1
|
Torun IE, Kilinc YB, Kilinc E, Töre F. TRESK channel activation ameliorates migraine-like pain via modulation of CGRP release from the trigeminovascular system and meningeal mast cells in experimental migraine models. Life Sci 2024; 357:123091. [PMID: 39362587 DOI: 10.1016/j.lfs.2024.123091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/22/2024] [Accepted: 09/28/2024] [Indexed: 10/05/2024]
Abstract
AIMS Accumulating evidence indicates the involvement of TRESK potassium channels in migraine, however, effects of TRESK activation on migraine-related mechanisms remain unclear. We explored effects of TRESK channel modulation on migraine-related behavioral and molecular markers in in-vivo and ex-vivo rat models of migraine. MAIN METHODS The selective TRESK activator cloxyquin at different doses, the TRESK inhibitor A2764, and the migraine drug sumatriptan were tested alone or in different combinations in nitroglycerin (NTG)-induced in-vivo model, and in ex-vivo meningeal, trigeminal ganglion and brainstem preparations in which CGRP release was induced by capsaicin. Mechanical allodynia, CGRP and c-fos levels in trigeminovascular structures and meningeal mast cells were evaluated. KEY FINDINGS Cloxyquin attenuated NTG-induced mechanical allodynia, brainstem c-fos and CGRP levels, trigeminal ganglion CGRP levels and meningeal mast cell degranulation and number, in-vivo. It also diminished capsaicin-induced CGRP release from ex-vivo meningeal, trigeminal ganglion and brainstem preparations. Specific TRESK inhibitor A2764 abolished all effects of cloxyquin in in-vivo and ex-vivo. Combining cloxyquin and sumatriptan exerted a synergistic effect ex-vivo, but not in-vivo. SIGNIFICANCE Our findings provide the experimental evidence for the anti-migraine effect of TRESK activation in migraine-like conditions. The modulation of TRESK channels may therefore be an attractive alternative strategy to relieve migraine pain.
Collapse
Affiliation(s)
- Ibrahim Ethem Torun
- Department of Physiology, Faculty of Medicine, Bolu Abant Izzet Baysal University, Bolu, Türkiye
| | - Yasemin Baranoglu Kilinc
- Department of Pediatrics, Faculty of Medicine, Bolu Abant Izzet Baysal University, Bolu, Türkiye
| | - Erkan Kilinc
- Department of Physiology, Faculty of Medicine, Bolu Abant Izzet Baysal University, Bolu, Türkiye.
| | - Fatma Töre
- Department of Physiology, Faculty of Medicine, Istanbul Atlas University, Istanbul, Türkiye
| |
Collapse
|
2
|
Pergel E, Tóth DJ, Baukál D, Veres I, Czirják G. The Ubiquitin Ligase Adaptor NDFIP1 Interacts with TRESK and Negatively Regulates the Background K + Current. Int J Mol Sci 2024; 25:8879. [PMID: 39201565 PMCID: PMC11355008 DOI: 10.3390/ijms25168879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/11/2024] [Accepted: 08/13/2024] [Indexed: 09/02/2024] Open
Abstract
The TRESK (K2P18.1, KCNK18) background potassium channel is expressed in primary sensory neurons and has been reported to contribute to the regulation of pain sensations. In the present study, we examined the interaction of TRESK with NDFIP1 (Nedd4 family-interacting protein 1) in the Xenopus oocyte expression system by two-electrode voltage clamp and biochemical methods. We showed that the coexpression of NDFIP1 abolished the TRESK current under the condition where the other K+ channels were not affected. Mutations in the three PPxY motifs of NDFIP1, which are responsible for the interaction with the Nedd4 ubiquitin ligase, prevented a reduction in the TRESK current. Furthermore, the overexpression of a dominant-negative Nedd4 construct in the oocytes coexpressing TRESK with NDFIP1 partially reversed the down-modulating effect of the adaptor protein on the K+ current. The biochemical data were also consistent with the functional results. An interaction between epitope-tagged versions of TRESK and NDFIP1 was verified by co-immunoprecipitation experiments. The coexpression of NDFIP1 with TRESK induced the ubiquitination of the channel protein. Altogether, the results suggest that TRESK is directly controlled by and highly sensitive to the activation of the NDFIP1-Nedd4 system. The NDFIP1-mediated reduction in the TRESK component may induce depolarization, increase excitability, and attenuate the calcium dependence of the membrane potential by reducing the calcineurin-activated fraction in the ensemble background K+ current.
Collapse
Affiliation(s)
- Enikő Pergel
- Department of Physiology, Semmelweis University, 1094 Budapest, Hungary; (E.P.); (D.B.); (I.V.)
| | - Dániel J. Tóth
- Department of Physiology, Semmelweis University, 1094 Budapest, Hungary; (E.P.); (D.B.); (I.V.)
- HUN-REN-SU Molecular Physiology Research Group, Hungarian Research Network and Semmelweis University, 1094 Budapest, Hungary
| | - Dóra Baukál
- Department of Physiology, Semmelweis University, 1094 Budapest, Hungary; (E.P.); (D.B.); (I.V.)
| | - Irén Veres
- Department of Physiology, Semmelweis University, 1094 Budapest, Hungary; (E.P.); (D.B.); (I.V.)
| | - Gábor Czirják
- Department of Physiology, Semmelweis University, 1094 Budapest, Hungary; (E.P.); (D.B.); (I.V.)
