potempa J, Grabiec AM. BET Bromodomain Inhibitors Suppress Inflammatory Activation of Gingival Fibroblasts and Epithelial Cells From Periodontitis Patients. Front Immunol 2019; 10:933. [PMID: 31114581 PMCID: PMC6503739 DOI: 10.3389/fimmu.2019.00933] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Accepted: 04/11/2019] [Indexed: 12/11/2022] Open
Abstract
BET bromodomain proteins are important epigenetic regulators of gene expression that bind acetylated histone tails and regulate the formation of acetylation-dependent chromatin complexes. BET inhibitors suppress inflammatory responses in multiple cell types and animal models, and protect against bone loss in experimental periodontitis in mice. Here, we analyzed the role of BET proteins in inflammatory activation of gingival fibroblasts (GFs) and gingival epithelial cells (GECs). We show that the BET inhibitors I-BET151 and JQ1 significantly reduced expression and/or production of distinct, but overlapping, profiles of cytokine-inducible mediators of inflammation and bone resorption in GFs from healthy donors (IL6, IL8, IL1B, CCL2, CCL5, COX2, and MMP3) and the GEC line TIGK (IL6, IL8, IL1B, CXCL10, MMP9) without affecting cell viability. Activation of mitogen-activated protein kinase and nuclear factor-κB pathways was unaffected by I-BET151, as was the histone acetylation status, and new protein synthesis was not required for the anti-inflammatory effects of BET inhibition. I-BET151 and JQ1 also suppressed expression of inflammatory cytokines, chemokines, and osteoclastogenic mediators in GFs and TIGKs infected with the key periodontal pathogen Porphyromonas gingivalis. Notably, P. gingivalis internalization and intracellular survival in GFs and TIGKs remained unaffected by BET inhibitors. Finally, inhibition of BET proteins significantly reduced P. gingivalis-induced inflammatory mediator expression in GECs and GFs from patients with periodontitis. Our results demonstrate that BET inhibitors may block the excessive inflammatory mediator production by resident cells of the gingival tissue and identify the BET family of epigenetic reader proteins as a potential therapeutic target in the treatment of periodontal disease.
Collapse
Affiliation(s)
- Anna Maksylewicz
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Agnieszka Bysiek
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Katarzyna B Lagosz
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Justyna M Macina
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Malgorzata Kantorowicz
- Department of Periodontology and Oral Medicine, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Grzegorz Bereta
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Maja Sochalska
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Katarzyna Gawron
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Maria Chomyszyn-Gajewska
- Department of Periodontology and Oral Medicine, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Jan Potempa
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland.,Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, United States
| | - Aleksander M Grabiec
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| |
Collapse
|
45
|
Wang J, Chen J, Jin H, Lin D, Chen Y, Chen X, Wang B, Hu S, Wu Y, Wu Y, Zhou Y, Tian N, Gao W, Wang X, Zhang X. BRD4 inhibition attenuates inflammatory response in microglia and facilitates recovery after spinal cord injury in rats. J Cell Mol Med 2019; 23:3214-3223. [PMID: 30809946 PMCID: PMC6484335 DOI: 10.1111/jcmm.14196] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 12/12/2018] [Accepted: 01/05/2019] [Indexed: 12/13/2022] Open
Abstract
The pathophysiology of spinal cord injury (SCI) involves primary injury and secondary injury. For the irreversibility of primary injury, therapies of SCI mainly focus on secondary injury, whereas inflammation is considered to be a major target for secondary injury; however the regulation of inflammation in SCI is unclear and targeted therapies are still lacking. In this study, we found that the expression of BRD4 was correlated with pro‐inflammatory cytokines after SCI in rats; in vitro study in microglia showed that BRD4 inhibition either by lentivirus or JQ1 may both suppress the MAPK and NF‐κB signalling pathways, which are the two major signalling pathways involved in inflammatory response in microglia. BRD4 inhibition by JQ1 not only blocked microglial M1 polarization, but also repressed the level of pro‐inflammatory cytokines in microglia in vitro and in vivo. Furthermore, BRD4 inhibition by JQ1 can improve functional recovery and structural disorder as well as reduce neuron loss in SCI rats. Overall, this study illustrates that microglial BRD4 level is increased after SCI and BRD4 inhibition is able to suppress M1 polarization and pro‐inflammatory cytokine production in microglia which ultimately promotes functional recovery after SCI.
