1
|
Shang W, Geng X, Sun X, Fan X, Li A, Zhang C, Kang Y, Liang Y, Zhang J. Non-coding RNAs modulate pyroptosis in diabetic cardiomyopathy: A comprehensive review. Int J Biol Macromol 2025; 309:142865. [PMID: 40188918 DOI: 10.1016/j.ijbiomac.2025.142865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 02/07/2025] [Accepted: 04/03/2025] [Indexed: 04/11/2025]
Abstract
Diabetic cardiomyopathy (DCM) is a leading cause of heart failure (HF) among individuals with diabetes, presenting a significant medical challenge due to its complex pathophysiology and the lack of targeted therapies. Pyroptosis, a pro-inflammatory form of programmed cell death (PCD), is the predominant mode of cell death in the primary resident cells involved in DCM. It has been reported to be critical in DCM's onset, progression, and pathogenesis. Non-coding RNAs (ncRNAs), diverse transcripts lacking protein-coding potential, are essential for cellular physiology and the progression of various diseases. Increasing evidence indicates that ncRNAs are pivotal in the pathogenesis of DCM by regulating pyroptosis. This observation suggests that targeting the regulation of pyroptosis by ncRNAs may offer a novel therapeutic approach for DCM. However, a comprehensive review of this topic is currently lacking. Our objective is to elucidate the regulatory role of ncRNAs in pyroptosis associated with DCM and to elucidate the relationships among these factors. Additionally, we explored how ncRNAs influence pyroptosis and contribute to the pathophysiology of DCM. By doing so, we aim to identify new research targets for the clinical diagnosis and treatment of DCM.
Collapse
Affiliation(s)
- Wenyu Shang
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300000, China
| | - Xiaofei Geng
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300000, China
| | - Xitong Sun
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300000, China
| | - Xinbiao Fan
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300000, China
| | - Aolin Li
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300000, China
| | - Chi Zhang
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300000, China
| | - Yuxin Kang
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300000, China
| | - Yongchun Liang
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300000, China
| | - Junping Zhang
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300000, China.
| |
Collapse
|
2
|
Al Khafaji AT, Barakat AM, Shayyal AJ, Taan AA, Aboqader Al-Aouadi RF. Managing Doxorubicin Cardiotoxicity: Insights Into Molecular Mechanisms and Protective Strategies. J Biochem Mol Toxicol 2025; 39:e70155. [PMID: 39887483 DOI: 10.1002/jbt.70155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/30/2024] [Accepted: 01/16/2025] [Indexed: 02/01/2025]
Abstract
Cancer ranks as the second leading cause of death in the United States and poses a significant health challenge globally. Numerous therapeutic options exist for treating cancer, with chemotherapy being one of the most prominent. Chemotherapy involves the use of antineoplastic drugs, either alone or in combination with other medications, to target and kill cancer cells. However, these drugs can also adversely affect healthy cells, leading to various side effects. Among the most commonly used chemotherapy agents are anthracyclines, which include doxorubicin, daunorubicin, and epirubicin. Doxorubicin is particularly notable for its effectiveness but is also associated with significant cardiotoxicity, a common concern for patients undergoing chemotherapy. Unfortunately, there is currently no definitive treatment to prevent or reverse this cardiotoxicity. The cardiac effects of doxorubicin can manifest in several ways, including changes in electrocardiograms, arrhythmias, myocarditis, pericarditis, myocardial infarction, cardiomyopathy, heart failure, and congestive heart failure. These complications may arise during treatment, shortly after it concludes, or even weeks later. Various mechanisms have been proposed to explain doxorubicin-induced cardiotoxicity. Key factors include the inhibition of topoisomerase IIβ, mitochondrial damage, reactive oxygen species (ROS) production due to iron metabolism, increased oxidative stress, heightened inflammatory responses, and elevated rates of apoptosis and necrosis within cardiac tissue. This review article will provide a comprehensive overview of the current state of knowledge regarding doxorubicin-induced cardiomyopathy. We will explore the underlying molecular mechanisms contributing to this condition and discuss emerging therapeutic strategies aimed at mitigating its impact on cancer survivors.
Collapse
Affiliation(s)
| | | | | | - Ali Adnan Taan
- Nasr City Hospital for Health Insurance, Ministry of Health, Cairo, Egypt
| | | |
Collapse
|
3
|
Dimitriadis K, Theofilis P, Koutsopoulos G, Pyrpyris N, Beneki E, Tatakis F, Tsioufis P, Chrysohoou C, Fragkoulis C, Tsioufis K. The role of coronary microcirculation in heart failure with preserved ejection fraction: An unceasing odyssey. Heart Fail Rev 2025; 30:75-88. [PMID: 39358622 DOI: 10.1007/s10741-024-10445-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/27/2024] [Indexed: 10/04/2024]
Abstract
Heart failure with preserved ejection fraction (HFpEF) represents an entity with complex pathophysiologic pathways, among which coronary microvascular dysfunction (CMD) is believed to be an important orchestrator. Research in the field of CMD has highlighted impaired vasoreactivity, capillary rarefaction, and inflammation as potential mediators of its development. CMD can be diagnosed via several noninvasive methods including transthoracic echocardiography, cardiac magnetic resonance, and positron emission tomography. Moreover, invasive methods such as coronary flow reserve and index of microcirculatory resistance are commonly employed in the assessment of CMD. As far as the association between CMD and HFpEF is concerned, numerous studies have highlighted the coexistence of CMD in the majority of HFpEF patients. Additionally, patients affected by both conditions may be facing an adverse prognosis. Finally, there is limited evidence suggesting a beneficial effect of renin-angiotensin-aldosterone system blockers, ranolazine, and sodium-glucose cotransporter-2 inhibitors in CMD, with further evidence being awaited regarding the impact of other pharmacotherapies such as anti-inflammatory agents.
Collapse
Affiliation(s)
- Kyriakos Dimitriadis
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration General Hospital, Vasilissis Sofias 114, 11528, Athens, PO, Greece.
| | - Panagiotis Theofilis
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration General Hospital, Vasilissis Sofias 114, 11528, Athens, PO, Greece
| | - Georgios Koutsopoulos
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration General Hospital, Vasilissis Sofias 114, 11528, Athens, PO, Greece
| | - Nikolaos Pyrpyris
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration General Hospital, Vasilissis Sofias 114, 11528, Athens, PO, Greece
| | - Eirini Beneki
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration General Hospital, Vasilissis Sofias 114, 11528, Athens, PO, Greece
| | - Fotis Tatakis
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration General Hospital, Vasilissis Sofias 114, 11528, Athens, PO, Greece
| | - Panagiotis Tsioufis
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration General Hospital, Vasilissis Sofias 114, 11528, Athens, PO, Greece
| | - Christina Chrysohoou
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration General Hospital, Vasilissis Sofias 114, 11528, Athens, PO, Greece
| | - Christos Fragkoulis
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration General Hospital, Vasilissis Sofias 114, 11528, Athens, PO, Greece
| | - Konstantinos Tsioufis
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration General Hospital, Vasilissis Sofias 114, 11528, Athens, PO, Greece
| |
Collapse
|
4
|
Hara A. [Anthracycline-Induced Cardiotoxicity and Exploration of Cardioprotective Drugs]. YAKUGAKU ZASSHI 2025; 145:121-132. [PMID: 39894481 DOI: 10.1248/yakushi.24-00185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Many anticancer drugs, including anthracycline drugs, pose a risk of cardiovascular damage as an adverse reaction. This can detrimentally impact the prognosis and quality of life of patients, potentially leading to the interruption of cancer chemotherapy and compromising cancer treatment. Recently, onco-cardiology (or cardio-oncology) has developed as a new interdisciplinary field that focuses on the prevention and treatment of cardiovascular toxicity of anticancer drugs. In this review, we explore the mechanism underlying the cardiotoxicity of anthracyclines and examine pharmacological agents that safeguard the heart from anthracycline-induced damage. Anthracycline-induced cardiotoxicity primarily involves oxidative stress, characterized by radical production in mitochondria and subsequent apoptosis in cardiomyocytes. While various antioxidant agents, such as resveratrol, vitamin E, and melatonin have demonstrated efficacy in reducing anthracycline-induced cardiotoxicity in animal models, their clinical effectiveness remains inconclusive. Alternatively, dexrazoxane, an intracellular iron chelator, along with standard heart failure medications, such as β-blockers, angiotensin-converting enzyme inhibitors, and angiotensin II receptor blockers, reduce anthracycline cardiotoxicity and prevent subsequent heart failure in both animal and human studies. Additionally, statins [hydroxymethylglutaryl (HMG)-CoA reductase inhibitors] and ranolazine have emerged as potential candidates for attenuating anthracycline-induced cardiotoxicity in clinical settings. Notably, recent in vitro findings suggest that everolimus, an autophagy/mitophagy-inducing antitumor drug, may protect cardiomyocytes from anthracycline-induced toxicity without reducing the antitumor effects of anthracycline. Although promising, further clinical research is warranted to validate the potential of everolimus as a safer and more effective anthracycline chemotherapeutic strategy.
Collapse
Affiliation(s)
- Akiyoshi Hara
- Department of Clinical Pharmacotherapeutics, Tohoku Medical and Pharmaceutical University
| |
Collapse
|
5
|
Guo X, Zuo Z, Wang X, Sun Y, Xu D, Liu G, Tong Y, Zhang Z. Epidemiology, risk factors and mechanism of breast cancer and atrial fibrillation. CARDIO-ONCOLOGY (LONDON, ENGLAND) 2024; 10:92. [PMID: 39716319 DOI: 10.1186/s40959-024-00298-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 12/17/2024] [Indexed: 12/25/2024]
Abstract
Cancer and cardiovascular diseases are leading causes of death worldwide. Among them, breast cancer is one of the most common malignancies in women, while atrial fibrillation is one of the most extensively studied arrhythmias, with significant public health implications. As the global population ages and advancements in cancer treatments continue, the survival rates of breast cancer patients have significantly improved, leading to an increasing coexistence of breast cancer and atrial fibrillation. However, the mechanisms underlying this coexistence remain insufficiently studied, and there is no consensus on the optimal treatment strategies for these patients. This review consolidates existing research to systematically explore the epidemiological characteristics, risk factors, and pathophysiological mechanisms of both breast cancer and atrial fibrillation. It focuses on the unique signaling pathways associated with different molecular subtypes of breast cancer and their potential impact on the mechanisms of atrial fibrillation. Additionally, the relationship between atrial fibrillation treatment medications and breast cancer is discussed. These insights not only provide essential evidence for the precise prevention and management of atrial fibrillation in breast cancer patients but also lay a solid theoretical foundation for interdisciplinary clinical management practices.
Collapse
Affiliation(s)
- Xiaoxue Guo
- Department of Cardiology, The First Hospital of Jilin University, No.1 Xinmin Street, Changchun, 130021, Jilin Province, China
| | - Zheng Zuo
- Department of Cardiology, The First Hospital of Jilin University, No.1 Xinmin Street, Changchun, 130021, Jilin Province, China
| | - Xishu Wang
- Department of Cardiology, The First Hospital of Jilin University, No.1 Xinmin Street, Changchun, 130021, Jilin Province, China
| | - Ying Sun
- Department of Cardiology, The First Hospital of Jilin University, No.1 Xinmin Street, Changchun, 130021, Jilin Province, China
| | - Dongyang Xu
- Department of Cardiology, The First Hospital of Jilin University, No.1 Xinmin Street, Changchun, 130021, Jilin Province, China
| | - Guanghui Liu
- Department of Cardiology, The First Hospital of Jilin University, No.1 Xinmin Street, Changchun, 130021, Jilin Province, China
| | - Yi Tong
- Department of Cardiology, The First Hospital of Jilin University, No.1 Xinmin Street, Changchun, 130021, Jilin Province, China
| | - Zhiguo Zhang
- Department of Cardiology, The First Hospital of Jilin University, No.1 Xinmin Street, Changchun, 130021, Jilin Province, China.
| |
Collapse
|
6
|
Theofilis P, Vlachakis PK, Oikonomou E, Drakopoulou M, Karakasis P, Apostolos A, Pamporis K, Tsioufis K, Tousoulis D. Cancer Therapy-Related Cardiac Dysfunction: A Review of Current Trends in Epidemiology, Diagnosis, and Treatment. Biomedicines 2024; 12:2914. [PMID: 39767820 PMCID: PMC11673750 DOI: 10.3390/biomedicines12122914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 12/17/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025] Open
Abstract
Cancer therapy-related cardiac dysfunction (CTRCD) has emerged as a significant concern with the rise of effective cancer treatments like anthracyclines and targeted therapies such as trastuzumab. While these therapies have improved cancer survival rates, their unintended cardiovascular side effects can lead to heart failure, cardiomyopathy, and arrhythmias. The pathophysiology of CTRCD involves oxidative stress, mitochondrial dysfunction, and calcium dysregulation, resulting in irreversible damage to cardiomyocytes. Inflammatory cytokines, disrupted growth factor signaling, and coronary atherosclerosis further contribute to this dysfunction. Advances in cardio-oncology have led to the early detection of CTRCD using cardiac biomarkers like troponins and imaging techniques such as echocardiography and cardiac magnetic resonance (CMR). These tools help identify asymptomatic patients at risk of cardiac events before the onset of clinical symptoms. Preventive strategies, including the use of cardioprotective agents like beta-blockers, angiotensin-converting enzyme inhibitors, mineralocorticoid receptor antagonists, and sodium-glucose cotransporter-2 inhibitors have shown promise in reducing the incidence of CTRCD. This review summarizes the mechanisms, detection methods, and emerging treatments for CTRCD, emphasizing the importance of interdisciplinary collaboration between oncologists and cardiologists to optimize care and improve both cancer and cardiovascular outcomes.
Collapse
Affiliation(s)
- Panagiotis Theofilis
- 1st Department of Cardiology, Hippokration General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (P.T.); (P.K.V.); (M.D.); (A.A.); (K.P.); (K.T.)
| | - Panayotis K. Vlachakis
- 1st Department of Cardiology, Hippokration General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (P.T.); (P.K.V.); (M.D.); (A.A.); (K.P.); (K.T.)
| | - Evangelos Oikonomou
- 3rd Department of Cardiology, Thoracic Diseases General Hospital Sotiria, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Maria Drakopoulou
- 1st Department of Cardiology, Hippokration General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (P.T.); (P.K.V.); (M.D.); (A.A.); (K.P.); (K.T.)
| | - Paschalis Karakasis
- 2nd Department of Cardiology, Hippokration General Hospital, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece;
| | - Anastasios Apostolos
- 1st Department of Cardiology, Hippokration General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (P.T.); (P.K.V.); (M.D.); (A.A.); (K.P.); (K.T.)
| | - Konstantinos Pamporis
- 1st Department of Cardiology, Hippokration General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (P.T.); (P.K.V.); (M.D.); (A.A.); (K.P.); (K.T.)
| | - Konstantinos Tsioufis
- 1st Department of Cardiology, Hippokration General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (P.T.); (P.K.V.); (M.D.); (A.A.); (K.P.); (K.T.)
| | - Dimitris Tousoulis
- 1st Department of Cardiology, Hippokration General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (P.T.); (P.K.V.); (M.D.); (A.A.); (K.P.); (K.T.)
| |
Collapse
|
7
|
Nejabat M, Samie A, Khojastehnezhad A, Hadizadeh F, Ramezani M, Alibolandi M, Abnous K, Taghdisi SM, Siaj M. Stimuli-Responsive Covalent Organic Frameworks for Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:51837-51859. [PMID: 39163539 DOI: 10.1021/acsami.4c07040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Chemotherapy as a common anticancer therapeutic modality is often challenged by various obstacles such as poor stability, low solubility, and severe side effects of chemotherapeutic agents as well as multidrug resistance of cancerous cells. Nanoparticles in the role of carriers for chemotherapeutic drugs and platforms for combining different therapeutic approaches have effectively participated in overcoming such drawbacks. In particular, nanoparticles able to induce their therapeutic effect in response to specific stimuli like tumor microenvironment characteristics (e.g., hypoxia, acidic pH, high levels of glutathione, and overexpressed hydrogen peroxide) or extrinsic stimulus of laser light bring about more precise and selective treatments. Among them, nanostructures of covalent organic frameworks (COFs) have drawn great interest in biomedical fields during recent years. Possessing large surface area, high porosity, structural stability, and customizable architecture, these biocompatible porous crystalline polymers properly translate to promising platforms for drug delivery and induction of combination therapies. With the focus on stimuli-responsive characteristics of nanoscale COFs, this study aims to propose an overview of their potentiality in cancer treatment on the basis of chemotherapy alone or in combination with sonodynamic, chemodynamic, photodynamic, and photothermal therapies.