| |
Collapse
|
3
|
Della Pietra A, Gómez Dabó L, Mikulenka P, Espinoza-Vinces C, Vuralli D, Baytekin I, Martelletti P, Giniatullin R. Mechanosensitive receptors in migraine: a systematic review. J Headache Pain 2024; 25:6. [PMID: 38221631 PMCID: PMC10788982 DOI: 10.1186/s10194-023-01710-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 12/25/2023] [Indexed: 01/16/2024] Open
Abstract
BACKGROUND Migraine is a debilitating neurological disorder with pain profile, suggesting exaggerated mechanosensation. Mechanosensitive receptors of different families, which specifically respond to various mechanical stimuli, have gathered increasing attention due to their potential role in migraine related nociception. Understanding these mechanisms is of principal importance for improved therapeutic strategies. This systematic review comprehensively examines the involvement of mechanosensitive mechanisms in migraine pain pathways. METHODS A systematic search across the Cochrane Library, Scopus, Web of Science, and Medline was conducted on 8th August 2023 for the period from 2000 to 2023, according to PRISMA guidelines. The review was constructed following a meticulous evaluation by two authors who independently applied rigorous inclusion criteria and quality assessments to the selected studies, upon which all authors collectively wrote the review. RESULTS We identified 36 relevant studies with our analysis. Additionally, 3 more studies were selected by literature search. The 39 papers included in this systematic review cover the role of the putative mechanosensitive Piezo and K2P, as well as ASICs, NMDA, and TRP family of channels in the migraine pain cascade. The outcome of the available knowledge, including mainly preclinical animal models of migraine and few clinical studies, underscores the intricate relationship between mechanosensitive receptors and migraine pain symptoms. The review presents the mechanisms of activation of mechanosensitive receptors that may be involved in the generation of nociceptive signals and migraine associated clinical symptoms. The gender differences of targeting these receptors as potential therapeutic interventions are also acknowledged as well as the challenges related to respective drug development. CONCLUSIONS Overall, this analysis identified key molecular players and uncovered significant gaps in our understanding of mechanotransduction in migraine. This review offers a foundation for filling these gaps and suggests novel therapeutic options for migraine treatments based on achievements in the emerging field of mechano-neurobiology.
Collapse
Affiliation(s)
- Adriana Della Pietra
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Laura Gómez Dabó
- Neurology Department, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Petr Mikulenka
- Department of Neurology, Third Faculty of Medicine, Charles University and University Hospital Kralovske Vinohrady, Prague, Czech Republic
| | | | - Doga Vuralli
- Department of Neurology and Algology, Neuroscience and Neurotechnology Center of Excellence, Neuropsychiatry Center, Gazi University, Faculty of Medicine, Ankara, Turkey
| | - Isil Baytekin
- Department of Neurology, Bakirkoy Research and Training Hospital for Psychiatry, Neurology and Neurosurgery, Istanbul, Turkey
| | - Paolo Martelletti
- School of Health Sciences, Unitelma Sapienza University of Rome, Rome, Italy
| | - Rashid Giniatullin
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.
| |
Collapse
|
4
|
Schreiber JA, Derksen A, Goerges G, Schütte S, Sörgel J, Kiper AK, Strutz-Seebohm N, Ruck T, Meuth SG, Decher N, Seebohm G. Cloxyquin activates hTRESK by allosteric modulation of the selectivity filter. Commun Biol 2023; 6:745. [PMID: 37464013 PMCID: PMC10354012 DOI: 10.1038/s42003-023-05114-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 07/07/2023] [Indexed: 07/20/2023] Open
Abstract
The TWIK-related spinal cord K+ channel (TRESK, K2P18.1) is a K2P channel contributing to the maintenance of membrane potentials in various cells. Recently, physiological TRESK function was identified as a key player in T-cell differentiation rendering the channel a new pharmacological target for treatment of autoimmune diseases. The channel activator cloxyquin represents a promising lead compound for the development of a new class of immunomodulators. Identification of cloxyquin binding site and characterization of the molecular activation mechanism can foster the future drug development. Here, we identify the cloxyquin binding site at the M2/M4 interface by mutational scan and analyze the molecular mechanism of action by protein modeling as well as in silico and in vitro electrophysiology using different permeating ion species (K+ / Rb+). In combination with kinetic analyses of channel inactivation, our results suggest that cloxyquin allosterically stabilizes the inner selectivity filter facilitating the conduction process subsequently activating hTRESK.
Collapse
Affiliation(s)
- Julian Alexander Schreiber
- Institute for Genetics of Heart Diseases (IfGH), Department of Cardiovascular Medicine, University Hospital Münster, Robert-Koch-Str. 45, Münster, Germany.
- Westfälische Wilhelms-Universität Münster, Institut für Pharmazeutische und Medizinische Chemie, Corrensstr. 48, Münster, Germany.
| | - Anastasia Derksen
- Westfälische Wilhelms-Universität Münster, Institut für Pharmazeutische und Medizinische Chemie, Corrensstr. 48, Münster, Germany
| | - Gunnar Goerges
- Institute for Genetics of Heart Diseases (IfGH), Department of Cardiovascular Medicine, University Hospital Münster, Robert-Koch-Str. 45, Münster, Germany
| | - Sven Schütte
- Institute of Physiology and Pathophysiology, Vegetative Physiology, Philipps-University Marburg, Marburg, Germany
| | - Jasmin Sörgel
- Westfälische Wilhelms-Universität Münster, Institut für Pharmazeutische und Medizinische Chemie, Corrensstr. 48, Münster, Germany
| | - Aytug K Kiper
- Institute of Physiology and Pathophysiology, Vegetative Physiology, Philipps-University Marburg, Marburg, Germany
| | - Nathalie Strutz-Seebohm
- Institute for Genetics of Heart Diseases (IfGH), Department of Cardiovascular Medicine, University Hospital Münster, Robert-Koch-Str. 45, Münster, Germany
| | - Tobias Ruck
- Department of Neurology, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Sven G Meuth
- Department of Neurology, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Niels Decher
- Institute of Physiology and Pathophysiology, Vegetative Physiology, Philipps-University Marburg, Marburg, Germany
| | - Guiscard Seebohm
- Institute for Genetics of Heart Diseases (IfGH), Department of Cardiovascular Medicine, University Hospital Münster, Robert-Koch-Str. 45, Münster, Germany
- Westfälische Wilhelms-Universität Münster, GRK 2515, Chemical biology of ion channels (Chembion), Münster, Germany
| |
Collapse
|
5
|
Debreczeni D, Baukál D, Pergel E, Veres I, Czirják G. Critical contribution of the intracellular C-terminal region to TRESK channel activity is revealed by the epithelial Na + current ratio (ENaR) method. J Biol Chem 2023; 299:104737. [PMID: 37084812 DOI: 10.1016/j.jbc.2023.104737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/15/2023] [Accepted: 04/17/2023] [Indexed: 04/23/2023] Open
Abstract
TRESK (K2P18.1) possesses unique structural proportions within the K2P background potassium channel family. The previously described TRESK regulatory mechanisms are based on the long intracellular loop between the second and third transmembrane segments (TMS). However, the functional significance of the exceptionally short intracellular C-terminal region (iCtr) following the fourth TMS has not yet been examined. In the present study, we investigated TRESK constructs modified at the iCtr by two-electrode voltage clamp and the newly developed epithelial sodium current ratio (ENaR) method in Xenopus oocytes. The ENaR method allowed the evaluation of channel activity by exclusively using electrophysiology, and provided data that are otherwise not readily available under whole-cell conditions. TRESK homodimer was connected with two ENaC (epithelial Na+ channel) heterotrimers and the Na+ current was measured as an internal reference, proportional to the number of channels in the plasma membrane. Modifications of TRESK iCtr resulted in diverse functional effects, indicating a complex contribution of this region to K+ channel activity. Mutations of positive residues in proximal iCtr locked TRESK in a low activity, calcineurin-insensitive state, although this phosphatase binds to distant motifs in the loop region. Accordingly, mutations in proximal iCtr may prevent the transmission of modulation to the gating machinery. Replacing distal iCtr with a sequence designed to interact with the inner surface of the plasma membrane increased the activity of the channel to unprecedented levels, as indicated by ENaR and single channel measurements. In conclusion, the distal iCtr is a major positive determinant of TRESK function.