Collapse
Affiliation(s)
- Jianle Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jiaoxiang Chen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Haiming Jin
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Dongdong Lin
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yu Chen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ximiao Chen
- Department of Orthopaedics, Affiliated Hospital of Guilin Medical College, Guilin, Guangxi, China
| | - Ben Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Sunli Hu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yan Wu
- Department of Orthopaedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yaosen Wu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yifei Zhou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Naifeng Tian
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Weiyang Gao
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiangyang Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaolei Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.,Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China.,Chinese Orthopaedic Regenerative Medicine Society, Wenzhou, Zhejiang, China
| |
Collapse
|
46
|
Abstract
Cancer can be identified as a chaotic cell state, which breaks the rules that govern growth and reproduction, with main characteristics such as uncontrolled division, invading other tissues, usurping resources, and eventually killing its host. It was once believed that cancer is caused by a progressive series of genetic aberrations, and certain mutations of genes, including oncogenes and tumor suppressor genes, have been identified as the cause of cancer. However, piling evidence suggests that epigenetic modifications working in concert with genetic mechanisms to regulate transcriptional activity are dysregulated in many diseases, including cancer. Cancer epigenetics explain a wide range of heritable changes in gene expression, which do not come from any alteration in DNA sequences. Aberrant DNA methylation, histone modifications, and expression of long non-coding RNAs (lncRNAs) are key epigenetic mechanisms associated with tumor initiation, cancer progression, and metastasis. Within the past decade, cancer epigenetics have enabled us to develop novel biomarkers and therapeutic target for many types of cancers. In this review, we will summarize the major epigenetic changes involved in cancer biology along with clinical and preclinical results developed as novel cancer therapeutics.
Collapse
Affiliation(s)
- Jong Woo Park
- Research Center for Epigenome Regulation, School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Jeung-Whan Han
- Research Center for Epigenome Regulation, School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
47
|
Wang H, Huang W, Liang M, Shi Y, Zhang C, Li Q, Liu M, Shou Y, Yin H, Zhu X, Sun X, Hu Y, Shen Z. (+)-JQ1 attenuated LPS-induced microglial inflammation via MAPK/NFκB signaling. Cell Biosci 2018; 8:60. [PMID: 30479742 PMCID: PMC6245926 DOI: 10.1186/s13578-018-0258-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Accepted: 11/13/2018] [Indexed: 01/10/2023] Open
Abstract
Background Microglia activation is a crucial event in neurodegenerative disease. The depression of microglial inflammatory response is considered a promising therapeutic strategy. NFκB signaling, including IKK/IκB phosphotylation, p65 nucelus relocalization and NFκB-related genes transcription are prevalent accepted to play important role in microglial activation. (+)-JQ1, a BRD4 inhibitor firstly discovered as an anti-tumor agent, was later confirmed to be an anti-inflammatory compound. However, its anti-inflammatory effect in microglia and central neural system remains unclear. Results In the current work, microglial BV2 cells were applied and treatment with lipopolysaccharide (LPS) to induce inflammation and later administered with (+)-JQ1. In parallel, LPS and (+)-JQ1 was intracerebroventricular injected in IL-1β-luc transgenic mice, followed by fluorescence evaluation and brain tissue collection. Results showed that (+)-JQ1 treatment could significantly reduce LPS induced transcription of inflammatory cytokines both in vitro and in vivo. (+)-JQ1 could inhibit LPS induced MAPK but not PI3K signaling phosphorylation, NFκB relocalization and transcription activity. In animal experiments, (+)-JQ1 postponed LPS induced microglial and astrocytes activation, which was also dependent on MAPK/NFκB signaling. Conclusions Thus, our data demonstrated that (+)-JQ1 could inhibit LPS induced microglia associated neuroinflammation, via the attenuation of MAPK/NFκB signaling.
