1
|
Budda D, Gülave B, van Hasselt JGC, de Lange ECM. Non-linear blood-brain barrier transport and dosing strategies influence receptor occupancy ratios of morphine and its metabolites in pain matrix. Br J Pharmacol 2024; 181:3856-3868. [PMID: 38663441 DOI: 10.1111/bph.16394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 03/12/2024] [Accepted: 03/17/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND AND PURPOSE Morphine is important for treatment of acute and chronic pain. However, there is high interpatient variability and often inadequate pain relief and adverse effects. To better understand variability in the dose-effect relationships of morphine, we investigated the effects of its non-linear blood-brain barrier (BBB) transport on μ-receptor occupancy in different CNS locations, in conjunction with its main metabolites that bind to the same receptor. EXPERIMENTAL APPROACH CNS exposure profiles for morphine, M3G and M6G for clinically relevant dosing regimens based on intravenous, oral immediate- and extended-release formulations were generated using a physiology-based pharmacokinetic model of the CNS, with non-linear BBB transport of morphine. The simulated CNS exposure profiles were then used to derive corresponding μ-receptor occupancies at multiple CNS pain matrix locations. KEY RESULTS Simulated CNS exposure profiles for morphine, M3G and M6G, associated with non-linear BBB transport of morphine resulted in varying μ-receptor occupancies between different dose regimens, formulations and CNS locations. At lower doses, the μ-receptor occupancy of morphine was relatively higher than at higher doses of morphine, due to the relative contribution of M3G and M6G. At such higher doses, M6G showed higher occupancy than morphine, whereas M3G occupancy was low throughout the dose ranges. CONCLUSION AND IMPLICATIONS Non-linear BBB transport of morphine affects the μ-receptor occupancy ratios of morphine with its metabolites, depending on dose and route of administration, and CNS location. These predictions need validation in animal or clinical experiments, to understand the clinical implications.
Collapse
Affiliation(s)
- Divakar Budda
- Division of Systems Pharmacology and Pharmacy, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Berfin Gülave
- Division of Systems Pharmacology and Pharmacy, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - J G Coen van Hasselt
- Division of Systems Pharmacology and Pharmacy, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Elizabeth C M de Lange
- Division of Systems Pharmacology and Pharmacy, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| |
Collapse
|
2
|
Hodge K, Buck DJ, Das S, Davis RL. The effects of chronic, continuous β-funaltrexamine pre-treatment on lipopolysaccharide-induced inflammation and behavioral deficits in C57BL/6J mice. J Inflamm (Lond) 2024; 21:33. [PMID: 39223594 PMCID: PMC11367784 DOI: 10.1186/s12950-024-00407-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Inflammation and neuroinflammation are integral to the progression and severity of many diseases and are strongly associated with cardiovascular disease, cancer, autoimmune disorders, neurodegenerative disease, and neuropsychiatric disorders. These diseases can be difficult to treat without addressing the underlying inflammation, and, as such, a growing need has arisen for pharmaceutical treatments that target inflammatory mediators and signaling pathways. Our lab has investigated the therapeutic potential of the irreversible µ-opioid antagonist β-funaltrexamine (β-FNA) and discovered that acute treatment ameliorates inflammation in astrocytes in vitro and inhibits central and peripheral inflammation and reduces anxiety- and sickness-like behavior in male C57BL/6J mice. Now, our investigation has expanded to investigate the chronic pre-treatment effects of β-FNA on lipopolysaccharide (LPS)-induced inflammation and behavior in male C57BL/6J mice. RESULTS Micro-osmotic drug pumps were surgically inserted into the subcutaneous intrascapular space of male C57BL/6J mice. β-FNA or saline vehicle was continuously administered for seven days. On the sixth day, mice were given intraperitoneal injections of LPS or saline. An elevated plus maze test, followed by a forced swim test, were administered 24 h post-injection to measure sickness-, anxiety- and depressive-like behavior. Immediately after testing, frontal cortex, hippocampus, spleen, and plasma were collected. Levels of inflammatory chemokines C-C motif chemokine ligand 2 (CCL2) and C-X-C motif chemokine ligand 10 (CXCL10) were measured in tissues by enzyme-linked immunosorbent assay (ELISA). Quantitative reverse transcription polymerase chain reaction (RT-qPCR) was used to assess expression of the enzyme indoleamine 2, 3-dioxygenase 1 (IDO1) and the NLR family pyrin domain-containing protein 3 (NRLP3) inflammasome in frontal cortex and spleen tissues. Chronic pre-treatment robustly decreased inflammation in the hippocampus, frontal cortex, and spleen and reduced or abolished anxiety- and sickness-like behavior (e.g., increased time spent motionless, increased time spent in a contracted position, and reduced distance moved). However, treatment with β-FNA alone increased both inflammation in the frontal cortex and anxiety-like behavior. CONCLUSION These findings provide novel insights into the anti-inflammatory and behavior-modifying effects of chronic β-FNA pre-treatment and continue to support the therapeutic potential of β-FNA under inflammatory conditions.