Collapse
Affiliation(s)
| | - Dóra Baukál
- Department of Physiology, Semmelweis University, Budapest, Hungary
| | - Enikő Pergel
- Department of Physiology, Semmelweis University, Budapest, Hungary
| | - Irén Veres
- Department of Physiology, Semmelweis University, Budapest, Hungary
| | - Gábor Czirják
- Department of Physiology, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
6
|
Activation of TRESK background potassium channels by cloxyquin exerts protective effects against excitotoxic-induced brain injury and neuroinflammation in neonatal rats. J Neuroimmunol 2022; 368:577894. [DOI: 10.1016/j.jneuroim.2022.577894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/25/2022] [Accepted: 05/14/2022] [Indexed: 10/18/2022]
|
7
|
K 2P18.1 translates T cell receptor signals into thymic regulatory T cell development. Cell Res 2022; 32:72-88. [PMID: 34702947 PMCID: PMC8547300 DOI: 10.1038/s41422-021-00580-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 08/25/2021] [Indexed: 02/07/2023] Open
Abstract
It remains largely unclear how thymocytes translate relative differences in T cell receptor (TCR) signal strength into distinct developmental programs that drive the cell fate decisions towards conventional (Tconv) or regulatory T cells (Treg). Following TCR activation, intracellular calcium (Ca2+) is the most important second messenger, for which the potassium channel K2P18.1 is a relevant regulator. Here, we identify K2P18.1 as a central translator of the TCR signal into the thymus-derived Treg (tTreg) selection process. TCR signal was coupled to NF-κB-mediated K2P18.1 upregulation in tTreg progenitors. K2P18.1 provided the driving force for sustained Ca2+ influx that facilitated NF-κB- and NFAT-dependent expression of FoxP3, the master transcription factor for Treg development and function. Loss of K2P18.1 ion-current function induced a mild lymphoproliferative phenotype in mice, with reduced Treg numbers that led to aggravated experimental autoimmune encephalomyelitis, while a gain-of-function mutation in K2P18.1 resulted in increased Treg numbers in mice. Our findings in human thymus, recent thymic emigrants and multiple sclerosis patients with a dominant-negative missense K2P18.1 variant that is associated with poor clinical outcomes indicate that K2P18.1 also plays a role in human Treg development. Pharmacological modulation of K2P18.1 specifically modulated Treg numbers in vitro and in vivo. Finally, we identified nitroxoline as a K2P18.1 activator that led to rapid and reversible Treg increase in patients with urinary tract infections. Conclusively, our findings reveal how K2P18.1 translates TCR signals into thymic T cell fate decisions and Treg development, and provide a basis for the therapeutic utilization of Treg in several human disorders.
Collapse
|
8
|
Pavinato L, Nematian-Ardestani E, Zonta A, De Rubeis S, Buxbaum J, Mancini C, Bruselles A, Tartaglia M, Pessia M, Tucker SJ, D’Adamo MC, Brusco A. KCNK18 Biallelic Variants Associated with Intellectual Disability and Neurodevelopmental Disorders Alter TRESK Channel Activity. Int J Mol Sci 2021; 22:ijms22116064. [PMID: 34199759 PMCID: PMC8200030 DOI: 10.3390/ijms22116064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/30/2021] [Accepted: 06/01/2021] [Indexed: 12/19/2022] Open
Abstract
The TWIK-related spinal cord potassium channel (TRESK) is encoded by KCNK18, and variants in this gene have previously been associated with susceptibility to familial migraine with aura (MIM #613656). A single amino acid substitution in the same protein, p.Trp101Arg, has also been associated with intellectual disability (ID), opening the possibility that variants in this gene might be involved in different disorders. Here, we report the identification of KCNK18 biallelic missense variants (p.Tyr163Asp and p.Ser252Leu) in a family characterized by three siblings affected by mild-to-moderate ID, autism spectrum disorder (ASD) and other neurodevelopment-related features. Functional characterization of the variants alone or in combination showed impaired channel activity. Interestingly, Ser252 is an important regulatory site of TRESK, suggesting that alteration of this residue could lead to additive downstream effects. The functional relevance of these mutations and the observed co-segregation in all the affected members of the family expand the clinical variability associated with altered TRESK function and provide further insight into the relationship between altered function of this ion channel and human disease.
Collapse
Affiliation(s)
- Lisa Pavinato
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy;
- Center for Molecular Medicine Cologne, Institute of Human Genetics, University of Cologne, 50931 Cologne, Germany
| | - Ehsan Nematian-Ardestani
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, MSD-2080 Msida, Malta; (E.N.-A.); (M.P.)
| | - Andrea Zonta
- Unit of Medical Genetics, “Città della Salute e della Scienza” University Hospital, 10126 Turin, Italy;
| | - Silvia De Rubeis
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (S.D.R.); (J.B.)
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Joseph Buxbaum
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (S.D.R.); (J.B.)
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Cecilia Mancini
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00165 Rome, Italy; (C.M.); (M.T.)
| | - Alessandro Bruselles
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy;
| | - Marco Tartaglia
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00165 Rome, Italy; (C.M.); (M.T.)
| | - Mauro Pessia
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, MSD-2080 Msida, Malta; (E.N.-A.); (M.P.)
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates
| | - Stephen J. Tucker
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 4BH, UK;
| | - Maria Cristina D’Adamo
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, MSD-2080 Msida, Malta; (E.N.-A.); (M.P.)