Collapse
Affiliation(s)
- Masoud Nejabat
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 91388-13944, Iran
| | - Ali Samie
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 91388-13944, Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 91388-13944, Iran
| | - Amir Khojastehnezhad
- Department of Chemistry, University of Quebec at Montreal, Montreal, Quebec H3C 3P8, Canada
| | - Farzin Hadizadeh
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 91388-13944, Iran
| | - Mohammad Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 91388-13944, Iran
| | - Mona Alibolandi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 91388-13944, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 91388-13944, Iran
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 91388-13944, Iran
| | - Mohamed Siaj
- Department of Chemistry, University of Quebec at Montreal, Montreal, Quebec H3C 3P8, Canada
| |
Collapse
|
8
|
Trum M, Riechel J, Schollmeier E, Lebek S, Hegner P, Reuthner K, Heers S, Keller K, Wester M, Klatt S, Hamdani N, Provaznik Z, Schmid C, Maier L, Arzt M, Wagner S. Empagliflozin inhibits increased Na influx in atrial cardiomyocytes of patients with HFpEF. Cardiovasc Res 2024; 120:999-1010. [PMID: 38728438 PMCID: PMC11288740 DOI: 10.1093/cvr/cvae095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/16/2024] [Accepted: 02/02/2024] [Indexed: 05/12/2024] Open
Abstract
AIMS Heart failure with preserved ejection fraction (HFpEF) causes substantial morbidity and mortality. Importantly, atrial remodelling and atrial fibrillation are frequently observed in HFpEF. Sodium-glucose cotransporter 2 inhibitors (SGLT2i) have recently been shown to improve clinical outcomes in HFpEF, and post-hoc analyses suggest atrial anti-arrhythmic effects. We tested if isolated human atrial cardiomyocytes from patients with HFpEF exhibit an increased Na influx, which is known to cause atrial arrhythmias, and if that is responsive to treatment with the SGTL2i empagliflozin. METHODS AND RESULTS Cardiomyocytes were isolated from atrial biopsies of 124 patients (82 with HFpEF) undergoing elective cardiac surgery. Na influx was measured with the Na-dye Asante Natrium Green-2 AM (ANG-2). Compared to patients without heart failure (NF), Na influx was doubled in HFpEF patients (NF vs. HFpEF: 0.21 ± 0.02 vs. 0.38 ± 0.04 mmol/L/min (N = 7 vs. 18); P = 0.0078). Moreover, late INa (measured via whole-cell patch clamp) was significantly increased in HFpEF compared to NF. Western blot and HDAC4 pulldown assay indicated a significant increase in CaMKII expression, CaMKII autophosphorylation, CaMKII activity, and CaMKII-dependent NaV1.5 phosphorylation in HFpEF compared to NF, whereas NaV1.5 protein and mRNA abundance remained unchanged. Consistently, increased Na influx was significantly reduced by treatment not only with the CaMKII inhibitor autocamtide-2-related inhibitory peptide (AIP), late INa inhibitor tetrodotoxin (TTX) but also with sodium/hydrogen exchanger 1 (NHE1) inhibitor cariporide. Importantly, empagliflozin abolished both increased Na influx and late INa in HFpEF. Multivariate linear regression analysis, adjusting for important clinical confounders, revealed HFpEF to be an independent predictor for changes in Na handling in atrial cardiomyocytes. CONCLUSION We show for the first time increased Na influx in human atrial cardiomyocytes from HFpEF patients, partly due to increased late INa and enhanced NHE1-mediated Na influx. Empagliflozin inhibits Na influx and late INa, which could contribute to anti-arrhythmic effects in patients with HFpEF.
Collapse
Affiliation(s)
- Maximilian Trum
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - Johannes Riechel
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - Elisa Schollmeier
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - Simon Lebek
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - Philipp Hegner
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - Kathrin Reuthner
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - Silvia Heers
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - Karoline Keller
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - Michael Wester
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - Susanne Klatt
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - Nazha Hamdani
- Department of Cellular and Translational Physiology, Ruhr-University Bochum, Bochum, Germany
| | - Zdenek Provaznik
- Department of Cardiothoracic Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Christof Schmid
- Department of Cardiothoracic Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Lars Maier
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - Michael Arzt
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - Stefan Wagner
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
9
|
Chen J, Xu X, Shao Y, Bian X, Li R, Zhang Y, Xiao Y, Lu M, Jiang Q, Zeng Y, Yan F, Ye J, Li Z. AKT2 deficiency alleviates doxorubicin-induced cardiac injury via alleviating oxidative stress in cardiomyocytes. Int J Biochem Cell Biol 2024; 169:106539. [PMID: 38290690 DOI: 10.1016/j.biocel.2024.106539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/17/2024] [Accepted: 01/23/2024] [Indexed: 02/01/2024]
Abstract
Doxorubicin (DOX), a widely used chemotherapy agent in cancer treatment, encounters limitations in clinical efficacy due to associated cardiotoxicity. This study aims to explore the role of AKT serine/threonine kinase 2 (AKT2) in mitigating DOX-induced oxidative stress within the heart through both intracellular and extracellular signaling pathways. Utilizing Akt2 knockout (KO) and Nrf2 KO murine models, alongside neonatal rat cardiomyocytes (NRCMs), we systematically investigate the impact of AKT2 deficiency on DOX-induced cardiac injury. Our findings reveal that DOX administration induces significant oxidative stress, a primary contributor to cardiac injury. Importantly, Akt2 deficiency exhibits a protective effect by alleviating DOX-induced oxidative stress. Mechanistically, Akt2 deficiency facilitates nuclear translocation of NRF2, thereby suppressing intracellular oxidative stress by promoting the expression of antioxidant genes. Furthermore, We also observed that AKT2 inhibition facilitates superoxide dismutase 2 (SOD2) expression both inside macrophages and SOD2 secretion to the extracellular matrix, which is involved in lowering oxidative stress in cardiomyocytes upon DOX stimulation. The present study underscores the important role of AKT2 in mitigating DOX-induced oxidative stress through both intracellular and extracellular signaling pathways. Additionally, our findings propose promising therapeutic strategies for addressing DOX-induced cardiomyopathy in clinic.
Collapse
Affiliation(s)
- Jiawen Chen
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing 210009, China; School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Xiaozhi Xu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Yuru Shao
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Xiaohong Bian
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Ruiyan Li
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Yubin Zhang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Yibei Xiao
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Meiling Lu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Qizhou Jiang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Yuan Zeng
- Clinical Pharmacology and Bioanalytics, Pfizer (China) Research and Development Co., Ltd, China
| | - Fangrong Yan
- Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| | - Junmei Ye
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China.
| | - Zhe Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular research Institute, Wuhan University, Wuhan 430060, China.
| |
Collapse
|
10
|
Rajaeinejad M, Parhizkar-Roudsari P, Khoshfetrat M, Kazemi-Galougahi MH, Mosaed R, Arjmand R, Mohsenizadeh SA, Arjmand B. Management of Fluoropyrimidine-Induced Cardiac Adverse Outcomes Following Cancer Treatment. Cardiovasc Toxicol 2024; 24:184-198. [PMID: 38324115 DOI: 10.1007/s12012-024-09834-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 01/20/2024] [Indexed: 02/08/2024]
Abstract
Advancements in cancer treatments have improved survival rates but have also led to increased cardiotoxicities, which can cause adverse cardiovascular events or worsen pre-existing conditions. Herein, cardiotoxicity is a severe adverse effect of 5-fluorouracil (5-FU) therapy in cancer patients, with reported incidence rates ranging from 1 to 20%. Some studies have also suggested subclinical effects and there are reports which have documented instances of cardiac arrest or sudden death during 5-FU treatment, highlighting the importance of timely management of cardiovascular symptoms. However, despite being treated with conventional medical approaches for this cardiotoxicity, a subset of patients has demonstrated suboptimal or insufficient responses. The frequent use of 5-FU in chemotherapy and its association with significant morbidity and mortality indicates the need for a greater understanding of 5-FU-associated cardiotoxicity. It is essential to reduce the adverse effects of anti-tumor medications while preserving their efficacy, which can be achieved through drugs that mitigate toxicity associated with these drugs. Underpinning cardiotoxicity associated with 5-FU therapy also has the potential to offer valuable guidance in pinpointing pharmacological approaches that can be employed to prevent or ameliorate these effects. The present study provides an overview of management strategies for cardiac events induced by fluoropyrimidine-based cancer treatments. The review encompasses the underlying molecular and cellular mechanisms of cardiotoxicity, associated risk factors, and diagnostic methods. Additionally, we provide information on several available treatments and drug choices for angina resulting from 5-FU exposure, including nicorandil, ranolazine, trimetazidine, ivabradine, and sacubitril-valsartan, which have demonstrated potential in mitigating or protecting against chemotherapy-induced adverse cardiac effects.
Collapse
Affiliation(s)
- Mohsen Rajaeinejad
- AJA Cancer Epidemiology Research and Treatment Center (AJA-CERTC), AJA University of Medical Sciences, Tehran, Iran
| | - Peyvand Parhizkar-Roudsari
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical sciences, Tehran, Iran
- Iranian Cancer Control Center, Tehran, Iran
| | - Mehran Khoshfetrat
- Department of Cardiology, School of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | | | - Reza Mosaed
- Infection Diseases Research Center, AJA University of Medical Sciences, Tehran, Iran
- Student Research Committee, AJA University of Medical Sciences, Tehran, Iran
| | - Rasta Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Babak Arjmand
- Department of Internal Medicine, School of Medicine, AJA University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
11
|
Aktay I, Bitirim CV, Olgar Y, Durak A, Tuncay E, Billur D, Akcali KC, Turan B. Cardioprotective role of a magnolol and honokiol complex in the prevention of doxorubicin-mediated cardiotoxicity in adult rats. Mol Cell Biochem 2024; 479:337-350. [PMID: 37074505 DOI: 10.1007/s11010-023-04728-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 04/02/2023] [Indexed: 04/20/2023]
Abstract
Doxorubicin (DOXO) induces marked cardiotoxicity, though increased oxidative stress while there are some documents related with cardioprotective effects of some antioxidants against organ-toxicity during cancer treatment. Although magnolia bark has some antioxidant-like effects, its action in DOXO-induced heart dysfunction has not be shown clearly. Therefore, here, we aimed to investigate the cardioprotective action of a magnolia bark extract with active component magnolol and honokiol complex (MAHOC; 100 mg/kg) in DOXO-treated rat hearts. One group of adult male Wistar rats was injected with DOXO (DOXO-group; a cumulative dose of 15 mg/kg in 2-week) or saline (CON-group). One group of DOXO-treated rats was administered with MAHOC before DOXO (Pre-MAHOC group; 2-week) while another group was administered with MAHOC following the 2-week DOXO (Post-MAHOC group). MAHOC administration, before or after DOXO, provided full survival of animals during 12-14 weeks, and significant recoveries in the systemic parameters of animals such as plasma levels of manganese and zinc, total oxidant and antioxidant statuses, and also systolic and diastolic blood pressures. This treatment also significantly improved heart function including recoveries in end-diastolic volume, left ventricular end-systolic volume, heart rate, cardiac output, and prolonged P-wave duration. Furthermore, the MAHOC administrations improved the structure of left ventricles such as recoveries in loss of myofibrils, degenerative nuclear changes, fragmentation of cardiomyocytes, and interstitial edema. Biochemical analysis in the heart tissues provided the important cardioprotective effect of MAHOC on the redox regulation of the heart, such as improvements in activities of glutathione peroxidase and glutathione reductase, and oxygen radical-absorbing capacity of the heart together with recoveries in other systemic parameters of animals, while all of these benefits were observed in the Pre-MAHOC treatment group, more prominently. Overall, one can point out the beneficial antioxidant effects of MAHOC in chronic heart diseases as a supporting and complementing agent to the conventional therapies.
Collapse
Affiliation(s)
- Irem Aktay
- Department of Biophysics, Faculty of Medicine, Ankara University, Ankara, Turkey
| | - Ceylan Verda Bitirim
- Stem Cell Institute, Ankara University, Ankara, Turkey
- Ankara University Stem cell Institute, Ankara, Turkey
| | - Yusuf Olgar
- Department of Biophysics, Faculty of Medicine, Ankara University, Ankara, Turkey
| | - Aysegul Durak
- Department of Biophysics, Faculty of Medicine, Ankara University, Ankara, Turkey
| | - Erkan Tuncay
- Department of Biophysics, Faculty of Medicine, Ankara University, Ankara, Turkey
| | - Deniz Billur
- Department of Histology and Embryology, Faculty of Medicine, Ankara University, Ankara, Turkey
| | - Kamil Can Akcali
- Department of Biophysics, Faculty of Medicine, Ankara University, Ankara, Turkey
- Stem Cell Institute, Ankara University, Ankara, Turkey
| | - Belma Turan
- Department of Biophysics, Faculty of Medicine, Ankara University, Ankara, Turkey.
- Department of Biophysics, Faculty of Medicine, Lokman Hekim University, Ankara, Turkey.
| |
Collapse
|
12
|
Wang TH, Ma Y, Gao S, Zhang WW, Han D, Cao F. Recent Advances in the Mechanisms of Cell Death and Dysfunction in Doxorubicin Cardiotoxicity. Rev Cardiovasc Med 2023; 24:336. [PMID: 39076437 PMCID: PMC11272847 DOI: 10.31083/j.rcm2411336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/26/2023] [Accepted: 06/12/2023] [Indexed: 07/31/2024] Open
Abstract
Despite recent advances in cancer therapy, anthracycline-based combination therapy remains the standardized first-line strategy and has been found to have effective antitumor actions. Anthracyclines are extremely cardiotoxic, which limits the use of these powerful chemotherapeutic agents. Although numerous studies have been conducted on the cardiotoxicity of anthracyclines, the precise mechanisms by which doxorubicin causes cardiomyocyte death and myocardial dysfunction remain incompletely understood. This review highlights recent updates in mechanisms and therapies involved in doxorubicin-induced cardiomyocyte death, including autophagy, ferroptosis, necroptosis, pyroptosis, and apoptosis, as well as mechanisms of cardiovascular dysfunction resulting in myocardial atrophy, defects in calcium handling, thrombosis, and cell senescence. We sought to uncover potential therapeutic approaches to manage anthracycline cardiotoxicity via manipulation of crucial targets involved in doxorubicin-induced cardiomyocyte death and dysfunction.