Collapse
Affiliation(s)
- Karissa Hodge
- Oklahoma State University Center for Health Sciences, 1111 West 17th Street, Tulsa, OK, 74107, USA
| | - Daniel J Buck
- Oklahoma State University Center for Health Sciences, 1111 West 17th Street, Tulsa, OK, 74107, USA
| | - Subhas Das
- Oklahoma State University Center for Health Sciences, 1111 West 17th Street, Tulsa, OK, 74107, USA
| | - Randall L Davis
- Oklahoma State University Center for Health Sciences, 1111 West 17th Street, Tulsa, OK, 74107, USA.
| |
Collapse
|
3
|
Nazabal A, Mendiguren A, Pineda J. Inhibition of rat locus coeruleus neurons by prostaglandin E 2 EP3 receptors: pharmacological characterization ex vivo. Front Pharmacol 2023; 14:1290605. [PMID: 38035000 PMCID: PMC10684765 DOI: 10.3389/fphar.2023.1290605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023] Open
Abstract
Prostaglandin E2 (PGE2) is an inflammatory mediator synthesized by the brain constitutive cyclooxygenase enzyme. PGE2 binds to G protein-coupled EP1-4 receptors (EP1 to Gq, EP2,4 to Gs, and EP3 to Gi/o). EP2, EP3 and EP4 receptors are expressed in the locus coeruleus (LC), the main noradrenergic nucleus in the brain. EP3 receptors have been explored in the central nervous system, although its role regulating the locus coeruleus neuron activity has not been pharmacologically defined. Our aim was to characterize the function of EP3 receptors in neurons of the LC. Thus, we studied the effect of EP3 receptor agonists on the firing activity of LC cells in rat brain slices by single-unit extracellular electrophysiological techniques. The EP3 receptor agonist sulprostone (0.15 nM-1.28 µM), PGE2 (0.31 nM-10.2 µM) and the PGE1 analogue misoprostol (0.31 nM-2.56 µM) inhibited the firing rate of LC neurons in a concentration-dependent manner (EC50 = 15 nM, 110 nM, and 51 nM, respectively). The EP3 receptor antagonist L-798,106 (3-10 µM), but not the EP2 (PF-04418948, 3-10 µM) or EP4 (L-161,982, 3-10 µM) receptor antagonists, caused rightward shifts in the concentration-effect curves for the EP3 receptor agonists. Sulprostone-induced effect was attenuated by the Gi/o protein blocker pertussis toxin (pertussis toxin, 500 ng ml-1) and the inhibitors of inwardly rectifying potassium channels (GIRK) BaCl2 (300 µM) and SCH-23390 (15 µM). In conclusion, LC neuron firing activity is regulated by EP3 receptors, presumably by an inhibitory Gi/o protein- and GIRK-mediated mechanism.