- Correspondence: (M.C.D.); (A.B.)
| | - Alfredo Brusco
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy;
- Unit of Medical Genetics, “Città della Salute e della Scienza” University Hospital, 10126 Turin, Italy;
- Correspondence: (M.C.D.); (A.B.)
| |
Collapse
|
9
|
Khoubza L, Chatelain FC, Feliciangeli S, Lesage F, Bichet D. Physiological roles of heteromerization: focus on the two-pore domain potassium channels. J Physiol 2021; 599:1041-1055. [PMID: 33347640 DOI: 10.1113/jp279870] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 12/07/2020] [Indexed: 12/28/2022] Open
Abstract
Potassium channels form the largest family of ion channels with more than 80 members involved in cell excitability and signalling. Most of them exist as homomeric channels, whereas specific conditions are required to obtain heteromeric channels. It is well established that heteromerization of voltage-gated and inward rectifier potassium channels affects their function, increasing the diversity of the native potassium currents. For potassium channels with two pore domains (K2P ), homomerization has long been considered the rule, their polymodal regulation by a wide diversity of physical and chemical stimuli being responsible for the adaptation of the leak potassium currents to cellular needs. This view has recently evolved with the accumulation of evidence of heteromerization between different K2P subunits. Several functional intragroup and intergroup heteromers have recently been identified, which contribute to the functional heterogeneity of this family. K2P heteromerization is involved in the modulation of channel expression and trafficking, promoting functional and signalling diversity. As illustrated in the Abstract Figure, heteromerization of TREK1 and TRAAK provides the cell with more possibilities of regulation. It is becoming increasingly evident that K2P heteromers contribute to important physiological functions including neuronal and cardiac excitability. Since heteromerization also affects the pharmacology of K2P channels, this understanding helps to establish K2P heteromers as new therapeutic targets for physiopathological conditions.
Collapse
Affiliation(s)
- Lamyaa Khoubza
- Université côte d'Azur, IPMC CNRS UMR7275, Laboratory of Excellence ICST, 660 route des Lucioles 06650 Valbonne, France
| | - Franck C Chatelain
- Université côte d'Azur, IPMC CNRS UMR7275, Laboratory of Excellence ICST, 660 route des Lucioles 06650 Valbonne, France
| | - Sylvain Feliciangeli
- Université côte d'Azur, IPMC CNRS UMR7275, Laboratory of Excellence ICST, 660 route des Lucioles 06650 Valbonne, France.,Inserm, 101 rue de Tolbiac, 75013, Paris, France
| | - Florian Lesage
- Université côte d'Azur, IPMC CNRS UMR7275, Laboratory of Excellence ICST, 660 route des Lucioles 06650 Valbonne, France.,Inserm, 101 rue de Tolbiac, 75013, Paris, France
| | - Delphine Bichet
- Université côte d'Azur, IPMC CNRS UMR7275, Laboratory of Excellence ICST, 660 route des Lucioles 06650 Valbonne, France
| |
Collapse
|
10
|
The Background K + Channel TRESK in Sensory Physiology and Pain. Int J Mol Sci 2020; 21:ijms21155206. [PMID: 32717813 PMCID: PMC7432782 DOI: 10.3390/ijms21155206] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 12/18/2022] Open
Abstract
TRESK belongs to the K2P family of potassium channels, also known as background or leak potassium channels due to their biophysical properties and their role regulating membrane potential of cells. Several studies to date have highlighted the role of TRESK in regulating the excitability of specific subtypes of sensory neurons. These findings suggest TRESK could be involved in pain sensitivity. Here, we review the different evidence available that involves the channel in pain and sensory perception, from studies knocking out the channel or overexpressing it to identified mutations that link the channel to migraine pain. In addition, the therapeutic possibilities are discussed, as targeting the channel seems an interesting therapeutic approach to reduce nociceptor activation and to decrease pain.
Collapse
|
11
|
Mathie A, Veale EL, Cunningham KP, Holden RG, Wright PD. Two-Pore Domain Potassium Channels as Drug Targets: Anesthesia and Beyond. Annu Rev Pharmacol Toxicol 2020; 61:401-420. [PMID: 32679007 DOI: 10.1146/annurev-pharmtox-030920-111536] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Two-pore domain potassium (K2P) channels stabilize the resting membrane potential of both excitable and nonexcitable cells and, as such, are important regulators of cell activity. There are many conditions where pharmacological regulation of K2P channel activity would be of therapeutic benefit, including, but not limited to, atrial fibrillation, respiratory depression, pulmonary hypertension, neuropathic pain, migraine, depression, and some forms of cancer. Up until now, few if any selective pharmacological regulators of K2P channels have been available. However, recent publications of solved structures with small-molecule activators and inhibitors bound to TREK-1, TREK-2, and TASK-1 K2P channels have given insight into the pharmacophore requirements for compound binding to these sites. Together with the increasing availability of a number of novel, active, small-molecule compounds from K2P channel screening programs, these advances have opened up the possibility of rational activator and inhibitor design to selectively target K2P channels.
Collapse
Affiliation(s)
- Alistair Mathie
- Medway School of Pharmacy, University of Greenwich and University of Kent, Kent ME4 4TB, United Kingdom;
| | - Emma L Veale
- Medway School of Pharmacy, University of Greenwich and University of Kent, Kent ME4 4TB, United Kingdom;
| | - Kevin P Cunningham
- Wolfson Centre for Age-Related Diseases, King's College London, London SE1 1UL, United Kingdom
| | - Robyn G Holden
- Medway School of Pharmacy, University of Greenwich and University of Kent, Kent ME4 4TB, United Kingdom;
| | | |
Collapse
|
12
|
Lengyel M, Czirják G, Jacobson DA, Enyedi P. TRESK and TREK-2 two-pore-domain potassium channel subunits form functional heterodimers in primary somatosensory neurons. J Biol Chem 2020; 295:12408-12425. [PMID: 32641496 DOI: 10.1074/jbc.ra120.014125] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/06/2020] [Indexed: 01/08/2023] Open
Abstract
Two-pore-domain potassium channels (K2P) are the major determinants of the background potassium conductance. They play a crucial role in setting the resting membrane potential and regulating cellular excitability. These channels form homodimers; however, a few examples of heterodimerization have also been reported. The K2P channel subunits TRESK and TREK-2 provide the predominant background potassium current in the primary sensory neurons of the dorsal root and trigeminal ganglia. A recent study has shown that a TRESK mutation causes migraine because it leads to the formation of a dominant negative truncated TRESK fragment. Surprisingly, this fragment can also interact with TREK-2. In this study, we determined the biophysical and pharmacological properties of the TRESK/TREK-2 heterodimer using a covalently linked TRESK/TREK-2 construct to ensure the assembly of the different subunits. The tandem channel has an intermediate single-channel conductance compared with the TRESK and TREK-2 homodimers. Similar conductance values were recorded when TRESK and TREK-2 were coexpressed, demonstrating that the two subunits can spontaneously form functional heterodimers. The TRESK component confers calcineurin-dependent regulation to the heterodimer and gives rise to a pharmacological profile similar to the TRESK homodimer, whereas the presence of the TREK-2 subunit renders the channel sensitive to the selective TREK-2 activator T2A3. In trigeminal primary sensory neurons, we detected single-channel activity with biophysical and pharmacological properties similar to the TRESK/TREK-2 tandem, indicating that WT TRESK and TREK-2 subunits coassemble to form functional heterodimeric channels also in native cells.