Collapse
Affiliation(s)
- Tian-Hu Wang
- National Clinical Research Center for Geriatric Diseases, the Second Medical Center, Chinese PLA
General Hospital, 100853 Beijing, China
| | - Yan Ma
- National Clinical Research Center for Geriatric Diseases, the Second Medical Center, Chinese PLA
General Hospital, 100853 Beijing, China
| | - Shan Gao
- National Clinical Research Center for Geriatric Diseases, the Second Medical Center, Chinese PLA
General Hospital, 100853 Beijing, China
| | - Wei-Wei Zhang
- National Clinical Research Center for Geriatric Diseases, the Second Medical Center, Chinese PLA
General Hospital, 100853 Beijing, China
| | - Dong Han
- National Clinical Research Center for Geriatric Diseases, the Second Medical Center, Chinese PLA
General Hospital, 100853 Beijing, China
| | - Feng Cao
- National Clinical Research Center for Geriatric Diseases, the Second Medical Center, Chinese PLA
General Hospital, 100853 Beijing, China
| |
Collapse
|
13
|
Wu L, Yin W, Wen J, Wang S, Li H, Wang X, Zhang W, Duan S, Zhu Q, Gao E, Wu S, Zhan B, Zhou R, Yang X. Excretory/secretory products from Trichinella spiralis adult worms ameliorate myocardial infarction by inducing M2 macrophage polarization in a mouse model. Parasit Vectors 2023; 16:362. [PMID: 37845695 PMCID: PMC10577921 DOI: 10.1186/s13071-023-05930-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 08/14/2023] [Indexed: 10/18/2023] Open
Abstract
BACKGROUND Ischemia-induced inflammatory response is the main pathological mechanism of myocardial infarction (MI)-caused heart tissue injury. It has been known that helminths and worm-derived proteins are capable of modulating host immune response to suppress excessive inflammation as a survival strategy. Excretory/secretory products from Trichinella spiralis adult worms (Ts-AES) have been shown to ameliorate inflammation-related diseases. In this study, Ts-AES were used to treat mice with MI to determine its therapeutic effect on reducing MI-induced heart inflammation and the immunological mechanism involved in the treatment. METHODS The MI model was established by the ligation of the left anterior descending coronary artery, followed by the treatment of Ts-AES by intraperitoneal injection. The therapeutic effect of Ts-AES on MI was evaluated by measuring the heart/body weight ratio, cardiac systolic and diastolic functions, histopathological change in affected heart tissue and observing the 28-day survival rate. The effect of Ts-AES on mouse macrophage polarization was determined by stimulating mouse bone marrow macrophages in vitro with Ts-AES, and the macrophage phenotype was determined by flow cytometry. The protective effect of Ts-AES-regulated macrophage polarization on hypoxic cardiomyocytes was determined by in vitro co-culturing Ts-AES-induced mouse bone marrow macrophages with hypoxic cardiomyocytes and cardiomyocyte apoptosis determined by flow cytometry. RESULTS We observed that treatment with Ts-AES significantly improved cardiac function and ventricular remodeling, reduced pathological damage and mortality in mice with MI, associated with decreased pro-inflammatory cytokine levels, increased regulatory cytokine expression and promoted macrophage polarization from M1 to M2 type in MI mice. Ts-AES-induced M2 macrophage polarization also reduced apoptosis of hypoxic cardiomyocytes in vitro. CONCLUSIONS Our results demonstrate that Ts-AES ameliorates MI in mice by promoting the polarization of macrophages toward the M2 type. Ts-AES is a potential pharmaceutical agent for the treatment of MI and other inflammation-related diseases.
Collapse
Affiliation(s)
- Lingqin Wu
- Anhui Key Laboratory of Infection and Immunity of Bengbu Medical College, Bengbu, 233000, China
- First Affiliated Hospital of Bengbu Medical College, Bengbu, 233000, China
- Second Affiliated Hospital of Jiaxing University, Jiaxing, 314000, China
| | - Wenhui Yin
- Anhui Key Laboratory of Infection and Immunity of Bengbu Medical College, Bengbu, 233000, China
- First Affiliated Hospital of Bengbu Medical College, Bengbu, 233000, China
| | - Jutai Wen
- Anhui Key Laboratory of Infection and Immunity of Bengbu Medical College, Bengbu, 233000, China
| | - Shuying Wang
- Anhui Key Laboratory of Infection and Immunity of Bengbu Medical College, Bengbu, 233000, China
- First Affiliated Hospital of Bengbu Medical College, Bengbu, 233000, China
| | - Huihui Li
- Anhui Key Laboratory of Infection and Immunity of Bengbu Medical College, Bengbu, 233000, China
- Basic Medical College of Bengbu Medical College, Bengbu, 233000, China
| | - Xiaoli Wang
- Anhui Key Laboratory of Infection and Immunity of Bengbu Medical College, Bengbu, 233000, China
- Basic Medical College of Bengbu Medical College, Bengbu, 233000, China
| | - Weixiao Zhang
- Anhui Key Laboratory of Infection and Immunity of Bengbu Medical College, Bengbu, 233000, China
- First Affiliated Hospital of Bengbu Medical College, Bengbu, 233000, China
| | - Shuyao Duan
- Anhui Key Laboratory of Infection and Immunity of Bengbu Medical College, Bengbu, 233000, China
| | - Qiuyu Zhu
- Anhui Key Laboratory of Infection and Immunity of Bengbu Medical College, Bengbu, 233000, China
| | - Erhe Gao
- Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Shili Wu
- First Affiliated Hospital of Bengbu Medical College, Bengbu, 233000, China
| | - Bin Zhan
- National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Rui Zhou
- First Affiliated Hospital of Bengbu Medical College, Bengbu, 233000, China.
| | - Xiaodi Yang
- Anhui Key Laboratory of Infection and Immunity of Bengbu Medical College, Bengbu, 233000, China.
- Basic Medical College of Bengbu Medical College, Bengbu, 233000, China.
| |
Collapse
|
14
|
Elgendy SA, Soliman MM, Ghamry HI, Shukry M, Mohammed LA, Nasr HE, Alotaibi BS, Jafri I, Sayed S, Osman A, Elnoury HA. Exploration of Tilmicosin Cardiotoxicity in Rats and the Protecting Role of the Rhodiola rosea Extract: Potential Roles of Cytokines, Antioxidant, Apoptotic, and Anti-Fibrotic Pathways. TOXICS 2023; 11:857. [PMID: 37888707 PMCID: PMC10610616 DOI: 10.3390/toxics11100857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/18/2023] [Accepted: 09/20/2023] [Indexed: 10/28/2023]
Abstract
Tilmicosin (TIL) is a common macrolide antibiotic in veterinary medicine. High doses of TIL can have adverse cardiovascular effects. This study examined the effects of Rhodiola rosea (RHO) that have anti-inflammatory, antioxidant, and anti-fibrotic effects on tilmicosin (TIL)-induced cardiac injury targeting anti-inflammatory, antioxidant, apoptotic, and anti-apoptotic signaling pathways with anti-fibrotic outcomes. Thirty-six male Wistar albino rats were randomly divided into groups of six rats each. Rats received saline as a negative control, CARV 1 mL orally (10 mg/kg BW), and RHO 1 mL orally at 400 mg/kg BW daily for 12 consecutive days. The TIL group once received a single subcutaneous injection (SC) dose of TIL (75 mg/kg BW) on the sixth day of the experiment to induce cardiac damage. The standard group (CARV + TIL) received CARV daily for 12 consecutive days with a single TIL SC injection 1 h after CARV administration only on the sixth day of study and continued for another six successive days on CARV. The protective group (RHO + TIL) received RHO daily for the same period as in CARV + TIL-treated rats and with the dosage mentioned before. Serum was extracted at the time of the rat's scarification at 13 days of study and examined for biochemical assessments in serum lactate dehydrogenase (LDH), cardiac troponin I (cTI), and creatine phosphokinase (CK-MB). Protein carbonyl (PC) contents, malondialdehyde (MDA), and total antioxidant capacity (TAC) in cardiac homogenate were used to measure these oxidative stress markers. Quantitative RT-PCR was used to express interferon-gamma (INF-γ), cyclooxygenase-2 (COX-2), OGG1, BAX, caspase-3, B-cell lymphoma-2 (Bcl-2), and superoxide dismutase (SOD) genes in cardiac tissues, which are correlated with inflammation, antioxidants, and apoptosis. Alpha-smooth muscle actin (α-SMA), calmodulin (CaMKII), and other genes associated with Ca2+ hemostasis and fibrosis were examined using IHC analysis in cardiac cells (myocardium). TIL administration significantly increased the examined cardiac markers, LDH, cTI, and CK-MB. TIL administration also increased ROS, PC, and MDA while decreasing antioxidant activities (TAC and SOD mRNA) in cardiac tissues. Serum inflammatory cytokines and genes of inflammatory markers, DNA damage (INF-γ, COX-2), and apoptotic genes (caspase-3 and BAX) were upregulated with downregulation of the anti-apoptotic gene Bcl-2 as well as the DNA repair OGG1 in cardiac tissues. Furthermore, CaMKII and α-SMA genes were upregulated at cellular levels using cardiac tissue IHC analysis. On the contrary, pretreatment with RHO and CARV alone significantly decreased the cardiac injury markers induced by TIL, inflammatory and anti-inflammatory cytokines, and tissue oxidative-antioxidant parameters. INF-γ, COX-2, OGG1, BAX, and caspase-3 mRNA were downregulated, as observed by real-time PCR, while SOD and Bcl-2 mRNA were upregulated. Furthermore, the CaMKII and α-SMA genes' immune reactivities were significantly decreased in the RHO-pretreated rats.
Collapse
Affiliation(s)
- Salwa A. Elgendy
- Department of Pharmacology, Faculty of Medicine, Benha University, Benha 13511, Egypt
| | - Mohamed Mohamed Soliman
- Department of Clinical Laboratory Sciences, Turabah University College, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
- Biochemistry Department, Faculty of Veterinary Medicine, Benha University, Toukh 13736, Egypt
| | - Heba I. Ghamry
- Nutrition and Food Science, Department of Home Economics, Faculty of Home Economics, King Khalid University, P.O. Box 960, Abha 61421, Saudi Arabia;
| | - Mustafa Shukry
- Department of Physiology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Lina Abdelhady Mohammed
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Benha University, Benha 13511, Egypt (H.E.N.)
| | - Hend Elsayed Nasr
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Benha University, Benha 13511, Egypt (H.E.N.)
| | - Badriyah S. Alotaibi
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Ibrahim Jafri
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Samy Sayed
- Department of Economic Entomology and Pesticides, Faculty of Agriculture, Cairo University, Giza 12613, Egypt;
- Department of Science and Technology, University College-Ranyah, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Amira Osman
- Department of Basic Medical and Dental Sciences, Faculty of Dentistry, Zarqa University, Zarqa 13110, Jordan;
- Department of Histology and Cell Biology, Faculty of Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Heba A. Elnoury
- Department of Pharmacology, Faculty of Medicine, Benha University, Benha 13511, Egypt
| |
Collapse
|
15
|
Elkatary RG, El Beltagy HM, Abdo VB, El Fatah DSA, El-Karef A, Ashour RH. Poly (ADP-ribose) polymerase pathway inhibitor (Olaparib) upregulates SERCA2a expression and attenuates doxorubicin-induced cardiomyopathy in mice. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 103:104261. [PMID: 37689219 DOI: 10.1016/j.etap.2023.104261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 08/19/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023]
Abstract
The cardiotoxicity induced by doxorubicin is dose-dependent. The present study tested the potential cardioprotective effect of Poly ADP Ribose Polymerase (PARP) pathway inhibitor "olaparib" in a mouse model of doxorubicin-induced cardiomyopathy (DOX-CM). Seventy-two male BALB/c mice were randomized into six equal groups; control, DOX-CM, dexrazoxane-treated, and three olaparib-treated groups (5, 10, and 50 mg/kg/day). Cardiomyopathy was assessed by heart weight/Tibial length (HW/TL) ratio, cardiac fibrosis, oxidative stress, and electron microscope. Myocardial expression of SERCA2a mRNA and cleaved PARP-1 protein were also assessed. Similar to dexrazoxane, olaparib (10 mg/kg/day) significantly ameliorated oxidative stress, and preserved cardiac structure. It also suppressed myocardial PARP-1 protein expression and boosted SERCA2a mRNA expression. Olaparib (5 or 50 mg/kg/day) failed to show comparable effects. The current study detected the cardioprotective effect of olaparib at a dosage of 10 mg/kg/day. Also, the present study discovered a new cardioprotective mechanism of dexrazoxane by targeting PARP-1 in the heart.
Collapse
Affiliation(s)
- Rania Gamal Elkatary
- Clinical Pharmacology Department, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | | | - Vivian Boshra Abdo
- Clinical Pharmacology Department, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Dina Sabry Abd El Fatah
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Cairo University, Egypt
| | - Amr El-Karef
- Pathology Department, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt; Horus University-Egypt, New Damietta, Egypt
| | - Rehab Hamdy Ashour
- Clinical Pharmacology Department, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt.
| |
Collapse
|
16
|
Abdul-Rahman T, Dunham A, Huang H, Bukhari SMA, Mehta A, Awuah WA, Ede-Imafidon D, Cantu-Herrera E, Talukder S, Joshi A, Sundlof DW, Gupta R. Chemotherapy Induced Cardiotoxicity: A State of the Art Review on General Mechanisms, Prevention, Treatment and Recent Advances in Novel Therapeutics. Curr Probl Cardiol 2023; 48:101591. [PMID: 36621516 DOI: 10.1016/j.cpcardiol.2023.101591] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 01/03/2023] [Indexed: 01/08/2023]
Abstract
As medicine advances to employ sophisticated anticancer agents to treat a vast array of oncological conditions, it is worth considering side effects associated with several chemotherapeutics. One adverse effect observed with several classes of chemotherapy agents is cardiotoxicity which leads to reduced ejection fraction (EF), cardiac arrhythmias, hypertension and Ischemia/myocardial infarction that can significantly impact the quality of life and patient outcomes. Research into possible mechanisms has elucidated several mechanisms, such as ROS generation, calcium overload and apoptosis. However, there is a relative scarcity of literature detailing the relationship between the exact mechanism of cardiotoxicity for each anticancer agent and observed clinical effects. This review comprehensively describes cardiotoxicity associated with various classes of anticancer agents and possible mechanisms. Further research exploring possible mechanisms for cardiotoxicity observed with anticancer agents could provide valuable insight into susceptibility for developing symptoms and management guidelines. Chemotherapeutics are associated with several side effects. Several classes of chemotherapy agents cause cardiotoxicity leading to a reduced ejection fraction (EF), cardiac arrhythmias, hypertension, and Ischemia/myocardial infarction. Research into possible mechanisms has elucidated several mechanisms, such as ROS generation, calcium overload, and apoptosis. However, there is a relative scarcity of literature detailing the relationship between the exact mechanism of cardiotoxicity for each anticancer agent and observed clinical effects. This review describes cardiotoxicity associated with various classes of anticancer agents and possible mechanisms. Further research exploring mechanisms for cardiotoxicity observed with anticancer agents could provide insight that will guide management.