Collapse
|
4
|
Mendiguren A, Aostri E, Rodilla I, Pujana I, Noskova E, Pineda J. Cannabigerol modulates α 2-adrenoceptor and 5-HT 1A receptor-mediated electrophysiological effects on dorsal raphe nucleus and locus coeruleus neurons and anxiety behavior in rat. Front Pharmacol 2023; 14:1183019. [PMID: 37305529 PMCID: PMC10249961 DOI: 10.3389/fphar.2023.1183019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/12/2023] [Indexed: 06/13/2023] Open
Abstract
The pharmacological profile of cannabigerol (CBG), which acid form constitutes the main precursor of the most abundant cannabinoids, has been scarcely studied. It has been reported to target α2-adrenoceptor and 5-HT1A receptor. The locus coeruleus (LC) and the dorsal raphe nucleus (DRN) are the main serotonergic (5-HT) and noradrenergic (NA) areas in the rat brain, respectively. We aimed to study the effect of CBG on the firing rate of LC NA cells and DRN 5-HT cells and on α2-adrenergic and 5-HT1A autoreceptors by electrophysiological techniques in male Sprague-Dawley rat brain slices. The effect of CBG on the novelty-suppressed feeding test (NSFT) and the elevated plus maze test (EPMT) and the involvement of the 5-HT1A receptor was also studied. CBG (30 μM, 10 min) slightly changed the firing rate of NA cells but failed to alter the inhibitory effect of NA (1-100 µM). However, in the presence of CBG the inhibitory effect of the selective α2-adrenoceptor agonist UK14304 (10 nM) was decreased. Perfusion with CBG (30 μM, 10 min) did not change the firing rate of DRN 5-HT cells or the inhibitory effect of 5-HT (100 μM, 1 min) but it reduced the inhibitory effect of ipsapirone (100 nM). CBG failed to reverse ipsapirone-induced inhibition whereas perfusion with the 5-HT1A receptor antagonist WAY100635 (30 nM) completely restored the firing rate of DRN 5-HT cells. In the EPMT, CBG (10 mg/kg, i.p.) significantly increased the percentage of time the rats spent on the open arms and the number of head-dipping but it reduced the anxiety index. In the NSFT, CBG decreased the time latency to eat in the novel environment but it did not alter home-cage consumption. The effect of CBG on the reduction of latency to feed was prevented by pretreatment with WAY100635 (1 mg/kg, i.p.). In conclusion, CBG hinders the inhibitory effect produced by selective α2-adrenoceptor and 5-HT1A receptor agonists on the firing rate of NA-LC and 5-HT-DRN neurons by a yet unknown indirect mechanism in rat brain slices and produces anxiolytic-like effects through 5-HT1A receptor.
Collapse
Affiliation(s)
- Aitziber Mendiguren
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain
| | | | | | | | | | | |
Collapse
|
5
|
Goff J, Hina M, Malik N, McLardy H, Reilly F, Robertson M, Ruddy L, Willox F, Forget P. Can Opioid-Free Anaesthesia Be Personalised? A Narrative Review. J Pers Med 2023; 13:jpm13030500. [PMID: 36983682 PMCID: PMC10056629 DOI: 10.3390/jpm13030500] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/04/2023] [Accepted: 03/08/2023] [Indexed: 03/12/2023] Open
Abstract
Background: A significant amount of evidence suggests that Opioid-Free Anaesthesia (OFA) may provide better outcomes for patients undergoing surgery, sparing patients who are particularly vulnerable to adverse side effects of opioids. However, to what extent personalizing OFA is feasible and beneficial has not been adequately described. Methods: We conducted a narrative literature review aiming to provide a comprehensive understanding of nociception and pain and its context within the field of OFA. Physiological (including monitoring), pharmacological, procedural (type of surgery), genetical and phenotypical (including patients’ conditions) were considered. Results: We did not find any monitoring robustly associated with improved outcomes. However, we found evidence supporting particular OFA indications, such as bariatric and cancer surgery. We found that vulnerable patients may benefit more from OFA, with an interesting field of research in patients suffering from vascular disease. We found a variety of techniques and medications making it impossible to consider OFA as a single technique. Our findings suggest that a vast field of research remains unexplored. In particular, a deeper understanding of nociception with an interest in its genetic and acquired contributors would be an excellent starting point paving the way for personalised OFA. Conclusion: Recent developments in OFA may present a more holistic approach, challenging the use of opioids. Understanding better nociception, given the variety of OFA techniques, may help to maximize their potential in different contexts and potential indications.