Collapse
Affiliation(s)
- Miklós Lengyel
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Gábor Czirják
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - David A Jacobson
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Péter Enyedi
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| |
Collapse
|
13
|
Li Y, Jiao H, Ren W, Ren F. TRESK alleviates trigeminal neuralgia induced by infraorbital nerve chronic constriction injury in rats. Mol Pain 2020; 15:1744806919882511. [PMID: 31558093 PMCID: PMC6822185 DOI: 10.1177/1744806919882511] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Trigeminal neuralgia commonly results in pain behaviors and cognitive impairment. Convincing evidence suggests that TWIK-related spinal cord K+ (TRESK) exerts antinociceptive and neuroprotective effects. However, its possible potentials in trigeminal neuralgia remain unclear. Trigeminal neuralgia model was established in rats by generating an infraorbital nerve chronic constriction injury, and rats received intrathecal injections of TRESK-overexpressing lentivirus and siRNA expression vector-targeted against TRESK (si-TRESK) into the trigeminal ganglions. Mechanical allodynia was evaluated by mechanical withdrawal threshold. Cognitive capacity was tested using Morris water maze. The TRESK expression was determined by quantitative real-time polymerase chain reaction and Western blotting. Results showed that the mRNA and protein levels of TRESK were significantly downregulated in trigeminal ganglions in injured rats. Intrathecal treatment with TRESK reduced mechanical allodynia and relieved learning and memory deficits in trigeminal neuralgia rats, while si-TRESK injection caused neuropathic pain and cognitive deficits. In summary, the present study concluded that TRESK ameliorated pain-associated behaviors and cognitive deficits, which was useful as an alternative approach in management of trigeminal neuralgia.
Collapse
Affiliation(s)
- Yuanyuan Li
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, P.R. China
| | - Hena Jiao
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, P.R. China
| | - Wenan Ren
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, P.R. China
| | - Fei Ren
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, P.R. China
| |
Collapse
|
14
|
Phopin K, Ruankham W, Prachayasittikul S, Prachayasittikul V, Tantimongcolwat T. Insight into the Molecular Interaction of Cloxyquin (5-chloro-8-hydroxyquinoline) with Bovine Serum Albumin: Biophysical Analysis and Computational Simulation. Int J Mol Sci 2019; 21:E249. [PMID: 31905871 PMCID: PMC6981711 DOI: 10.3390/ijms21010249] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 12/24/2019] [Accepted: 12/26/2019] [Indexed: 12/21/2022] Open
Abstract
Cloxyquin is a potential therapeutic compound possessing various bioactivities, especially antibacterial, antifungal, cardioprotective, and pain relief activities. Herein, the interaction mechanism between cloxyquin and bovine serum albumin (BSA) has been elucidated in order to fulfill its pharmacokinetic and pharmacodynamic gaps essential for further development as a therapeutic drug. Multi-spectroscopic and biophysical model analysis suggested that cloxyquin interacts with BSA via a static process by ground-state complex formation. Its binding behavior emerged as a biphasic fashion with a moderate binding constant at the level of 104 M-1. Thermodynamic analysis and molecular docking simulation concurrently revealed that hydrophobic interaction is a major driving force for BSA-cloxyquin complexation. Binding of cloxyquin tends to slightly enlarge the monomeric size of BSA without a significant increase of aggregate fraction. Cloxyquin preferentially binds into the fatty acid binding site 5 (FA5) of the BSA via hydrophobic interaction amongst its quinoline scaffold and Phe550, Leu531, and Leu574 residues of BSA. The quinoline ring and hydroxyl moiety of cloxyquin also form the π-π interaction and the hydrogen bond with Phe506. Our data indicate a potential function of serum albumin as a carrier of cloxyquin in blood circulation.
Collapse
Affiliation(s)
- Kamonrat Phopin
- Center for Research and Innovation, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| | - Waralee Ruankham
- Center for Research and Innovation, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| | - Supaluk Prachayasittikul
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| | - Virapong Prachayasittikul
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| | - Tanawut Tantimongcolwat
- Center for Research and Innovation, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| |
Collapse
|
15
|
Pettingill P, Weir GA, Wei T, Wu Y, Flower G, Lalic T, Handel A, Duggal G, Chintawar S, Cheung J, Arunasalam K, Couper E, Haupt LM, Griffiths LR, Bassett A, Cowley SA, Cader MZ. A causal role for TRESK loss of function in migraine mechanisms. Brain 2019; 142:3852-3867. [PMID: 31742594 PMCID: PMC6906598 DOI: 10.1093/brain/awz342] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 07/26/2019] [Accepted: 09/16/2019] [Indexed: 12/19/2022] Open
Abstract
The two-pore potassium channel, TRESK has been implicated in nociception and pain disorders. We have for the first time investigated TRESK function in human nociceptive neurons using induced pluripotent stem cell-based models. Nociceptors from migraine patients with the F139WfsX2 mutation show loss of functional TRESK at the membrane, with a corresponding significant increase in neuronal excitability. Furthermore, using CRISPR-Cas9 engineering to correct the F139WfsX2 mutation, we show a reversal of the heightened neuronal excitability, linking the phenotype to the mutation. In contrast we find no change in excitability in induced pluripotent stem cell derived nociceptors with the C110R mutation and preserved TRESK current; thereby confirming that only the frameshift mutation is associated with loss of function and a migraine relevant cellular phenotype. We then demonstrate the importance of TRESK to pain states by showing that the TRESK activator, cloxyquin, can reduce the spontaneous firing of nociceptors in an in vitro human pain model. Using the chronic nitroglycerine rodent migraine model, we demonstrate that mice lacking TRESK develop exaggerated nitroglycerine-induced mechanical and thermal hyperalgesia, and furthermore, show that cloxyquin conversely is able to prevent sensitization. Collectively, our findings provide evidence for a role of TRESK in migraine pathogenesis and its suitability as a therapeutic target.