Collapse
Affiliation(s)
| | - Alden Dunham
- University of South Florida Morsani College of Medicine, FL
| | - Helen Huang
- Royal College of Surgeons in Ireland, University of Medicine and Health Science, Dublin, Ireland
| | | | - Aashna Mehta
- University of Debrecen-Faculty of Medicine, Debrecen, Hungary
| | - Wireko A Awuah
- Sumy State University, Toufik's World Medical Association, Ukraine
| | | | - Emiliano Cantu-Herrera
- Department of Clinical Sciences, Division of Health Sciences, University of Monterrey, San Pedro Garza García, Nuevo León, México
| | | | - Amogh Joshi
- Department of Cardiology, Lehigh Valley Health Network, Allentown, PA
| | - Deborah W Sundlof
- Department of Cardiology, Lehigh Valley Health Network, Allentown, PA
| | - Rahul Gupta
- Department of Cardiology, Lehigh Valley Health Network, Allentown, PA.
| | | |
Collapse
|
17
|
Moossavi M, Lu X, Herrmann J, Xu X. Molecular mechanisms of anthracycline induced cardiotoxicity: Zebrafish come into play. Front Cardiovasc Med 2023; 10:1080299. [PMID: 36970353 PMCID: PMC10036604 DOI: 10.3389/fcvm.2023.1080299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 02/22/2023] [Indexed: 03/12/2023] Open
Abstract
Anthracyclines are among the most potent chemotherapeutics; however, cardiotoxicity significantly restricts their use. Indeed, anthracycline-induced cardiotoxicity (AIC) fares among the worst types of cardiomyopathy, and may only slowly and partially respond to standard heart failure therapies including β-blockers and ACE inhibitors. No therapy specifically designed to treat anthracycline cardiomyopathy at present, and neither is it known if any such strategy could be developed. To address this gap and to elucidate the molecular basis of AIC with a therapeutic goal in mind, zebrafish has been introduced as an in vivo vertebrate model about a decade ago. Here, we first review our current understanding of the basic molecular and biochemical mechanisms of AIC, and then the contribution of zebrafish to the AIC field. We summarize the generation of embryonic zebrafish AIC models (eAIC) and their use for chemical screening and assessment of genetic modifiers, and then the generation of adult zebrafish AIC models (aAIC) and their use for discovering genetic modifiers via forward mutagenesis screening, deciphering spatial-temporal-specific mechanisms of modifier genes, and prioritizing therapeutic compounds via chemical genetic tools. Several therapeutic target genes and related therapies have emerged, including a retinoic acid (RA)-based therapy for the early phase of AIC and an autophagy-based therapy that, for the first time, is able to reverse cardiac dysfunction in the late phase of AIC. We conclude that zebrafish is becoming an important in vivo model that would accelerate both mechanistic studies and therapeutic development of AIC.
Collapse
Affiliation(s)
- Maryam Moossavi
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, United States
| | - Xiaoguang Lu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, United States
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Joerg Herrmann
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, United States
| | - Xiaolei Xu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, United States
- Correspondence: Xiaolei Xu
| |
Collapse
|
18
|
Berberine Alleviates Doxorubicin-Induced Myocardial Injury and Fibrosis by Eliminating Oxidative Stress and Mitochondrial Damage via Promoting Nrf-2 Pathway Activation. Int J Mol Sci 2023; 24:ijms24043257. [PMID: 36834687 PMCID: PMC9966753 DOI: 10.3390/ijms24043257] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 01/30/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023] Open
Abstract
Doxorubicin (DOX)-related cardiotoxicity has been recognized as a serious complication of cancer chemotherapy. Effective targeted strategies for myocardial protection in addition to DOX treatment are urgently needed. The purpose of this paper was to determine the therapeutic effect of berberine (Ber) on DOX-triggered cardiomyopathy and explore the underlying mechanism. Our data showed that Ber markedly prevented cardiac diastolic dysfunction and fibrosis, reduced cardiac malondialdehyde (MDA) level and increased antioxidant superoxide dismutase (SOD) activity in DOX-treated rats. Moreover, Ber effectively rescued the DOX-induced production of reactive oxygen species (ROS) and MDA, mitochondrial morphological damage and membrane potential loss in neonatal rat cardiac myocytes and fibroblasts. This effect was mediated by increases in the nuclear accumulation of nuclear erythroid factor 2-related factor 2 (Nrf2) and levels of heme oxygenase-1 (HO-1) and mitochondrial transcription factor A (TFAM). We also found that Ber suppressed the differentiation of cardiac fibroblasts (CFs) into myofibroblasts, as indicated by decreased expression of α-smooth muscle actin (α-SMA), collagen I and collagen III in DOX-treated CFs. Pretreatment with Ber inhibited ROS and MDA production and increased SOD activity and the mitochondrial membrane potential in DOX-challenged CFs. Further investigation indicated that the Nrf2 inhibitor trigonelline reversed the protective effect of Ber on both cardiomyocytes and CFs after DOX stimulation. Taken together, these findings demonstrated that Ber effectively alleviated DOX-induced oxidative stress and mitochondrial damage by activating the Nrf2-mediated pathway, thereby leading to the prevention of myocardial injury and fibrosis. The current study suggests that Ber is a potential therapeutic agent for DOX-induced cardiotoxicity that exerts its effects by activating Nrf2.
Collapse
|
19
|
Urbanek K, Cappetta D, Bellocchio G, Coppola MA, Imbrici P, Telesca M, Donniacuo M, Riemma MA, Mele E, Cianflone E, Naviglio S, Conte E, Camerino GM, Mele M, Bucci M, Castaldo G, De Luca A, Rossi F, Berrino L, Liantonio A, De Angelis A. Dapagliflozin protects the kidney in a non-diabetic model of cardiorenal syndrome. Pharmacol Res 2023; 188:106659. [PMID: 36646190 DOI: 10.1016/j.phrs.2023.106659] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/10/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023]
Abstract
Cardiorenal syndrome encompasses a spectrum of disorders involving heart and kidney dysfunction, and sharing common risk factors, such as hypertension and diabetes. Clinical studies have shown that patients with and without diabetes may benefit from using sodium-glucose cotransporter 2 inhibitors to reduce the risk of heart failure and ameliorate renal endpoints. Because the underlying mechanisms remain elusive, we investigated the effects of dapagliflozin on the progression of renal damage, using a model of non-diabetic cardiorenal disease. Dahl salt-sensitive rats were fed a high-salt diet for five weeks and then randomized to dapagliflozin or vehicle for the following six weeks. After treatment with dapagliflozin, renal function resulted ameliorated as shown by decrease of albuminuria and urine albumin-to-creatinine ratio. Functional benefit was accompanied by a decreased accumulation of extracellular matrix and a reduced number of sclerotic glomeruli. Dapagliflozin significantly reduced expression of inflammatory and endothelial activation markers such as NF-κB and e-selectin. Upregulation of pro-oxidant-releasing NADPH oxidases 2 and 4 as well as downregulation of antioxidant enzymes were also counteracted by drug treatment. Our findings also evidenced the modulation of both classic and non-classic renin-angiotensin-aldosterone system (RAAS), and effects of dapagliflozin on gene expression of ion channels/transporters involved in renal homeostasis. Thus, in a non-diabetic model of cardiorenal syndrome, dapagliflozin provides renal protection by modulating inflammatory response, endothelial activation, fibrosis, oxidative stress, local RAAS and ion channels.
Collapse
Affiliation(s)
- Konrad Urbanek
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples "Federico II", Via A. Pansini 5, 80131 Naples, Italy; CEINGE-Advanced Biotechnologies, Via G. Salvatore 486, 80131 Naples, Italy
| | - Donato Cappetta
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Via Costantinopoli 16, 80138 Naples, Italy; Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Lecce-Monteroni, Monteroni di Lecce, 73047 Lecce, Italy
| | - Gabriella Bellocchio
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Via Costantinopoli 16, 80138 Naples, Italy
| | - Maria Antonietta Coppola
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Via Orabona 4, 70125 Bari, Italy
| | - Paola Imbrici
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Via Orabona 4, 70125 Bari, Italy
| | - Marialucia Telesca
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Via Costantinopoli 16, 80138 Naples, Italy
| | - Maria Donniacuo
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Via Costantinopoli 16, 80138 Naples, Italy
| | - Maria Antonietta Riemma
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Via Costantinopoli 16, 80138 Naples, Italy
| | - Elena Mele
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Via Costantinopoli 16, 80138 Naples, Italy
| | - Eleonora Cianflone
- Department of Medical and Surgical Sciences, Magna Graecia University, Viale Europa, 88100 Catanzaro, Italy
| | - Silvio Naviglio
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Via Costantinopoli 16, 80138 Naples, Italy
| | - Elena Conte
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Via Orabona 4, 70125 Bari, Italy
| | - Giulia Maria Camerino
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Via Orabona 4, 70125 Bari, Italy
| | - Marco Mele
- University Hospital Policlinico Riuniti, Viale Pinto 1, 71100 Foggia, Italy
| | - Mariarosaria Bucci
- Department of Pharmacy, University of Naples "Federico II", Via A. Pansini 5, 80131 Naples, Italy
| | - Giuseppe Castaldo
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples "Federico II", Via A. Pansini 5, 80131 Naples, Italy; CEINGE-Advanced Biotechnologies, Via G. Salvatore 486, 80131 Naples, Italy
| | - Annamaria De Luca
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Via Orabona 4, 70125 Bari, Italy
| | - Francesco Rossi
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Via Costantinopoli 16, 80138 Naples, Italy
| | - Liberato Berrino
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Via Costantinopoli 16, 80138 Naples, Italy
| | - Antonella Liantonio
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Via Orabona 4, 70125 Bari, Italy
| | - Antonella De Angelis
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Via Costantinopoli 16, 80138 Naples, Italy.
| |
Collapse
|
20
|
Leiva O, Bohart I, Ahuja T, Park D. Off-Target Effects of Cancer Therapy on Development of Therapy-Induced Arrhythmia: A Review. Cardiology 2023; 148:324-334. [PMID: 36702116 PMCID: PMC10614257 DOI: 10.1159/000529260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 01/17/2023] [Indexed: 01/27/2023]
Abstract
BACKGROUND Advances in cancer therapeutics have improved overall survival and prognosis in this patient population; however, this has come at the expense of cardiotoxicity including arrhythmia. SUMMARY Cancer and its therapies are associated with cardiotoxicity via several mechanisms including inflammation, cardiomyopathy, and off-target effects. Among cancer therapies, anthracyclines and tyrosine kinase inhibitors (TKIs) are particularly known for their pro-arrhythmia effects. In addition to cardiomyopathy, anthracyclines may be pro-arrhythmogenic via reactive oxygen species (ROS) generation and altered calcium handling. TKIs may mediate their cardiotoxicity via inhibition of off-target tyrosine kinases. Ibrutinib-mediated inhibition of CSK may be responsible for the increased prevalence of atrial fibrillation. Further investigation is warranted to further elucidate the mechanisms behind arrhythmias in cancer therapies. KEY MESSAGES Arrhythmias are a common cardiotoxicity of cancer therapies. Cancer therapies may induce arrhythmias via off-target effects. Understanding the mechanisms underlying arrhythmogenesis associated with cancer therapies may help design cancer therapies that can avoid these toxicities.
Collapse
Affiliation(s)
- Orly Leiva
- Division of Cardiology, Department of Medicine, New York University Grossman School of Medicine, New York City, New York, USA
| | - Isaac Bohart
- Division of Cardiology, Department of Medicine, New York University Grossman School of Medicine, New York City, New York, USA
| | - Tania Ahuja
- Division of Cardiology, Department of Medicine, New York University Grossman School of Medicine, New York City, New York, USA
| | - David Park
- Division of Cardiology, Department of Medicine, New York University Grossman School of Medicine, New York City, New York, USA
| |
Collapse
|
21
|
Chen Y, Shi S, Dai Y. Research progress of therapeutic drugs for doxorubicin-induced cardiomyopathy. Biomed Pharmacother 2022; 156:113903. [PMID: 36279722 DOI: 10.1016/j.biopha.2022.113903] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/16/2022] [Accepted: 10/19/2022] [Indexed: 12/06/2022] Open
Abstract
Doxorubicin (DOX), as a kind of chemotherapy agent with remarkable therapeutic effect, can be used to treat diverse malignant tumors clinically. Dose-dependent cardiotoxicity is the most serious adverse reaction after DOX treatment, which eventually leads to cardiomyopathy and greatly limits the clinical application of DOX. DOX-induced cardiomyopathy is not a result of a single mechanistic action, and multiple mechanisms have been discovered and demonstrated experimentally, such as oxidative stress, inflammation, mitochondrial damage, calcium homeostasis disorder, ferroptosis, autophagy and apoptosis. Dexrazoxane (DEX) is the only protective agent approved by FDA for the treatment of DOX cardiomyopathy, but its clinical treatment still has some limitations. Therefore, we need to find other effective therapeutic drugs as soon as possible. In this paper, the drugs that effectively improve cardiomyopathy in recent years are mainly described from the aspects of natural drugs, endogenous substances, new dosage forms, herbal medicines, chemical modification and marketed drugs. The aim of the present study is to evaluate the effects of these drugs on DOX-induced anticancer and cardiomyopathy curative effects, so as to provide some reference value for clinical treatment of DOX-induced cardiomyopathy in the future.
Collapse
Affiliation(s)
- Ye Chen
- Department of pharmacy, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province 646000, China; School of pharmacy, Southwest Medical University, Luzhou, Sichuan Province 646000, China
| | - Saixian Shi
- Department of pharmacy, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province 646000, China; School of pharmacy, Southwest Medical University, Luzhou, Sichuan Province 646000, China
| | - Yan Dai
- Department of pharmacy, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province 646000, China.
| |
Collapse
|
22
|
Qi X, Zhu Z, Wang Y, Wen Z, Jiang Z, Zhang L, Pang Y, Lu J. Research progress on the relationship between mitochondrial function and heart failure: A bibliometric study from 2002 to 2021. Front Mol Biosci 2022; 9:1036364. [PMID: 36330217 PMCID: PMC9622797 DOI: 10.3389/fmolb.2022.1036364] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 10/07/2022] [Indexed: 11/14/2022] Open
Abstract
Heart failure is one of the major public health problems in the world. In recent years, more and more attention has been paid to the relationship between heart failure and mitochondrial function. In the past 2 decades, a growing number of research papers in this field have been published. This study conducted a bibliometric analysis of the published literature on the relationship between MF and HF in the past 20 years by utilizing Microsoft Excel 2019, Biblio metric analysis platform, WoSCC database, VosViewer and Citespace. The results show that the papers have increased year by year and China and the United States are the leading countries in this field, as well as the countries with the most cooperation and exchanges. University of california system is the research institution with the greatest impacts on research results, and Yip H.K. is the author with more papers. The American Journal of Physiology-heart and Circulatory Physiology is probably the most popular magazine. At present, most of the published articles on mitochondria and HF are cited from internationally influential journals. The research focus includes oxidative stress, metabolic dysfunction, mitochondrial Ca2+ homeostasis imbalance, mitochondrial quality control and mitochondrial dysfunction mediated by inflammation in the pathogenesis of HF. Targeted regulating of mitochondria will be the keynote of future research on prevention and treatment of HF.