Collapse
Affiliation(s)
- Huanhuan Wang
- 1School of Medicine, Hangzhou Normal University, Hangzhou, China
| | - Wenhai Huang
- 2Institute of Materia Medica, Zhejiang Academy of Medical Sciences, No. 182, Tianmushan Road, Hangzhou, 310013 China
| | - Meihao Liang
- 2Institute of Materia Medica, Zhejiang Academy of Medical Sciences, No. 182, Tianmushan Road, Hangzhou, 310013 China
| | - Yingying Shi
- 1School of Medicine, Hangzhou Normal University, Hangzhou, China
| | - Chixiao Zhang
- 2Institute of Materia Medica, Zhejiang Academy of Medical Sciences, No. 182, Tianmushan Road, Hangzhou, 310013 China
| | - Qin Li
- 2Institute of Materia Medica, Zhejiang Academy of Medical Sciences, No. 182, Tianmushan Road, Hangzhou, 310013 China
| | - Meng Liu
- 1School of Medicine, Hangzhou Normal University, Hangzhou, China
| | - Yikai Shou
- 1School of Medicine, Hangzhou Normal University, Hangzhou, China
| | - Hongping Yin
- 1School of Medicine, Hangzhou Normal University, Hangzhou, China
| | - Xiaozheng Zhu
- 1School of Medicine, Hangzhou Normal University, Hangzhou, China
| | - Xiaoyan Sun
- 3School of Information Science and Engineering, Hangzhou Normal University, Hangzhou, China
| | - Yu Hu
- 1School of Medicine, Hangzhou Normal University, Hangzhou, China
| | - Zhengrong Shen
- 2Institute of Materia Medica, Zhejiang Academy of Medical Sciences, No. 182, Tianmushan Road, Hangzhou, 310013 China
| |
Collapse
|
48
|
Klein K. Bromodomain protein inhibition: a novel therapeutic strategy in rheumatic diseases. RMD Open 2018; 4:e000744. [PMID: 30564450 PMCID: PMC6269638 DOI: 10.1136/rmdopen-2018-000744] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 09/28/2018] [Accepted: 10/17/2018] [Indexed: 12/18/2022] Open
Abstract
The reading of acetylation marks on histones by bromodomain (BRD) proteins is a key event in transcriptional activation. Small molecule inhibitors targeting bromodomain and extra-terminal (BET) proteins compete for binding to acetylated histones. They have strong anti-inflammatory properties and exhibit encouraging effects in different cell types in vitro and in animal models resembling rheumatic diseases in vivo. Furthermore, recent studies that focus on BRD proteins beyond BET family members are discussed.
Collapse
Affiliation(s)
- Kerstin Klein
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
49
|
Wang Y, Hong Y, Zhang C, Shen Y, Pan YS, Chen RZ, Zhang Q, Chen YH. Picroside II attenuates hyperhomocysteinemia-induced endothelial injury by reducing inflammation, oxidative stress and cell apoptosis. J Cell Mol Med 2018; 23:464-475. [PMID: 30394648 PMCID: PMC6307770 DOI: 10.1111/jcmm.13949] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Accepted: 09/03/2018] [Indexed: 12/27/2022] Open
Abstract
Picroside II (P‐II), one of the main active components of scrophularia extract, which have anti‐oxidative, anti‐inflammatory effects, but its effect on hyperhomocysteinemia (HHcy) induced endothelial injury remains to be determined. Here, we test whether P‐II protects HHcy‐induced endothelial dysfunction against oxidative stress, inflammation and cell apoptosis. In vitro study using HUVECs, and in hyperhomocysteinemia mouse models, we found that HHcy decreased endothelial SIRT1 expression and increased LOX‐1 expression, subsequently causing reactive oxygen species generation, up‐regulation of NADPH oxidase activity and NF‐κB activation, thereby promoting pro‐inflammatory response and cell apoptosis. Blockade of Sirt1 with Ex527 or siRNASIRT1 increased LOX‐1 expression, whereas overexpression of SIRT1 decreased LOX‐1 expression markedly. P‐II treatment significantly increased SIRT1 expression and reduced LOX‐1 expression, and protected against endothelial cells from Hcy‐induced oxidative injury, inflammation and apoptosis. However, blockade of SIRT1 or overexpression of LOX‐1 attenuated the therapeutic effects of P‐II. In conclusion, our results suggest that P‐II prevents the Hcy induced endothelial damage probably through regulating the SIRT1/LOX‐1 signaling pathway.