Collapse
Affiliation(s)
- Philippa Pettingill
- Translational Molecular Neuroscience Group, Weatherall Institute of Molecular Medicine, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Greg A Weir
- Translational Molecular Neuroscience Group, Weatherall Institute of Molecular Medicine, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Tina Wei
- Translational Molecular Neuroscience Group, Weatherall Institute of Molecular Medicine, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Yukyee Wu
- Translational Molecular Neuroscience Group, Weatherall Institute of Molecular Medicine, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Grace Flower
- Translational Molecular Neuroscience Group, Weatherall Institute of Molecular Medicine, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Tatjana Lalic
- Translational Molecular Neuroscience Group, Weatherall Institute of Molecular Medicine, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Adam Handel
- Department of Clinical Neurology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Galbha Duggal
- Translational Molecular Neuroscience Group, Weatherall Institute of Molecular Medicine, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Satyan Chintawar
- Translational Molecular Neuroscience Group, Weatherall Institute of Molecular Medicine, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Jonathan Cheung
- Translational Molecular Neuroscience Group, Weatherall Institute of Molecular Medicine, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Kanisa Arunasalam
- Translational Molecular Neuroscience Group, Weatherall Institute of Molecular Medicine, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Elizabeth Couper
- James Martin Stem Cell Facility, Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Larisa M Haupt
- Genomics Research Centre, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD 4059, Australia
| | - Lyn R Griffiths
- Genomics Research Centre, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD 4059, Australia
| | - Andrew Bassett
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Sally A Cowley
- James Martin Stem Cell Facility, Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - M Zameel Cader
- Translational Molecular Neuroscience Group, Weatherall Institute of Molecular Medicine, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| |
Collapse
|
16
|
Al-Moubarak E, Veale EL, Mathie A. Pharmacologically reversible, loss of function mutations in the TM2 and TM4 inner pore helices of TREK-1 K2P channels. Sci Rep 2019; 9:12394. [PMID: 31455781 PMCID: PMC6712037 DOI: 10.1038/s41598-019-48855-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 08/09/2019] [Indexed: 01/21/2023] Open
Abstract
A better understanding of the gating of TREK two pore domain potassium (K2P) channels and their activation by compounds such as the negatively charged activator, flufenamic acid (FFA) is critical in the search for more potent and selective activators of these channels. Currents through wild-type and mutated human K2P channels expressed in tsA201 cells were measured using whole-cell patch-clamp recordings in the presence and absence of FFA. Mutation of the TM2.6 residue of TREK-1 to a phenylalanine (G171F) and a similar mutation of TM4.6 (A286F) substantially reduced current through TREK-1 channels. In complementary experiments, replacing the natural F residues at the equivalent position in TRESK channels, significantly enhanced current. Known, gain of function mutations of TREK-1 (G137I, Y284A) recovered current through these mutated channels. This reduction in current could be also be reversed pharmacologically, by FFA. However, an appropriate length MTS (MethaneThioSulfonate) cross-linking reagent (MTS14) restricted the activation of TREK-1_A286C channels by repeated application of FFA. This suggests that the cross-linker stabilises the channel in a conformation which blunts FFA activation. Pharmacologically reversible mutations of TREK channels will help to clarify the importance of these channels in pathophysiological conditions such as pain and depression.
Collapse
Affiliation(s)
- Ehab Al-Moubarak
- Medway School of Pharmacy, University of Kent, Central Avenue, Chatham Maritime, Kent, ME4 4TB, UK
| | - Emma L Veale
- Medway School of Pharmacy, University of Kent, Central Avenue, Chatham Maritime, Kent, ME4 4TB, UK
| | - Alistair Mathie
- Medway School of Pharmacy, University of Kent, Central Avenue, Chatham Maritime, Kent, ME4 4TB, UK.
| |
Collapse
|
17
|
Lengyel M, Erdélyi F, Pergel E, Bálint-Polonka Á, Dobolyi A, Bozsaki P, Dux M, Király K, Hegedűs T, Czirják G, Mátyus P, Enyedi P. Chemically Modified Derivatives of the Activator Compound Cloxyquin Exert Inhibitory Effect on TRESK (K 2P18.1) Background Potassium Channel. Mol Pharmacol 2019; 95:652-660. [PMID: 30979812 DOI: 10.1124/mol.118.115626] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 04/09/2019] [Indexed: 02/14/2025] Open
Abstract
Cloxyquin has been reported as a specific activator of TRESK [TWIK-related spinal cord K+ channel (also known as K2P18.1)] background potassium channel. In this study, we have synthetized chemically modified analogs of cloxyquin and tested their effects on TRESK and other K2P channels. The currents of murine K2P channels, expressed heterologously in Xenopus oocytes, were measured by two-electrode voltage clamp, whereas the native background K+ conductance of mouse dorsal root ganglion (DRG) neurons was examined by the whole-cell patch-clamp method. Some of the analogs retained the activator character of the parent compound, but, more interestingly, other derivatives inhibited mouse TRESK current. The inhibitor analogs (A2764 and A2793) exerted state-dependent effects. The degree of inhibition by 100 µM A2764 (77.8% ± 3.5%, n = 6) was larger in the activated state of TRESK (i.e., after calcineurin-dependent stimulation) than in the resting state of the channel (42.8% ± 11.5% inhibition, n = 7). The selectivity of the inhibitor compounds was tested on several K2P channels. A2793 inhibited TWIK-related acid-sensitive K+ channel (TASK)-1 (100 µM, 53.4% ± 13, 5%, n = 5), while A2764 was more selective for TRESK, it only moderately influenced TREK-1 and TWIK-related alkaline pH-activated K+ channel. The effect of A2764 was also examined on the background K+ currents of DRG neurons. A subpopulation of DRG neurons, prepared from wild-type animals, expressed background K+ currents sensitive to A2764, whereas the inhibitor did not affect the currents in the DRG neurons of TRESK-deficient mice. Accordingly, A2764 may prove to be useful for the identification of TRESK current in native cells, and for the investigation of the role of the channel in nociception and migraine. SIGNIFICANCE STATEMENT: TRESK background potassium channel is a potential pharmacological target in migraine and neuropathic pain. In this study, we have identified a selective inhibitor of TRESK, A2764. This compound can inhibit TRESK in native cells, leading to cell depolarization and increased excitability. This new inhibitor may be of use to probe the role of TRESK channel in migraine and nociception.