Collapse
Affiliation(s)
- Xiang Qi
- Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Zhide Zhu
- Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Yuhan Wang
- Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Zhihao Wen
- The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, Guangxi, Chinad
| | - Zhixiong Jiang
- Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Liren Zhang
- Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Yan Pang
- The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, Guangxi, Chinad
- *Correspondence: Yan Pang, ; Jianqi Lu,
| | - Jianqi Lu
- The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, Guangxi, Chinad
- *Correspondence: Yan Pang, ; Jianqi Lu,
| |
Collapse
|
23
|
Patil KS, Hajare AA, Manjappa AS, More HN, Disouza JI. Design, Development, In Silico, and In Vitro Characterization of Camptothecin-Loaded Mixed Micelles: In Vitro Testing of Verapamil and Ranolazine for Repurposing as Coadjuvant Therapy in Cancer. J Pharm Innov 2022. [DOI: 10.1007/s12247-022-09688-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
24
|
Kong L, Zhang Y, Ning J, Xu C, Wang Z, Yang J, Yang L. CaMKII
orchestrates endoplasmic reticulum stress and apoptosis in doxorubicin‐induced cardiotoxicity by regulating the
IRE1α
/
XBP1s
pathway. J Cell Mol Med 2022; 26:5303-5314. [PMID: 36111515 PMCID: PMC9575131 DOI: 10.1111/jcmm.17560] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 08/16/2022] [Accepted: 09/05/2022] [Indexed: 11/29/2022] Open
Affiliation(s)
- Lingheng Kong
- Department of Anaesthesiology Xi'an Children's Hospital Xi'an China
- Institute of Basic Medical Science Xi'an Medical University Xi'an China
| | - Yimeng Zhang
- Institute of Basic Medical Science Xi'an Medical University Xi'an China
| | - Jiayi Ning
- Institute of Basic Medical Science Xi'an Medical University Xi'an China
| | - Chennian Xu
- Department of Cardiovascular Surgery, Xijing Hospital Air Force Medical University Xi'an China
- Department of Cardiovascular Surgery General Hospital of Northern Theatre Command Shenyang China
| | - Zhenyi Wang
- Department of Anaesthesiology Xi'an Children's Hospital Xi'an China
| | - Jian Yang
- Department of Cardiovascular Surgery, Xijing Hospital Air Force Medical University Xi'an China
| | - Lifang Yang
- Department of Anaesthesiology Xi'an Children's Hospital Xi'an China
| |
Collapse
|
25
|
Chunchai T, Arinno A, Ongnok B, Pantiya P, Khuanjing T, Prathumsap N, Maneechote C, Chattipakorn N, Chattipakorn SC. Ranolazine alleviated cardiac/brain dysfunction in doxorubicin-treated rats. Exp Mol Pathol 2022; 127:104818. [PMID: 35882281 DOI: 10.1016/j.yexmp.2022.104818] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/15/2022] [Accepted: 07/20/2022] [Indexed: 02/08/2023]
Abstract
Doxorubicin (Dox), a powerful chemotherapeutic agent, has been shown to cause cardiotoxicity and neurotoxicity. Ranolazine, a drug that is commonly used to treat patients with chronic angina, has been shown to reduce toxicity from Dox therapy. Therefore, the present study aims to investigate the mechanisms behind the protective effects of ranolazine on the heart and brain in Dox-treatment. Twenty-four male Wistar rats received 6 doses of either 0.9% normal saline (0.9% NSS, i.p., n = 8) or Dox (3 mg/kg, i.p., n = 16). All Dox-treated rats were assigned into 2 groups to receive vehicle (0.9% NSS, orally; n = 8) or ranolazine (305 mg/kg/day, orally; n = 8) for 30 consecutive days. Following the treatments, left ventricular (LV) function and cognition were determined. Animals were euthanized, then the heart and brain were collected for further analysis. Dox induced systemic oxidative stress/inflammation, and cardiac injury evidenced by mitochondrial dysfunction, mitochondrial dynamic imbalance, and apoptosis, resulting in LV dysfunction. Ranolazine significantly improved LV function via attenuating cardiac injury. Dox also caused brain pathologies as indicated by increased brain inflammation, impaired blood-brain barrier integrity, brain mitochondrial dysfunction, microglial dysmorphology, hippocampal dysplasticity, and increased apoptosis, resulting in cognitive decline. Ranolazine exerted neuroprotective effects by suppressing brain pathologies and restoring cognitive function. These findings suggest that ranolazine has a potential role in cardio- and neuro-protection against chemotherapy.
Collapse
Affiliation(s)
- Titikorn Chunchai
- Neuroelectrophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Apiwan Arinno
- Neuroelectrophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Benjamin Ongnok
- Neuroelectrophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Patcharapong Pantiya
- Neuroelectrophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Thawatchai Khuanjing
- Neuroelectrophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nanthip Prathumsap
- Neuroelectrophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Chayodom Maneechote
- Neuroelectrophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nipon Chattipakorn
- Neuroelectrophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Siriporn C Chattipakorn
- Neuroelectrophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand; Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai 50200, Thailand.
| |
Collapse
|
26
|
Torcinaro A, Cappetta D, De Santa F, Telesca M, Leigheb M, Berrino L, Urbanek K, De Angelis A, Ferraro E. Ranolazine Counteracts Strength Impairment and Oxidative Stress in Aged Sarcopenic Mice. Metabolites 2022; 12:663. [PMID: 35888787 PMCID: PMC9316887 DOI: 10.3390/metabo12070663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/04/2022] [Accepted: 07/11/2022] [Indexed: 12/02/2022] Open
Abstract
Sarcopenia is defined as the loss of muscle mass associated with reduced strength leading to poor quality of life in elderly people. The decline of skeletal muscle performance is characterized by bioenergetic impairment and severe oxidative stress, and does not always strictly correlate with muscle mass loss. We chose to investigate the ability of the metabolic modulator Ranolazine to counteract skeletal muscle dysfunctions that occur with aging. For this purpose, we treated aged C57BL/6 mice with Ranolazine/vehicle for 14 days and collected the tibialis anterior and gastrocnemius muscles for histological and gene expression analyses, respectively. We found that Ranolazine treatment significantly increased the muscle strength of aged mice. At the histological level, we found an increase in centrally nucleated fibers associated with an up-regulation of genes encoding MyoD, Periostin and Osteopontin, thus suggesting a remodeling of the muscle even in the absence of physical exercise. Notably, these beneficial effects of Ranolazine were also accompanied by an up-regulation of antioxidant and mitochondrial genes as well as of NADH-dehydrogenase activity, together with a more efficient protection from oxidative damage in the skeletal muscle. These data indicate that the protection of muscle from oxidative stress by Ranolazine might represent a valuable approach to increase skeletal muscle strength in elderly populations.
Collapse
Affiliation(s)
- Alessio Torcinaro
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council of Italy (CNR), Via Ercole Ramarini, 32, Monterotondo, 00015 Rome, Italy; (A.T.); (F.D.S.)
- Istituto Dermopatico dell’Immacolata (IDI), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Experimental Immunology Laboratory, Via Monti di Creta, 104, 00167 Rome, Italy
| | - Donato Cappetta
- Department of Experimental Medicine, Division of Pharmacology, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (D.C.); (M.T.); (L.B.); (A.D.A.)
| | - Francesca De Santa
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council of Italy (CNR), Via Ercole Ramarini, 32, Monterotondo, 00015 Rome, Italy; (A.T.); (F.D.S.)
| | - Marialucia Telesca
- Department of Experimental Medicine, Division of Pharmacology, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (D.C.); (M.T.); (L.B.); (A.D.A.)
| | - Massimiliano Leigheb
- Orthopaedics and Traumatology Unit, “Maggiore della Carità” Hospital, Department of Health Sciences, University of Piemonte Orientale (UPO), 28100 Novara, Italy;
| | - Liberato Berrino
- Department of Experimental Medicine, Division of Pharmacology, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (D.C.); (M.T.); (L.B.); (A.D.A.)
| | - Konrad Urbanek
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, 80138 Naples, Italy;
- CEINGE-Advanced Biotechnologies, 80138 Naples, Italy
| | - Antonella De Angelis
- Department of Experimental Medicine, Division of Pharmacology, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (D.C.); (M.T.); (L.B.); (A.D.A.)
| | | |
Collapse
|
27
|
Minotti G, Menna P, Camilli M, Salvatorelli E, Levi R. Beyond hypertension: Diastolic dysfunction associated with cancer treatment in the era of cardio-oncology. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2022; 94:365-409. [PMID: 35659376 DOI: 10.1016/bs.apha.2022.02.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Cancer patients are at an increased risk of cardiovascular events. Both old-generation cytostatics/cytotoxics and new-generation "targeted" drugs can in fact damage cardiomyocytes, endothelial cells of veins and arteries, specialized cells of the conduction system, pericardium, and valves. A new discipline, cardio-oncology, has therefore developed with the aim of protecting cancer patients from cardiovascular events, while also providing them with the best possible oncologic treatment. Anthracyclines have long been known to elicit cardiotoxicity that, depending on treatment- or patient-related factors, may progress with a variable velocity toward cardiomyopathy and systolic heart failure. However, early compromise of diastolic function may precede systolic dysfunction, and a progression of early diastolic dysfunction to diastolic rather than systolic heart failure has been documented in long-term cancer survivors. This chapter first describes general notions about hypertension in the cancer patient and then moves on reviewing the pathophysiology and clinical trajectories of diastolic dysfunction, and the molecular mechanisms of anthracycline-induced diastolic dysfunction. Diastolic dysfunction can in fact be caused and/or aggravated by hypertension. Pharmacologic foundations and therapeutic opportunities to prevent or treat diastolic dysfunction before it progresses toward heart failure are also reviewed, with a special emphasis on the mechanisms of action of drugs that raised hopes to treat diastolic dysfunction in the general population (sacubitril/valsartan, guanylyl cyclase activators, phosphodiesterase inhibitors, ranolazine, inhibitors of type-2 sodium-glucose-inked transporter). Cardio-oncologists will be confronted with the risk:benefit ratio of using these drugs in the cancer patient.
Collapse
Affiliation(s)
- Giorgio Minotti
- Department of Medicine, Campus Bio-Medico University and Fondazione Policlinico, Rome, Italy.
| | - Pierantonio Menna
- Department of Health Sciences, Campus Bio-Medico University and Fondazione Policlinico, Rome, Italy
| | - Massimiliano Camilli
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome
| | - Emanuela Salvatorelli
- Department of Medicine, Campus Bio-Medico University and Fondazione Policlinico, Rome, Italy
| | - Roberto Levi
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, United States
| |
Collapse
|
28
|
Shekari M, Gortany NK, Khalilzadeh M, Abdollahi A, Ghafari H, Dehpour AR, Ghazi-Khansari M. Cardioprotective effects of sodium thiosulfate against doxorubicin-induced cardiotoxicity in male rats. BMC Pharmacol Toxicol 2022; 23:32. [PMID: 35614478 PMCID: PMC9131624 DOI: 10.1186/s40360-022-00569-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 05/09/2022] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Doxorubicin (DOX) is an effective antitumor agent, but its clinical usage is limited due to adverse cardiotoxic effects. Several compounds have been studied to reduce DOX cardiotoxicity to improve its therapeutic index. This study was aimed to investigate the protective effects of sodium thiosulfate (STS) pre-treatment against DOX-induced cardiomyopathy in rats. METHODS Male Wistar rats were randomized into 4 groups: control (saline), DOX (2.5 mg/kg, 3 times per week, intraperitoneal [i.p.]), STS (300 mg/kg, 3 times per week, i.p), and DOX + STS (30 min prior to DOX injection, 3 times per week, i.p.) over a period of 2 weeks. The body weight, electrocardiography, histopathology, papillary muscle contractility, and oxidative stress biomarkers in heart tissues were assessed. RESULTS The results indicated that STS significantly improved the body weight (P < 0.01), decreased QRS complex and QT interval on ECG (P < 0.05 and P < 0.001, respectively), as well as declined the papillary muscle excitation, and increased its contraction (P < 0.01) compared to DOX-treated rats. STS strongly suppressed oxidative stress induced by DOX through the significant improvement of the cardiac tissue antioxidant capacity by increasing glutathione, superoxide dismutase (P < 0.001), and decreasing the level of lipid peroxidation (P < 0.01). CONCLUSION Taken together, the results of this study demonstrated that STS showed potent cardioprotective effects against DOX-induced cardiotoxicity by suppressing oxidative stress.
Collapse
Affiliation(s)
- Maryam Shekari
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Narges Khalilian Gortany
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mina Khalilzadeh
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Abdollahi
- Department of Pathology, School of medicine, IKHC, Teheran University of Medical Sciences, Tehran, Iran
| | - Homanaz Ghafari
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Reza Dehpour
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmoud Ghazi-Khansari
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
29
|
Morelli MB, Bongiovanni C, Da Pra S, Miano C, Sacchi F, Lauriola M, D’Uva G. Cardiotoxicity of Anticancer Drugs: Molecular Mechanisms and Strategies for Cardioprotection. Front Cardiovasc Med 2022; 9:847012. [PMID: 35497981 PMCID: PMC9051244 DOI: 10.3389/fcvm.2022.847012] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 03/03/2022] [Indexed: 12/13/2022] Open
Abstract
Chemotherapy and targeted therapies have significantly improved the prognosis of oncology patients. However, these antineoplastic treatments may also induce adverse cardiovascular effects, which may lead to acute or delayed onset of cardiac dysfunction. These common cardiovascular complications, commonly referred to as cardiotoxicity, not only may require the modification, suspension, or withdrawal of life-saving antineoplastic therapies, with the risk of reducing their efficacy, but can also strongly impact the quality of life and overall survival, regardless of the oncological prognosis. The onset of cardiotoxicity may depend on the class, dose, route, and duration of administration of anticancer drugs, as well as on individual risk factors. Importantly, the cardiotoxic side effects may be reversible, if cardiac function is restored upon discontinuation of the therapy, or irreversible, characterized by injury and loss of cardiac muscle cells. Subclinical myocardial dysfunction induced by anticancer therapies may also subsequently evolve in symptomatic congestive heart failure. Hence, there is an urgent need for cardioprotective therapies to reduce the clinical and subclinical cardiotoxicity onset and progression and to limit the acute or chronic manifestation of cardiac damages. In this review, we summarize the knowledge regarding the cellular and molecular mechanisms contributing to the onset of cardiotoxicity associated with common classes of chemotherapy and targeted therapy drugs. Furthermore, we describe and discuss current and potential strategies to cope with the cardiotoxic side effects as well as cardioprotective preventive approaches that may be useful to flank anticancer therapies.
Collapse
Affiliation(s)
| | - Chiara Bongiovanni
- National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems (INBB), Bologna, Italy
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Silvia Da Pra
- National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems (INBB), Bologna, Italy
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Carmen Miano
- National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems (INBB), Bologna, Italy
| | - Francesca Sacchi
- National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems (INBB), Bologna, Italy
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Mattia Lauriola
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Gabriele D’Uva
- National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems (INBB), Bologna, Italy
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
- *Correspondence: Gabriele D’Uva,
| |
Collapse
|
30
|
L'Abbate S, Chianca M, Fabiani I, Del Franco A, Giannoni A, Vergaro G, Grigoratos C, Kusmic C, Passino C, D'Alessandra Y, Burchielli S, Emdin M, Cardinale DM. In Vivo Murine Models of Cardiotoxicity Due to Anticancer Drugs: Challenges and Opportunities for Clinical Translation. J Cardiovasc Transl Res 2022; 15:1143-1162. [PMID: 35312959 DOI: 10.1007/s12265-022-10231-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/04/2022] [Indexed: 12/13/2022]
Abstract
Modern therapeutic approaches have led to an improvement in the chances of surviving a diagnosis of cancer. However, this may come with side effects, with patients experiencing adverse cardiovascular events or exacerbation of underlying cardiovascular disease related to their cancer treatment. Rodent models of chemotherapy-induced cardiotoxicity are useful to define pathophysiological mechanisms of cardiac damage and to identify potential therapeutic targets. The key mechanisms involved in cardiotoxicity induced by specific different antineoplastic agents are summarized in this state-of-the-art review, as well as the rodent models of cardiotoxicity by different classes of anticancer drugs, along with the strategies tested for primary and secondary cardioprotection. Current approaches for early detection of cardiotoxicity in preclinical studies with a focus on the application of advanced imaging modalities and biomarker strategies are also discussed. Potential applications of cardiotoxicity modelling in rodents are illustrated in relation to the advancements of promising research topics of cardiotoxicity. Created with BioRender.com.