Collapse
Affiliation(s)
- Yunkai Wang
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yajun Hong
- Department of Radiology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Chunyu Zhang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yunli Shen
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ye Shen Pan
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Rui Zhen Chen
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qi Zhang
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yi Han Chen
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
50
|
Yuan HX, Feng XE, Liu EL, Ge R, Zhang YL, Xiao BG, Li QS. 5,2'-dibromo-2,4',5'-trihydroxydiphenylmethanone attenuates LPS-induced inflammation and ROS production in EA.hy926 cells via HMBOX1 induction. J Cell Mol Med 2018; 23:453-463. [PMID: 30358079 PMCID: PMC6307801 DOI: 10.1111/jcmm.13948] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 08/31/2018] [Accepted: 09/10/2018] [Indexed: 12/16/2022] Open
Abstract
Inflammation and reactive oxygen species (ROS) are important factors in the pathogenesis of atherosclerosis (AS). 5,2′‐dibromo‐2,4′,5′‐trihydroxydiphenylmethanone (TDD), possess anti‐atherogenic properties; however, its underlying mechanism of action remains unclear. Therefore, we sought to understand the therapeutic molecular mechanism of TDD in inflammatory response and oxidative stress in EA.hy926 cells. Microarray analysis revealed that the expression of homeobox containing 1 (HMBOX1) was dramatically upregulated in TDD‐treated EA.hy926 cells. According to the gene ontology (GO) analysis of microarray data, TDD significantly influenced the response to lipopolysaccharide (LPS); it suppressed the LPS‐induced adhesion of monocytes to EA.hy926 cells. Simultaneously, TDD dose‐dependently inhibited the production or expression of IL‐6, IL‐1β, MCP‐1, TNF‐α, VCAM‐1, ICAM‐1 and E‐selectin as well as ROS in LPS‐stimulated EA.hy926 cells. HMBOX1 knockdown using RNA interference attenuated the anti‐inflammatory and anti‐oxidative effects of TDD. Furthermore, TDD inhibited LPS‐induced NF‐κB and MAPK activation in EA.hy926 cells, but this effect was abolished by HMBOX1 knockdown. Overall, these results demonstrate that TDD activates HMBOX1, which is an inducible protective mechanism that inhibits LPS‐induced inflammation and ROS production in EA.hy926 cells by the subsequent inhibition of redox‐sensitive NF‐κB and MAPK activation. Our study suggested that TDD may be a potential novel agent for treating endothelial cells dysfunction in AS.
Collapse
Affiliation(s)
- Hong-Xia Yuan
- School of Public Health Science & Pharmaceutical Science, Shanxi Medical University, Taiyuan, China.,Shanxi Key Laboratory of Innovative Drug for the Treatment of Serious Diseases Basing on the Chronic Inflammation, Shanxi University of Chinese medicine, Taiyuan, China
| | - Xiu-E Feng
- School of Public Health Science & Pharmaceutical Science, Shanxi Medical University, Taiyuan, China
| | - En-Li Liu
- School of Public Health Science & Pharmaceutical Science, Shanxi Medical University, Taiyuan, China
| | - Rui Ge
- School of Public Health Science & Pharmaceutical Science, Shanxi Medical University, Taiyuan, China
| | - Yuan-Lin Zhang
- School of Public Health Science & Pharmaceutical Science, Shanxi Medical University, Taiyuan, China
| | - Bao-Guo Xiao
- Shanxi Key Laboratory of Innovative Drug for the Treatment of Serious Diseases Basing on the Chronic Inflammation, Shanxi University of Chinese medicine, Taiyuan, China
| | - Qing-Shan Li
- School of Public Health Science & Pharmaceutical Science, Shanxi Medical University, Taiyuan, China.,Shanxi Key Laboratory of Innovative Drug for the Treatment of Serious Diseases Basing on the Chronic Inflammation, Shanxi University of Chinese medicine, Taiyuan, China
| |
Collapse
|