Collapse
Affiliation(s)
- Miklós Lengyel
- Department of Physiology, Faculty of Medicine (M.L., E.P., A.D., P.B., G.C., P.E.), Department of Organic Chemistry, Faculty of Pharmacy (A.B.-P., P.M.), Department of Pharmacology and Pharmacotherapy (K.K.), and Department of Biophysics and Radiation Biology, Faculty of Medicine (T.H.), Semmelweis University, Budapest, Hungary; Gene Technology Division, Institute of Experimental Medicine-Hungarian Academy of Sciences, Budapest, Hungary (F.E.); and Department of Physiology, Faculty of Medicine, University of Szeged, Szeged, Hungary (M.D.)
| | - Ferenc Erdélyi
- Department of Physiology, Faculty of Medicine (M.L., E.P., A.D., P.B., G.C., P.E.), Department of Organic Chemistry, Faculty of Pharmacy (A.B.-P., P.M.), Department of Pharmacology and Pharmacotherapy (K.K.), and Department of Biophysics and Radiation Biology, Faculty of Medicine (T.H.), Semmelweis University, Budapest, Hungary; Gene Technology Division, Institute of Experimental Medicine-Hungarian Academy of Sciences, Budapest, Hungary (F.E.); and Department of Physiology, Faculty of Medicine, University of Szeged, Szeged, Hungary (M.D.)
| | - Enikő Pergel
- Department of Physiology, Faculty of Medicine (M.L., E.P., A.D., P.B., G.C., P.E.), Department of Organic Chemistry, Faculty of Pharmacy (A.B.-P., P.M.), Department of Pharmacology and Pharmacotherapy (K.K.), and Department of Biophysics and Radiation Biology, Faculty of Medicine (T.H.), Semmelweis University, Budapest, Hungary; Gene Technology Division, Institute of Experimental Medicine-Hungarian Academy of Sciences, Budapest, Hungary (F.E.); and Department of Physiology, Faculty of Medicine, University of Szeged, Szeged, Hungary (M.D.)
| | - Ágnes Bálint-Polonka
- Department of Physiology, Faculty of Medicine (M.L., E.P., A.D., P.B., G.C., P.E.), Department of Organic Chemistry, Faculty of Pharmacy (A.B.-P., P.M.), Department of Pharmacology and Pharmacotherapy (K.K.), and Department of Biophysics and Radiation Biology, Faculty of Medicine (T.H.), Semmelweis University, Budapest, Hungary; Gene Technology Division, Institute of Experimental Medicine-Hungarian Academy of Sciences, Budapest, Hungary (F.E.); and Department of Physiology, Faculty of Medicine, University of Szeged, Szeged, Hungary (M.D.)
| | - Alice Dobolyi
- Department of Physiology, Faculty of Medicine (M.L., E.P., A.D., P.B., G.C., P.E.), Department of Organic Chemistry, Faculty of Pharmacy (A.B.-P., P.M.), Department of Pharmacology and Pharmacotherapy (K.K.), and Department of Biophysics and Radiation Biology, Faculty of Medicine (T.H.), Semmelweis University, Budapest, Hungary; Gene Technology Division, Institute of Experimental Medicine-Hungarian Academy of Sciences, Budapest, Hungary (F.E.); and Department of Physiology, Faculty of Medicine, University of Szeged, Szeged, Hungary (M.D.)
| | - Péter Bozsaki
- Department of Physiology, Faculty of Medicine (M.L., E.P., A.D., P.B., G.C., P.E.), Department of Organic Chemistry, Faculty of Pharmacy (A.B.-P., P.M.), Department of Pharmacology and Pharmacotherapy (K.K.), and Department of Biophysics and Radiation Biology, Faculty of Medicine (T.H.), Semmelweis University, Budapest, Hungary; Gene Technology Division, Institute of Experimental Medicine-Hungarian Academy of Sciences, Budapest, Hungary (F.E.); and Department of Physiology, Faculty of Medicine, University of Szeged, Szeged, Hungary (M.D.)
| | - Mária Dux
- Department of Physiology, Faculty of Medicine (M.L., E.P., A.D., P.B., G.C., P.E.), Department of Organic Chemistry, Faculty of Pharmacy (A.B.-P., P.M.), Department of Pharmacology and Pharmacotherapy (K.K.), and Department of Biophysics and Radiation Biology, Faculty of Medicine (T.H.), Semmelweis University, Budapest, Hungary; Gene Technology Division, Institute of Experimental Medicine-Hungarian Academy of Sciences, Budapest, Hungary (F.E.); and Department of Physiology, Faculty of Medicine, University of Szeged, Szeged, Hungary (M.D.)
| | - Kornél Király
- Department of Physiology, Faculty of Medicine (M.L., E.P., A.D., P.B., G.C., P.E.), Department of Organic Chemistry, Faculty of Pharmacy (A.B.-P., P.M.), Department of Pharmacology and Pharmacotherapy (K.K.), and Department of Biophysics and Radiation Biology, Faculty of Medicine (T.H.), Semmelweis University, Budapest, Hungary; Gene Technology Division, Institute of Experimental Medicine-Hungarian Academy of Sciences, Budapest, Hungary (F.E.); and Department of Physiology, Faculty of Medicine, University of Szeged, Szeged, Hungary (M.D.)
| | - Tamás Hegedűs
- Department of Physiology, Faculty of Medicine (M.L., E.P., A.D., P.B., G.C., P.E.), Department of Organic Chemistry, Faculty of Pharmacy (A.B.-P., P.M.), Department of Pharmacology and Pharmacotherapy (K.K.), and Department of Biophysics and Radiation Biology, Faculty of Medicine (T.H.), Semmelweis University, Budapest, Hungary; Gene Technology Division, Institute of Experimental Medicine-Hungarian Academy of Sciences, Budapest, Hungary (F.E.); and Department of Physiology, Faculty of Medicine, University of Szeged, Szeged, Hungary (M.D.)