Collapse
Affiliation(s)
- Serena L'Abbate
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Michela Chianca
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Iacopo Fabiani
- Cardiology Division, Fondazione Toscana Gabriele Monasterio, Pisa, Italy.
| | - Annamaria Del Franco
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy.,Cardiology Division, Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - Alberto Giannoni
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy.,Cardiology Division, Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - Giuseppe Vergaro
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy.,Cardiology Division, Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | | | | | - Claudio Passino
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy.,Cardiology Division, Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - Yuri D'Alessandra
- Cardiovascular Proteomics Unit, Centro Cardiologico Monzino I.R.C.C.S., Milan, Italy
| | | | - Michele Emdin
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy.,Cardiology Division, Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - Daniela Maria Cardinale
- Cardioncology Unit, Cardiology Division, European Institute of Oncology, I.R.C.C.S., Milan, Italy
| |
Collapse
|
31
|
Role of ranolazine in heart failure: From cellular to clinic perspective. Eur J Pharmacol 2022; 919:174787. [PMID: 35114190 DOI: 10.1016/j.ejphar.2022.174787] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/25/2021] [Accepted: 01/25/2022] [Indexed: 12/17/2022]
Abstract
Ranolazine was approved by the US Food and Drug Administration as an antianginal drug in 2006, and has been used since in certain groups of patients with stable angina. The therapeutic action of ranolazine was initially attributed to inhibitory effects on fatty acids metabolism. As investigations went on, however, it developed that the main beneficial effects of ranolazine arise from its action on the late sodium current in the heart. Since late sodium currents were discovered to be involved in various heart pathologies such as ischemia, arrhythmias, systolic and diastolic dysfunctions, and all these conditions are associated with heart failure, ranolazine has in some way been tested either directly or indirectly on heart failure in numerous experimental and clinical studies. As the heart continuously remodels following any sort of severe injury, the inhibition by ranolazine of the underlying mechanisms of cardiac remodeling including ion disturbances, oxidative stress, inflammation, apoptosis, fibrosis, metabolic dysregulation, and neurohormonal impairment are discussed, along with unresolved issues. A projection of pathologies targeted by ranolazine from cellular level to clinical is provided in this review.
Collapse
|
32
|
Ren L, Chen X, Nie B, Qu H, Ju J, Bai Y. Ranolazine Inhibits Pyroptosis via Regulation of miR-135b in the Treatment of Diabetic Cardiac Fibrosis. Front Mol Biosci 2022; 9:806966. [PMID: 35155576 PMCID: PMC8826643 DOI: 10.3389/fmolb.2022.806966] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/06/2022] [Indexed: 11/13/2022] Open
Abstract
Diabetic cardiomyopathy (DCM) is a major cardiovascular complication of diabetes mellitus (DM), and cardiac fibrosis is a characteristic pathological manifestation of DCM. DCM can be exacerbated by pyroptosis, and pyroptosis is a potential target of microRNAs (miRNAs). miR-135b is involved in delaying the progression of numerous cardiovascular diseases, Nonetheless, the role of miR-135b in diabetic cardiac fibrosis is unclear. Ranolazine is a piperazine derivative and is effective for the treatment of cardiovascular disease. The purpose of the study was to elucidate the mechanism of action of ranolazine against diabetic cardiac fibrosis and to investigate the role of miR-135b in this process. Functional and structural changes in the rat heart were examined by echocardiography, hematoxylin-eosin (H&E) and Masson staining. Immunohistochemistry was used to assess the expression of caspase-1, interleukin-1β (IL-1β), gasdermin D (GSDMD), transforming growth factor-β1 (TGF-β1), collagen I and collagen III in the rat left ventricle. Western blot and immunofluorescence were used to detect the protein expression of caspase-1, IL-1β, GSDMD, TGF-β1, collagen I and collagen III proteins, and the mRNA levels were determined using fluorescent quantitative PCR. Ranolazine reduced pyroptosis and inhibited collagen deposition, improving cardiac function in rats. Ranolazine increased miR-135b expression in high glucose-treated cardiac fibroblasts, and miR-135b directly bound to caspase-1. Interference with miR-135b reduced the effects of ranolazine on pyroptosis and collagen deposition. Ranolazine treatment of diabetic cardiac fibrosis inhibited pyroptosis and collagen deposition by upregulating miR-135b. Our study provides a solid theoretical basis for understanding the pathogenesis of diabetic cardiac fibrosis and the clinical use of ranolazine in the treatment of DCM.
Collapse
Affiliation(s)
- Long Ren
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine- Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Xi Chen
- Department of Pharmacy, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Binyang Nie
- Bachelor of Commerce, Pharmacology and Finance Student, University of Sydney, Sydney, NSW, Australia
| | - Huan Qu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine- Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Jiaming Ju
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Yunlong Bai
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine- Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
- Joint International Research Laboratory of Cardiovascular Medicine, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin, China
- *Correspondence: Yunlong Bai,
| |
Collapse
|
33
|
Cappetta D, De Angelis A, Bellocchio G, Telesca M, Cianflone E, Torella D, Rossi F, Urbanek K, Berrino L. Sodium-Glucose Cotransporter 2 Inhibitors and Heart Failure: A Bedside-to-Bench Journey. Front Cardiovasc Med 2022; 8:810791. [PMID: 35004918 PMCID: PMC8733295 DOI: 10.3389/fcvm.2021.810791] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 11/30/2021] [Indexed: 12/19/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) and heart failure (HF) are multifactorial diseases sharing common risk factors, such as obesity, hyperinsulinemia, and inflammation, with underlying mechanisms including endothelial dysfunction, inflammation, oxidative stress, and metabolic alterations. Cardiovascular benefits of sodium-glucose cotransporter 2 (SGLT2) inhibitors observed in diabetic and non-diabetic patients are also related to their cardiac-specific, SGLT-independent mechanisms, in addition to the metabolic and hemodynamic effects. In search of the possible underlying mechanisms, a research campaign has been launched proposing varied mechanisms of action that include intracellular ion homeostasis, autophagy, cell death, and inflammatory processes. Moreover, the research focus was widened toward cellular targets other than cardiomyocytes. At the moment, intracellular sodium level reduction is the most explored mechanism of direct cardiac effects of SGLT2 inhibitors that mediate the benefits in heart failure in addition to glucose excretion and diuresis. The restoration of cardiac Na+ levels with consequent positive effects on Ca2+ handling can directly translate into improved contractility and relaxation of cardiomyocytes and have antiarrhythmic effects. In this review, we summarize clinical trials, studies on human cells, and animal models, that provide a vast array of data in support of repurposing this class of antidiabetic drugs.
Collapse
Affiliation(s)
- Donato Cappetta
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Antonella De Angelis
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Gabriella Bellocchio
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Marialucia Telesca
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Eleonora Cianflone
- Department of Medical and Surgical Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| | - Daniele Torella
- Department of Experimental and Clinical Medicine, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| | - Francesco Rossi
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Konrad Urbanek
- Department of Experimental and Clinical Medicine, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| | - Liberato Berrino
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
34
|
The effects of doxorubicin on cardiac calcium homeostasis and contractile function. J Cardiol 2022; 80:125-132. [DOI: 10.1016/j.jjcc.2022.01.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 12/20/2021] [Accepted: 12/29/2021] [Indexed: 12/11/2022]
|
35
|
Ranolazine: An Old Drug with Emerging Potential; Lessons from Pre-Clinical and Clinical Investigations for Possible Repositioning. Pharmaceuticals (Basel) 2021; 15:ph15010031. [PMID: 35056088 PMCID: PMC8777683 DOI: 10.3390/ph15010031] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/16/2021] [Accepted: 12/20/2021] [Indexed: 02/07/2023] Open
Abstract
Ischemic heart disease is a significant public health problem with high mortality and morbidity. Extensive scientific investigations from basic sciences to clinics revealed multilevel alterations from metabolic imbalance, altered electrophysiology, and defective Ca2+/Na+ homeostasis leading to lethal arrhythmias. Despite the recent identification of numerous molecular targets with potential therapeutic interest, a pragmatic observation on the current pharmacological R&D output confirms the lack of new therapeutic offers to patients. By contrast, from recent trials, molecules initially developed for other fields of application have shown cardiovascular benefits, as illustrated with some anti-diabetic agents, regardless of the presence or absence of diabetes, emphasizing the clear advantage of “old” drug repositioning. Ranolazine is approved as an antianginal agent and has a favorable overall safety profile. This drug, developed initially as a metabolic modulator, was also identified as an inhibitor of the cardiac late Na+ current, although it also blocks other ionic currents, including the hERG/Ikr K+ current. The latter actions have been involved in this drug’s antiarrhythmic effects, both on supraventricular and ventricular arrhythmias (VA). However, despite initial enthusiasm and promising development in the cardiovascular field, ranolazine is only authorized as a second-line treatment in patients with chronic angina pectoris, notwithstanding its antiarrhythmic properties. A plausible reason for this is the apparent difficulty in linking the clinical benefits to the multiple molecular actions of this drug. Here, we review ranolazine’s experimental and clinical knowledge on cardiac metabolism and arrhythmias. We also highlight advances in understanding novel effects on neurons, the vascular system, skeletal muscles, blood sugar control, and cancer, which may open the way to reposition this “old” drug alone or in combination with other medications.
Collapse
|
36
|
Gao P, Zheng T, Cui B, Liu X, Pan W, Li N, Tang B. Reversing tumor multidrug resistance with a catalytically active covalent organic framework. Chem Commun (Camb) 2021; 57:13309-13312. [PMID: 34812448 DOI: 10.1039/d1cc04414a] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We report here a catalytically active nano covalent organic framework [COF(Fe)] with high drug loading capacity for reversing tumor multidrug resistance (MDR). The Fe catalytic sites in COF(Fe) could convert intracellular overexpressed H2O2 into highly reactive ˙OH to induce oxidation stress and down-regulate MDR protein. Therefore, COF(Fe) could enhance the intracellular drug accumulation to overcome MDR, which was demonstrated both in vitro and in vivo.
Collapse
Affiliation(s)
- Peng Gao
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China.
| | - Teng Zheng
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China.
| | - Bingjie Cui
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China.
| | - Xiaohan Liu
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China.
| | - Wei Pan
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China.
| | - Na Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China.
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China.
| |
Collapse
|
37
|
An L, Wuri J, Zheng Z, Li W, Yan T. Microbiota modulate Doxorubicin induced cardiotoxicity. Eur J Pharm Sci 2021; 166:105977. [PMID: 34416387 DOI: 10.1016/j.ejps.2021.105977] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 07/31/2021] [Accepted: 08/15/2021] [Indexed: 01/14/2023]
Abstract
Chemotherapy has several adverse effects to patients, some of which are life-threatening. We hypothesized that Doxorubicin induced microbiome imbalance and intestinal damage may contribute to Doxorubicin induced cardiac dysfunction. Male adult (2-3 months) C57BL/6 mice were administered 3 mg/kg, 5 mg/kg, 7.5 mg/kg,15 mg/kg, 20 mg/kg doses of Doxorubicin. Echocardiography was performed at 7 and 14 days after Doxorubicin administration. 16S rRNA amplicon sequencing was used to characterize microbiome changes. Fecal microbiota transplantation (FMT) was performed to evaluate the role of the microbiota on Doxorubicin induced cardiac dysfunction. Doxorubicin dose dependently increases mortality rate and induces cardiac dysfunction. 5 mg/kg-Doxorubicin significantly induces decreased left ventricular ejection fraction (LVEF) and fraction shortening (FS) as well as increased cardiac fibrosis, inflammation and oxidative stress respond without increasing mortality. 5 mg/kg-Doxorubicin induces significant decreased colorectum length, increased loss of goblet cells, numbers of ulcers and infiltration of lymphocyte clusters and decreased tight junction protein ZO-1, as well as increased plasma endotoxin level measured by ELISA assay. 16S rRNA microbiota analysis shows that Doxorubicin-induced microbiota dysbiosis with decreased community richness compared with normal control mice. FMT to Doxorubicin-5 mg treated mice significantly improved cardiac function by increasing LVEF and FS as well as decreased perivascular and interstitial fibrosis; increased colorectum length, decreased the loss of goblet cells,infiltration of lymphocyte clusters,the number of ulcers and plasma endotoxin level; improved microbiota composition, function and diversity with increased abundance of Alloprevotella, Prevotellaceae_UCG-001 and Rikenellaceae_RC9_gut_group. We find that normal fecal transplantation improves cardiac function, decreases gut damage and alter microbiota composition induced by Doxorubicin. The microbiota appears to contribute to heart-gut interaction.
Collapse
Affiliation(s)
- Lulu An
- Neurology, Tianjin Medical University General Hospital Tianjin Neurological Institute, Key Laboratory of Post-Neurotrauma Neurorepair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin-300052, China.
| | - Jimusi Wuri
- Neurology, Tianjin Medical University General Hospital Tianjin Neurological Institute, Key Laboratory of Post-Neurotrauma Neurorepair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin-300052, China.
| | - Zhitong Zheng
- Neurology, Tianjin Medical University General Hospital Tianjin Neurological Institute, Key Laboratory of Post-Neurotrauma Neurorepair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin-300052, China.
| | - Wenqui Li
- Neurology, Tianjin Medical University General Hospital Tianjin Neurological Institute, Key Laboratory of Post-Neurotrauma Neurorepair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin-300052, China.
| | - Tao Yan
- Neurology, Tianjin Medical University General Hospital Tianjin Neurological Institute, Key Laboratory of Post-Neurotrauma Neurorepair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin-300052, China.
| |
Collapse
|
38
|
Sui S, Hou Y. Dual integrin αvβ3 and αvβ5 blockade attenuates cardiac dysfunction by reducing fibrosis in a rat model of doxorubicin-induced cardiomyopathy. SCAND CARDIOVASC J 2021; 55:287-296. [PMID: 34296634 DOI: 10.1080/14017431.2021.1955960] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 03/27/2021] [Accepted: 07/09/2021] [Indexed: 10/20/2022]
Abstract
OBJECTIVE The present study aimed to evaluate the protective role of cilengitide (CGT), an integrin αvβ3 and αvβ5 inhibitor, on doxorubicin (DOX)-induced myocardial fibrosis and cardiac dysfunction in a rat model. Methods. Forty male rats were randomly divided into four groups: DOX (n = 12), intraperitoneal (i.p.) injection of DOX 0.8 ∼ 1.0 mg/kg three times a week for up to 6 weeks, then saline i.p. three times a week for another 3 weeks; CGT (n = 8), CGT 10 mg/kg, i.p. three times a week for 9 weeks; DOX + CGT (n = 12), DOX and CGT co-administration as above for 6 weeks, then CGT alone for another 3 weeks; Control (n = 8), saline i.p. three times a week for 9 weeks. Echocardiography, serum procollagen I C-terminal propeptide (PICP) procollagen III N-terminal propeptide (PIIINP) and C telopeptide type I (CTX-I) were evaluated at baseline and 3, 6 and 9 weeks after initial DOX administration for all surviving rats. The heart tissues were then harvested for myocardial hydroxyproline (HYP) evaluation, qRT-PCR, and western blotting. Results. CGT attenuated DOX-induced eccentric remodeling by improving relative wall thickness at the 9th week. CGT also improved systolic function at the 9th week and diastolic function at the 6th and 9th week. CGT reduced myocardial HYP and serum PICP, PIIINP, CTX-I, and the PICP/PIIINP ratio. RT-PCR and western blot showed that CGT blocked the TGF-β1/SMAD3 pathway and mitigating extracellular matrix turnover. Conclusions. CGT exerted a cardioprotective effect against doxorubicin-induced fibrosis and improved cardiac function.
Collapse
Affiliation(s)
- Shi Sui
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yang Hou
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
39
|
Effective Accentuation of Voltage-Gated Sodium Current Caused by Apocynin (4'-Hydroxy-3'-methoxyacetophenone), a Known NADPH-Oxidase Inhibitor. Biomedicines 2021; 9:biomedicines9091146. [PMID: 34572332 PMCID: PMC8464932 DOI: 10.3390/biomedicines9091146] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/23/2021] [Accepted: 08/31/2021] [Indexed: 12/22/2022] Open
Abstract
Apocynin (aPO, 4'-Hydroxy-3'-methoxyacetophenone) is a cell-permeable, anti-inflammatory phenolic compound that acts as an inhibitor of NADPH-dependent oxidase (NOX). However, the mechanisms through which aPO can interact directly with plasmalemmal ionic channels to perturb the amplitude or gating of ionic currents in excitable cells remain incompletely understood. Herein, we aimed to investigate any modifications of aPO on ionic currents in pituitary GH3 cells or murine HL-1 cardiomyocytes. In whole-cell current recordings, GH3-cell exposure to aPO effectively stimulated the peak and late components of voltage-gated Na+ current (INa) with different potencies. The EC50 value of aPO required for its differential increase in peak or late INa in GH3 cells was estimated to be 13.2 or 2.8 μM, respectively, whereas the KD value required for its retardation in the slow component of current inactivation was 3.4 μM. The current-voltage relation of INa was shifted slightly to more negative potential during cell exposure to aPO (10 μM); however, the steady-state inactivation curve of the current was shifted in a rightward direction in its presence. Recovery of peak INa inactivation was increased in the presence of 10 μM aPO. In continued presence of aPO, further application of rufinamide or ranolazine attenuated aPO-stimulated INa. In methylglyoxal- or superoxide dismutase-treated cells, the stimulatory effect of aPO on peak INa remained effective. By using upright isosceles-triangular ramp pulse of varying duration, the amplitude of persistent INa measured at low or high threshold was enhanced by the aPO presence, along with increased hysteretic strength appearing at low or high threshold. The addition of aPO (10 μM) mildly inhibited the amplitude of erg-mediated K+ current. Likewise, in HL-1 murine cardiomyocytes, the aPO presence increased the peak amplitude of INa as well as decreased the inactivation or deactivation rate of the current, and further addition of ranolazine or esaxerenone attenuated aPO-accentuated INa. Altogether, this study provides a distinctive yet unidentified finding that, despite its effectiveness in suppressing NOX activity, aPO may directly and concertedly perturb the amplitude, gating and voltage-dependent hysteresis of INa in electrically excitable cells. The interaction of aPO with ionic currents may, at least in part, contribute to the underlying mechanisms through which it affects neuroendocrine, endocrine or cardiac function.
Collapse
|
40
|
Gabani M, Castañeda D, Nguyen QM, Choi SK, Chen C, Mapara A, Kassan A, Gonzalez AA, Khataei T, Ait-Aissa K, Kassan M. Association of Cardiotoxicity With Doxorubicin and Trastuzumab: A Double-Edged Sword in Chemotherapy. Cureus 2021; 13:e18194. [PMID: 34589374 PMCID: PMC8459919 DOI: 10.7759/cureus.18194] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/2021] [Indexed: 11/05/2022] Open
Abstract
Anticancer drugs play an important role in reducing mortality rates and increasing life expectancy in cancer patients. Treatments include monotherapy and/or a combination of radiation therapy, chemotherapy, hormone therapy, or immunotherapy. Despite great advances in drug development, some of these treatments have been shown to induce cardiotoxicity directly affecting heart function and structure, as well as accelerating the development of cardiovascular disease. Such side effects restrict treatment options and can negatively affect disease management. Consequently, when managing cancer patients, it is vital to understand the mechanisms causing cardiotoxicity to better monitor heart function, develop preventative measures against cardiotoxicity, and treat heart failure when it occurs in this patient population. This review discusses the role and mechanism of major chemotherapy agents with principal cardiovascular complications in cancer patients.
Collapse
Affiliation(s)
- Mohanad Gabani
- Internal Medicine, Harlem Hospital Center, New York, USA
| | - Diana Castañeda
- Basic Sciences, California State University, Los Angeles, USA
| | - Quynh My Nguyen
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, San Diego, USA
| | | | - Cheng Chen
- Department of Emergency and Critical Care, Shanghai General Hospital, Shanghai, CHN
| | - Ayesha Mapara
- Biological Sciences, Northeastern Illinois University, Chicago, USA
| | - Adam Kassan
- School of Pharmacy, West Coast University, Los Angeles, USA
| | - Alexis A Gonzalez
- Instituto de Química, Pontificia Universidad Católica de Valparaíso, Valparaiso, CHL
| | | | | | - Modar Kassan
- Physiology, The University of Tennessee Health Science Center, Memphis, USA
| |
Collapse
|
41
|
Podyacheva EY, Kushnareva EA, Karpov AA, Toropova YG. Analysis of Models of Doxorubicin-Induced Cardiomyopathy in Rats and Mice. A Modern View From the Perspective of the Pathophysiologist and the Clinician. Front Pharmacol 2021; 12:670479. [PMID: 34149423 PMCID: PMC8209419 DOI: 10.3389/fphar.2021.670479] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 05/20/2021] [Indexed: 12/11/2022] Open
Abstract
Today the pharmacological possibilities of treating cancer are expanding and as a result, life expectancy is increasing against the background of chemotherapy and supportive treatment. In the conditions of successful antitumor treatment, complications associated with its toxic effect on healthy tissues and organs began to come to the fore. Anthracycline cardiomyopathy was the first serious cardiovascular complication to draw the attention of oncologists and cardiologists around the world. Anthracycline drugs such as doxorubicin, epirubicin, idarubicin are still widely used in oncological practice to treat a wide range of solid and hematological malignancies. Doxorubicin-induced cardiomyopathy is closely associated with an increase in oxidative stress, as evidenced by reactive oxygen species (ROS) nduced damage such as lipid peroxidation, and decreased levels of antioxidants. Myofibrillar destruction and dysregulation of intracellular calcium are also important mechanisms, usually associated with doxorubicin-induced cardiotoxicity. Despite the abundance of data on various mechanisms involved in the implementation of doxorubicin-induced cardiotoxicity, a final understanding of the mechanism of the development of doxorubicin cardiomyopathy has not yet been formed. It poses the most significant challenges to the development of new methods of prevention and treatment, as well as to the unambiguous choice of a specific treatment regimen using the existing pharmacological tools. In order to resolve these issues new models that could reflect the development of the chemotherapy drugs effects are needed. In this review we have summarized and analyzed information on the main existing models of doxorubicin cardiomyopathy using small laboratory animals. In addition, this paper discusses further areas of research devoted to the development and validation of new improved models of doxorubicin cardiomyopathy suitable both for studying the mechanisms of its implementation and for the preclinical drugs effectiveness assessment.
Collapse
Affiliation(s)
- Ekaterina Yu Podyacheva
- Almazov National Medical Research Centre, Ministry of Health of the Russian Federation, Saint-Petersburg, Russia
| | - Ekaterina A Kushnareva
- Almazov National Medical Research Centre, Ministry of Health of the Russian Federation, Saint-Petersburg, Russia
| | - Andrei A Karpov
- Almazov National Medical Research Centre, Ministry of Health of the Russian Federation, Saint-Petersburg, Russia
| | - Yana G Toropova
- Almazov National Medical Research Centre, Ministry of Health of the Russian Federation, Saint-Petersburg, Russia
| |
Collapse
|
42
|
Altomare C, Lodrini AM, Milano G, Biemmi V, Lazzarini E, Bolis S, Pernigoni N, Torre E, Arici M, Ferrandi M, Barile L, Rocchetti M, Vassalli G. Structural and Electrophysiological Changes in a Model of Cardiotoxicity Induced by Anthracycline Combined With Trastuzumab. Front Physiol 2021; 12:658790. [PMID: 33897465 PMCID: PMC8058443 DOI: 10.3389/fphys.2021.658790] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/16/2021] [Indexed: 11/29/2022] Open
Abstract
Background Combined treatment with anthracyclines (e.g., doxorubicin; Dox) and trastuzumab (Trz), a humanized anti-human epidermal growth factor receptor 2 (HER2; ErbB2) antibody, in patients with HER2-positive cancer is limited by cardiotoxicity, as manifested by contractile dysfunction and arrhythmia. The respective roles of the two agents in the cardiotoxicity of the combined therapy are incompletely understood. Objective To assess cardiac performance, T-tubule organization, electrophysiological changes and intracellular Ca2+ handling in cardiac myocytes (CMs) using an in vivo rat model of Dox/Trz-related cardiotoxicity. Methods and Results Adult rats received 6 doses of either Dox or Trz, or the two agents sequentially. Dox-mediated left ventricular (LV) dysfunction was aggravated by Trz administration. Dox treatment, but not Trz, induced T-tubule disarray. Moreover, Dox, but not Trz monotherapy, induced prolonged action potential duration (APD), increased incidence of delayed afterdepolarizations (DADs) and beat-to-beat variability of repolarization (BVR), and slower Ca2+ transient decay. Although APD, DADs, BVR and Ca2+ transient decay recovered over time after the cessation of Dox treatment, subsequent Trz administration exacerbated these abnormalities. Trz, but not Dox, reduced Ca2+ transient amplitude and SR Ca2+ content, although only Dox treatment was associated with SERCA downregulation. Finally, Dox treatment increased Ca2+ spark frequency, resting Ca2+ waves, sarcoplasmic reticulum (SR) Ca2+ leak, and long-lasting Ca2+ release events (so-called Ca2+ “embers”), partially reproduced by Trz treatment. Conclusion These results suggest that in vivo Dox but not Trz administration causes T-tubule disarray and pronounced changes in electrical activity of CMs. While adaptive changes may account for normal AP shape and reduced DADs late after Dox administration, subsequent Trz administration interferes with such adaptive changes. Intracellular Ca2+ handling was differently affected by Dox and Trz treatment, leading to SR instability in both cases. These findings illustrate the specific roles of Dox and Trz, and their interactions in cardiotoxicity and arrhythmogenicity.
Collapse
Affiliation(s)
- Claudia Altomare
- Laboratory of Cellular and Molecular Cardiology, Cardiocentro Ticino Foundation, Lugano, Switzerland
| | - Alessandra Maria Lodrini
- Department of Biotechnology and Biosciences, Università degli Studi di Milano - Bicocca, Milan, Italy.,Laboratory for Cardiovascular Theranostics, Cardiocentro Ticino Foundation, Lugano, Switzerland
| | - Giuseppina Milano
- Laboratory of Cellular and Molecular Cardiology, Cardiocentro Ticino Foundation, Lugano, Switzerland.,Laboratory of Cardiovascular Research, Lausanne University Hospital, Lausanne, Switzerland
| | - Vanessa Biemmi
- Laboratory for Cardiovascular Theranostics, Cardiocentro Ticino Foundation, Lugano, Switzerland
| | - Edoardo Lazzarini
- Laboratory for Cardiovascular Theranostics, Cardiocentro Ticino Foundation, Lugano, Switzerland
| | - Sara Bolis
- Laboratory of Cellular and Molecular Cardiology, Cardiocentro Ticino Foundation, Lugano, Switzerland.,Laboratory for Cardiovascular Theranostics, Cardiocentro Ticino Foundation, Lugano, Switzerland
| | - Nicolò Pernigoni
- Laboratory of Cellular and Molecular Cardiology, Cardiocentro Ticino Foundation, Lugano, Switzerland
| | - Eleonora Torre
- Department of Biotechnology and Biosciences, Università degli Studi di Milano - Bicocca, Milan, Italy
| | - Martina Arici
- Department of Biotechnology and Biosciences, Università degli Studi di Milano - Bicocca, Milan, Italy
| | - Mara Ferrandi
- Windtree Therapeutics Inc., Warrington, PA, United States
| | - Lucio Barile
- Laboratory for Cardiovascular Theranostics, Cardiocentro Ticino Foundation, Lugano, Switzerland.,Faculty of Biomedical Sciences, Università della Svizzera italiana, Lugano, Switzerland.,Institute of Life Science, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Marcella Rocchetti
- Department of Biotechnology and Biosciences, Università degli Studi di Milano - Bicocca, Milan, Italy
| | - Giuseppe Vassalli
- Laboratory of Cellular and Molecular Cardiology, Cardiocentro Ticino Foundation, Lugano, Switzerland.,Faculty of Biomedical Sciences, Università della Svizzera italiana, Lugano, Switzerland.,Center for Molecular Cardiology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
43
|
Cadeddu Dessalvi C, Deidda M, Noto A, Madeddu C, Cugusi L, Santoro C, López-Fernández T, Galderisi M, Mercuro G. Antioxidant Approach as a Cardioprotective Strategy in Chemotherapy-Induced Cardiotoxicity. Antioxid Redox Signal 2021; 34:572-588. [PMID: 32151144 DOI: 10.1089/ars.2020.8055] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Significance: Chemotherapy-induced cardiotoxicity (CTX) has been associated with redox signaling imbalance. In fact, redox reactions are crucial for normal heart physiology, whereas excessive oxidative stress can cause cardiomyocyte structural damage. Recent Advances: An antioxidant approach as a cardioprotective strategy in this setting has shown encouraging results in preventing anticancer drug-induced CTX. Critical Issues: In fact, traditional heart failure drugs as well as many other compounds and nonpharmacological strategies, with a partial effect in reducing oxidative stress, have been shown to counterbalance chemotherapy-induced CTX in this setting to some extent. Future Directions: Given the various pathways of toxicity involved in different chemotherapeutic schemes, interactions with redox balance need to be fine-tuned and a personalized cardioprotective approach seems to be required.
Collapse
Affiliation(s)
| | - Martino Deidda
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Antonio Noto
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Clelia Madeddu
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Lucia Cugusi
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Ciro Santoro
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
| | - Teresa López-Fernández
- Cardiology Service, Cardio-Oncology Unit, La Paz University Hospital, IdiPAz Research Institute, Ciber CV, Madrid, Spain
| | - Maurizio Galderisi
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
| | - Giuseppe Mercuro
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| |
Collapse
|
44
|
Cappetta D, De Angelis A, Flamini S, Cozzolino A, Bereshchenko O, Ronchetti S, Cianflone E, Gagliardi A, Ricci E, Rafaniello C, Rossi F, Riccardi C, Berrino L, Bruscoli S, Urbanek K. Deficit of glucocorticoid-induced leucine zipper amplifies angiotensin-induced cardiomyocyte hypertrophy and diastolic dysfunction. J Cell Mol Med 2021; 25:217-228. [PMID: 33247627 PMCID: PMC7810940 DOI: 10.1111/jcmm.15913] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/22/2020] [Accepted: 08/08/2020] [Indexed: 12/11/2022] Open
Abstract
Poor prognosis in heart failure and the lack of real breakthrough strategies validate targeting myocardial remodelling and the intracellular signalling involved in this process. So far, there are no effective strategies to counteract hypertrophy, an independent predictor of heart failure progression and death. Glucocorticoid-induced leucine zipper (GILZ) is involved in inflammatory signalling, but its role in cardiac biology is unknown. Using GILZ-knockout (KO) mice and an experimental model of hypertrophy and diastolic dysfunction, we addressed the role of GILZ in adverse myocardial remodelling. Infusion of angiotensin II (Ang II) resulted in myocardial dysfunction, inflammation, apoptosis, fibrosis, capillary rarefaction and hypertrophy. Interestingly, GILZ-KO showed more evident diastolic dysfunction and aggravated hypertrophic response compared with WT after Ang II administration. Both cardiomyocyte and left ventricular hypertrophy were more pronounced in GILZ-KO mice. On the other hand, Ang II-induced inflammatory and fibrotic phenomena, cell death and reduction in microvascular density, remained invariant between the WT and KO groups. The analysis of regulators of hypertrophic response, GATA4 and FoxP3, demonstrated an up-regulation in WT mice infused with Ang II; conversely, such an increase did not occur in GILZ-KO hearts. These data on myocardial response to Ang II in mice lacking GILZ indicate that this protein is a new element that can be mechanistically involved in cardiovascular pathology.