| | - Gábor Czirják
- Department of Physiology, Faculty of Medicine (M.L., E.P., A.D., P.B., G.C., P.E.), Department of Organic Chemistry, Faculty of Pharmacy (A.B.-P., P.M.), Department of Pharmacology and Pharmacotherapy (K.K.), and Department of Biophysics and Radiation Biology, Faculty of Medicine (T.H.), Semmelweis University, Budapest, Hungary; Gene Technology Division, Institute of Experimental Medicine-Hungarian Academy of Sciences, Budapest, Hungary (F.E.); and Department of Physiology, Faculty of Medicine, University of Szeged, Szeged, Hungary (M.D.)
| | - Péter Mátyus
- Department of Physiology, Faculty of Medicine (M.L., E.P., A.D., P.B., G.C., P.E.), Department of Organic Chemistry, Faculty of Pharmacy (A.B.-P., P.M.), Department of Pharmacology and Pharmacotherapy (K.K.), and Department of Biophysics and Radiation Biology, Faculty of Medicine (T.H.), Semmelweis University, Budapest, Hungary; Gene Technology Division, Institute of Experimental Medicine-Hungarian Academy of Sciences, Budapest, Hungary (F.E.); and Department of Physiology, Faculty of Medicine, University of Szeged, Szeged, Hungary (M.D.)
| | - Péter Enyedi
- Department of Physiology, Faculty of Medicine (M.L., E.P., A.D., P.B., G.C., P.E.), Department of Organic Chemistry, Faculty of Pharmacy (A.B.-P., P.M.), Department of Pharmacology and Pharmacotherapy (K.K.), and Department of Biophysics and Radiation Biology, Faculty of Medicine (T.H.), Semmelweis University, Budapest, Hungary; Gene Technology Division, Institute of Experimental Medicine-Hungarian Academy of Sciences, Budapest, Hungary (F.E.); and Department of Physiology, Faculty of Medicine, University of Szeged, Szeged, Hungary (M.D.)
| |
Collapse
|
18
|
Abstract
Supplemental Digital Content is Available in the Text. Inhibition of K2P potassium channels by pyrethroid insecticides contribute to activate primary sensory neurons to cause paraesthesias and painful sensations. Pyrethroid insecticides are widely used for pest control in agriculture or in human public health commonly as a topical treatment for scabies and head lice. Exposure to pyrethroids such as permethrin or tetramethrin (TM) causes sensory alterations such as transient pain, burning, stinging sensations, and paraesthesias. Despite the well-known effects of pyrethroids on sodium channels, actions on other channels that control sensory neuron excitability are less studied. Given the role of 2-pore domain potassium (K2P) channels in modulating sensory neuron excitability and firing, both in physiological and pathological conditions, we examined the effect of pyrethroids on K2P channels mainly expressed in sensory neurons. Through electrophysiological and calcium imaging experiments, we show that a high percentage of TM-responding neurons were nociceptors, which were also activated by TRPA1 and/or TRPV1 agonists. This pyrethroid also activated and enhanced the excitability of peripheral saphenous nerve fibers. Pyrethroids produced a significant inhibition of native TRESK, TRAAK, TREK-1, and TREK-2 currents. Similar effects were found in transfected HEK293 cells. At the behavioral level, intradermal TM injection in the mouse paw produced nocifensive responses and caused mechanical allodynia, demonstrating that the effects seen on nociceptors in culture lead to pain-associated behaviors in vivo. In TRESK knockout mice, pain-associated behaviors elicited by TM were enhanced, providing further evidence for a role of this channel in preventing excessive neuronal activation. Our results indicate that inhibition of K2P channels facilitates sensory neuron activation and increases their excitability. These effects contribute to the generation of paraesthesias and pain after pyrethroid exposure.
Collapse
|
19
|
Lengyel M, Dobolyi A, Czirják G, Enyedi P. Selective and state-dependent activation of TRESK (K 2P 18.1) background potassium channel by cloxyquin. Br J Pharmacol 2017; 174:2102-2113. [PMID: 28419410 DOI: 10.1111/bph.13821] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 04/03/2017] [Accepted: 04/03/2017] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND AND PURPOSE Cloxyquin (5-cloroquinolin-8-ol) has been described as an activator of TRESK (K2P 18.1, TWIK-related spinal cord K+ channel) background potassium channel. We have examined the specificity of the drug by testing several K2P channels. We have investigated the mechanism of cloxyquin-mediated TRESK activation, focusing on the differences between the physiologically relevant regulatory states of the channel. EXPERIMENTAL APPROACH Potassium currents were measured by two-electrode voltage clamp in Xenopus oocytes and by whole-cell patch clamp in mouse dorsal root ganglion (DRG) neurons. KEY RESULTS Cloxyquin (100 µM) activated mouse and human TRESK 4.4 ± 0.3 (n = 28) and 3.9 ± 0.3-fold (n = 8), respectively. The drug selectively targeted TRESK in the K2P channel family and exerted state-dependent effects. TRESK was potently activated by cloxyquin in the resting state. However, after robust activation of the current by the calcium signal, evoked by stimulation of Gq-coupled receptors, the compound did not influence mouse TRESK and only slightly affected the human channel. The constitutively active mutant channels, mimicking the dephosphorylated state (S276A) or containing altered channel pore (F156A and F364A), were not further stimulated by cloxyquin. In a subpopulation of isolated DRG neurons, cloxyquin substantially activated the background potassium current. CONCLUSIONS AND IMPLICATIONS Cloxyquin activates TRESK by a Ca2+ /calcineurin-independent mechanism. The drug is specific for TRESK within the K2P channel family and useful for studying TRESK currents in native cells. The state-dependent pharmacological profile of this channel should be considered in the development of therapeutics for migraine and other nociceptive disorders.
Collapse
Affiliation(s)
- Miklós Lengyel
- Department of Physiology, Semmelweis University, Budapest, Hungary
| | - Alice Dobolyi
- Department of Physiology, Semmelweis University, Budapest, Hungary
| | - Gábor Czirják
- Department of Physiology, Semmelweis University, Budapest, Hungary
| | - Péter Enyedi
- Department of Physiology, Semmelweis University, Budapest, Hungary
| |
Collapse
|