Collapse
Affiliation(s)
- Donato Cappetta
- Department of Experimental MedicineUniversity of Campania 'Luigi Vanvitelli'NaplesItaly
| | - Antonella De Angelis
- Department of Experimental MedicineUniversity of Campania 'Luigi Vanvitelli'NaplesItaly
| | - Sara Flamini
- Department of MedicineSection of PharmacologyUniversity of PerugiaPerugiaItaly
| | - Anna Cozzolino
- Department of Experimental MedicineUniversity of Campania 'Luigi Vanvitelli'NaplesItaly
| | - Oxana Bereshchenko
- Department of Philosophy, Social Sciences and EducationUniversity of PerugiaPerugiaItaly
| | - Simona Ronchetti
- Department of MedicineSection of PharmacologyUniversity of PerugiaPerugiaItaly
| | - Eleonora Cianflone
- Department of Medical and Surgical SciencesUniversity 'Magna Graecia' of CatanzaroCatanzaroItaly
| | - Andrea Gagliardi
- Department of MedicineSection of PharmacologyUniversity of PerugiaPerugiaItaly
| | - Erika Ricci
- Department of MedicineSection of PharmacologyUniversity of PerugiaPerugiaItaly
| | - Concetta Rafaniello
- Department of Experimental MedicineUniversity of Campania 'Luigi Vanvitelli'NaplesItaly
| | - Francesco Rossi
- Department of Experimental MedicineUniversity of Campania 'Luigi Vanvitelli'NaplesItaly
| | - Carlo Riccardi
- Department of MedicineSection of PharmacologyUniversity of PerugiaPerugiaItaly
| | - Liberato Berrino
- Department of Experimental MedicineUniversity of Campania 'Luigi Vanvitelli'NaplesItaly
| | - Stefano Bruscoli
- Department of MedicineSection of PharmacologyUniversity of PerugiaPerugiaItaly
| | - Konrad Urbanek
- Department of Experimental MedicineUniversity of Campania 'Luigi Vanvitelli'NaplesItaly
- Department of Experimental and Clinical MedicineUniversity 'Magna Graecia' of CatanzaroCatanzaroItaly
| |
Collapse
|
45
|
Kanno SI, Hara A. The mRNA expression of Il6 and Pdcd1 are predictive and protective factors for doxorubicin‑induced cardiotoxicity. Mol Med Rep 2020; 23:113. [PMID: 33300057 PMCID: PMC7723161 DOI: 10.3892/mmr.2020.11752] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 10/13/2020] [Indexed: 12/15/2022] Open
Abstract
Anthracyclines, such as doxorubicin (DOX), have been widely used in the treatment of a number of different solid and hematological malignancies. However, these drugs can inflict cumulative dose-dependent and irreversible damage to the heart, and can occasionally lead to heart failure. The cardiotoxic susceptibility varies among patients treated with anthracycline, and delays in the recognition of cardiotoxicity can result in poor prognoses. Accordingly, if the risk of cardiotoxicity could be predicted prior to drug administration, it would aid in safer and more effective chemotherapy treatment. The present study was carried out to identify genes that can predict DOX-induced cardiotoxicity (DICT). In an in vivo study, mice cumulatively treated with DOX demonstrated increases in serum levels of cardiac enzymes (aspartate aminotransferase, lactate dehydrogenase, creatine kinase MB isoenzyme and troponin T), in addition to decreases in body and heart weights. These changes were indicative of DICT, but the severity of these effects varied among individual mice. In the current study, the correlation in these mice between the extent of DICT and circulating blood concentrations of relevant transcripts before DOX administration was analyzed. Among various candidate genes, the plasma mRNA levels of the genes encoding interleukin 6 (Il6) and programmed cell death 1 (Pdcd1) in blood exhibited significant and positive correlations with the severity of DICT. In an in vitro study using cardiomyocyte H9c2 cells, knockdown of Il6 or Pdcd1 by small interfering RNA was revealed to enhance DOX-induced apoptosis, as determined by luminescent assays. These results suggested that the levels of transcription of Il6 and Pdcd1 in cardiomyocytes serve a protective role against DICT, and that the accumulation of these gene transcripts in blood is a predictive marker for DICT. To the best of our knowledge, this is the first report to demonstrate a role for Il6 and Pdcd1 mRNA expression in DICT.
Collapse
Affiliation(s)
- Syu-Ichi Kanno
- Department of Clinical Pharmacotherapeutics, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi 981‑8558, Japan
| | - Akiyoshi Hara
- Department of Clinical Pharmacotherapeutics, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi 981‑8558, Japan
| |
Collapse
|
46
|
Wang X, Cheng Z, Xu J, Feng M, Zhang H, Zhang L, Qian L. Circular RNA Arhgap12 modulates doxorubicin-induced cardiotoxicity by sponging miR-135a-5p. Life Sci 2020; 265:118788. [PMID: 33245966 DOI: 10.1016/j.lfs.2020.118788] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 11/06/2020] [Accepted: 11/14/2020] [Indexed: 02/06/2023]
Abstract
AIM This study aimed to investigate the regulatory role of differentially-expressed circular RNAs (circRNAs) in mouse cardiomyocytes during doxorubicin (DOX)-induced cardiotoxicity. MAIN METHODS Two groups of mice were injected with equal volumes (0.1 mL) of normal saline and DOX. Mouse heart tissue was isolated and digested for total RNA extraction and then subjected to next-generation RNA-sequencing. Expression profiles of circRNAs and circRNA-miRNA-mRNA networks were also constructed. Overall, 48 upregulated and 16 downregulated circRNAs were found to be statistically significant (p < 0.05) in the DOX-injected group. Bioinformatics analysis revealed several potential biological pathways that might be related to apoptosis caused by DOX-induced cardiotoxicity. In addition, using qRT-PCR, we found that a circRNA coded by the Arhgap12 gene, termed circArhgap12, was upregulated in the mouse heart tissue upon DOX intervention. CircArhgap12 enhanced apoptotic cell rate, as assessed using terminal-deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling assay, and increased reactive oxygen species and malondialdehyde release as well as superoxide dismutase and caspase-3 activation. Using a luciferase reporter assay, we found that circArhgap12 could sponge miR-135a-5p. In rat primary cardiomyocytes, we found that si-circArhgap12 promoted apoptosis and oxidative stress by sponging the miR-135a-5p inhibitor. Using bioinformatics analysis and luciferase reporter assay, we found that miR-135a-5p might have a potential target site for ADCY1 mRNA. KEY FINDINGS Our research demonstrated that the expression profile of circRNAs was modified significantly and that circArhgap12 might play a competitive role among endogenous RNAs in mouse cardiomyocytes during DOX-induced cardiotoxicity. SIGNIFICANCE Our study may provide a preliminary understanding of DOX-induced cardiotoxicity modulated by circRNA and its competing endogenous RNAs network.
Collapse
Affiliation(s)
- Xuejun Wang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Zijie Cheng
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Jia Xu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Mengwen Feng
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Hao Zhang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Li Zhang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.
| | - Lingmei Qian
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China; Department of General Medicine, Tongren Hospital of Shanghai Jiao Tong University of Medicine, Shanghai 200336, China.
| |
Collapse
|
47
|
Cianflone E, Cappetta D, Mancuso T, Sabatino J, Marino F, Scalise M, Albanese M, Salatino A, Parrotta EI, Cuda G, De Angelis A, Berrino L, Rossi F, Nadal-Ginard B, Torella D, Urbanek K. Statins Stimulate New Myocyte Formation After Myocardial Infarction by Activating Growth and Differentiation of the Endogenous Cardiac Stem Cells. Int J Mol Sci 2020; 21:ijms21217927. [PMID: 33114544 PMCID: PMC7663580 DOI: 10.3390/ijms21217927] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 12/20/2022] Open
Abstract
The 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors (statins) exert pleiotropic effects on cardiac cell biology which are not yet fully understood. Here we tested whether statin treatment affects resident endogenous cardiac stem/progenitor cell (CSC) activation in vitro and in vivo after myocardial infarction (MI). Statins (Rosuvastatin, Simvastatin and Pravastatin) significantly increased CSC expansion in vitro as measured by both BrdU incorporation and cell growth curve. Additionally, statins increased CSC clonal expansion and cardiosphere formation. The effects of statins on CSC growth and differentiation depended on Akt phosphorylation. Twenty-eight days after myocardial infarction by permanent coronary ligation in rats, the number of endogenous CSCs in the infarct border zone was significantly increased by Rosuvastatin-treatment as compared to untreated controls. Additionally, commitment of the activated CSCs into the myogenic lineage (c-kitpos/Gata4pos CSCs) was increased by Rosuvastatin administration. Accordingly, Rosuvastatin fostered new cardiomyocyte formation after MI. Finally, Rosuvastatin treatment reversed the cardiomyogenic defects of CSCs in c-kit haploinsufficient mice, increasing new cardiomyocyte formation by endogenous CSCs in these mice after myocardial infarction. In summary, statins, by sustaining Akt activation, foster CSC growth and differentiation in vitro and in vivo. The activation and differentiation of the endogenous CSC pool and consequent new myocyte formation by statins improve myocardial remodeling after coronary occlusion in rodents. Similar effects might contribute to the beneficial effects of statins on human cardiovascular diseases.
Collapse
Affiliation(s)
- Eleonora Cianflone
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy; (E.C.); (J.S.); (M.A.); (E.I.P.); (B.N.-G.)
| | - Donato Cappetta
- Department of Experimental Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (D.C.); (A.D.A.); (L.B.); (F.R.)
| | - Teresa Mancuso
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy; (T.M.); (F.M.); (M.S.); (A.S.); (G.C.)
| | - Jolanda Sabatino
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy; (E.C.); (J.S.); (M.A.); (E.I.P.); (B.N.-G.)
| | - Fabiola Marino
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy; (T.M.); (F.M.); (M.S.); (A.S.); (G.C.)
| | - Mariangela Scalise
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy; (T.M.); (F.M.); (M.S.); (A.S.); (G.C.)
| | - Michele Albanese
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy; (E.C.); (J.S.); (M.A.); (E.I.P.); (B.N.-G.)
| | - Alessandro Salatino
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy; (T.M.); (F.M.); (M.S.); (A.S.); (G.C.)
| | - Elvira Immacolata Parrotta
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy; (E.C.); (J.S.); (M.A.); (E.I.P.); (B.N.-G.)
| | - Giovanni Cuda
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy; (T.M.); (F.M.); (M.S.); (A.S.); (G.C.)
| | - Antonella De Angelis
- Department of Experimental Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (D.C.); (A.D.A.); (L.B.); (F.R.)
| | - Liberato Berrino
- Department of Experimental Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (D.C.); (A.D.A.); (L.B.); (F.R.)
| | - Francesco Rossi
- Department of Experimental Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (D.C.); (A.D.A.); (L.B.); (F.R.)
| | - Bernardo Nadal-Ginard
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy; (E.C.); (J.S.); (M.A.); (E.I.P.); (B.N.-G.)
| | - Daniele Torella
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy; (T.M.); (F.M.); (M.S.); (A.S.); (G.C.)
- Correspondence: (D.T.); (K.U.)
| | - Konrad Urbanek
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy; (T.M.); (F.M.); (M.S.); (A.S.); (G.C.)
- Correspondence: (D.T.); (K.U.)
| |
Collapse
|
48
|
Protective Effect of Methylxanthine Fractions Isolated from Bancha Tea Leaves against Doxorubicin-Induced Cardio- and Nephrotoxicities in Rats. BIOMED RESEARCH INTERNATIONAL 2020; 2020:4018412. [PMID: 32851069 PMCID: PMC7439203 DOI: 10.1155/2020/4018412] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 06/18/2020] [Accepted: 07/21/2020] [Indexed: 11/18/2022]
Abstract
Doxorubicin is an anthracycline antibiotic that is used for the treatment of various types of cancer. However, its clinical usage is limited due to its potential life-threatening adverse effects, such as cardio- and nephrotoxicities. Nonetheless, simultaneous administration of doxorubicin and antioxidants, such as those found in green tea leaves, could reduce cardiac and renal tissue damage caused by oxidative stress. The methylxanthine fraction isolated from Bancha tea leaves were tested in vitro for its antioxidant activity and in vivo for its organoprotective properties against doxorubicin-induced cardio- and nephrotoxicities in a rat model. The in vivo study was conducted on male Wistar rats divided into 6 groups. Methylxanthines were administered at high (5 mg/kg body weight) and low (1 mg/kg body weight) doses, while doxorubicin was administered at a cumulative dose of 20 mg/kg body weight. Serum creatinine, uric acid, and urea concentrations, as well as serum enzyme levels (creatinine kinase (CK), creatinine kinase MB fraction (CK-MB), aspartate aminotransferase (AST), and lactate dehydrogenase (LDH)) and electrolytes (Na+, K+, and Cl−), were analysed. In addition, histological analysis was performed to assess cardiac and renal tissue damage. The concomitant administration of Bancha methylxanthines and doxorubicin showed a dose-dependent reduction in the serum biochemical parameters, indicating a decrease in the cardiac and renal tissue damage caused by the antibiotic. Histological analysis showed that pretreatment with methylxanthines at the dose of 5 mg/kg resulted in an almost normal myocardial structure and a significant decrease in the morphological kidney changes caused by doxorubicin exposure compared with the group that received doxorubicin alone. The putative mechanism is most likely related to a reduction in the oxidative stress caused by doxorubicin.
Collapse
|
49
|
Cardioprotective effects of miR-34a silencing in a rat model of doxorubicin toxicity. Sci Rep 2020; 10:12250. [PMID: 32704131 PMCID: PMC7378226 DOI: 10.1038/s41598-020-69038-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 07/07/2020] [Indexed: 12/11/2022] Open
Abstract
Cardiotoxicity remains a serious problem in anthracycline-treated oncologic patients. Therapeutic modulation of microRNA expression is emerging as a cardioprotective approach in several cardiovascular pathologies. MiR-34a increased in animals and patients exposed to anthracyclines and is involved in cardiac repair. In our previous study, we demonstrated beneficial effects of miR-34a silencing in rat cardiac cells exposed to doxorubicin (DOXO). The aim of the present work is to evaluate the potential cardioprotective properties of a specific antimiR-34a (Ant34a) in an experimental model of DOXO-induced cardiotoxicity. Results indicate that in our model systemic administration of Ant34a completely silences miR-34a myocardial expression and importantly attenuates DOXO-induced cardiac dysfunction. Ant34a systemic delivery in DOXO-treated rats triggers an upregulation of prosurvival miR-34a targets Bcl-2 and SIRT1 that mediate a reduction of DOXO-induced cardiac damage represented by myocardial apoptosis, senescence, fibrosis and inflammation. These findings suggest that miR-34a therapeutic inhibition may have clinical relevance to attenuate DOXO-induced toxicity in the heart of oncologic patients.
Collapse
|
50
|
Martins-Teixeira MB, Carvalho I. Antitumour Anthracyclines: Progress and Perspectives. ChemMedChem 2020; 15:933-948. [PMID: 32314528 DOI: 10.1002/cmdc.202000131] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Indexed: 12/31/2022]
Abstract
Anthracyclines are ranked among the most effective chemotherapeutics against cancer. They are glycoside drugs comprising the amino sugar daunosamine linked to a hydroxy anthraquinone aglycone, and act by DNA intercalation, oxidative stress generation and topoisomerase II poisoning. Regardless of their therapeutic value, multidrug resistance and severe cardiotoxicity are important limitations of anthracycline treatment that have prompted the discovery of novel analogues. This review covers the most clinically relevant anthracyclines and their development over decades, since the first discovered natural prototypes to recent semisynthetic and synthetic derivatives. These include registered drugs, drug candidates undergoing clinical trials, and compounds under pre-clinical investigation. The impact of the structural modifications on antitumour activity, toxicity and resistance profile is addressed.
Collapse
Affiliation(s)
- Maristela B Martins-Teixeira
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo Avenida do Café s/n Monte Alegre, Ribeirão Preto, 14040903, Brazil
| | - Ivone Carvalho
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo Avenida do Café s/n Monte Alegre, Ribeirão Preto, 14040903, Brazil
| |
Collapse
|