Collapse
Affiliation(s)
- Jenna Goff
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Morgan Hina
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Nayaab Malik
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Hannah McLardy
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Finley Reilly
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Matthew Robertson
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen AB25 2ZD, UK
- Correspondence:
| | - Louis Ruddy
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Faith Willox
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Patrice Forget
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen AB25 2ZD, UK
- Department of Anaesthesia, NHS Grampian, Aberdeen AB25 2ZD, UK
- Pain AND Opioids after Surgery (PANDOS) European Society of Anaesthesia and Intensive Care (ESAIC) Research Group, 1000 Brussels, Belgium
| |
Collapse
|
6
|
Robayo Avendaño O, Alvira Botero X, Garzón M. Ultrastructural evidence for mu and delta opioid receptors at noradrenergic dendrites and glial profiles in the cat locus coeruleus. Brain Res 2021; 1762:147443. [PMID: 33745926 DOI: 10.1016/j.brainres.2021.147443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 02/01/2021] [Accepted: 03/13/2021] [Indexed: 11/17/2022]
Abstract
The Locus Coeruleus (LC) is a pontine nucleus involved in many physiological processes, including the control of the sleep/wake cycle (SWC). At cellular level, the LC displays a high density of opioid receptors whose activation decreases the activity of LC noradrenergic neurons. Also, microinjections of morphine administered locally in the LC of the cat produce sleep associated with synchronized brain activity in the electroencephalogram (EEG). Even though much of the research on sleep has been done in the cat, the subcellular location of opioid receptors in the LC and their relationship with LC noradrenergic neurons is not known yet in this species. Therefore, we conducted a study to describe the ultrastructural localization of mu-opioid receptors (MOR), delta-opioid receptors (DOR) and tyrosine hydroxylase (TH) in the cat LC using high resolution electron microscopy double-immunocytochemical detection. MOR and DOR were localized mainly in dendrites (45% and 46% of the total number of profiles respectively), many of which were noradrenergic (35% and 53% for MOR and DOR, respectively). TH immunoreactivity was more frequent in dendrites (65% of the total number of profiles), which mostly also expressed opioid receptors (58% and 73% for MOR and DOR, respectively). Because the distribution of MORs and DORs are similar, it is possible that a substantial sub-population of neurons co-express both receptors, which may facilitate the formation of MOR-DOR heterodimers. Moreover, we found differences in the cat subcellular DOR distribution compared with the rat. This opens the possibility to the existence of diverse mechanisms for opioid modulation of LC activity.
Collapse
Affiliation(s)
- Omar Robayo Avendaño
- Universidad Pedagógica y Tecnológica de Colombia. Antiguo Hospital San Rafael, 150001 Tunja, Colombia.
| | - Ximena Alvira Botero
- Universidad Autónoma de Madrid, Calle del Arzobispo Morcillo 4, 28029 Madrid, Spain
| | - Miguel Garzón
- Universidad Autónoma de Madrid, Calle del Arzobispo Morcillo 4, 28029 Madrid, Spain
| |
Collapse
|
7
|
Modulation of Noradrenergic and Serotonergic Systems by Cannabinoids: Electrophysiological, Neurochemical and Behavioral Evidence. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1297:111-132. [PMID: 33537940 DOI: 10.1007/978-3-030-61663-2_8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The main noradrenergic and serotonergic nuclei in the central nervous system (CNS) are the locus coeruleus (LC) and the dorsal raphe nucleus (DRN). These brain areas, located in the brainstem, play a pivotal role in the control of various functions and behaviors that are altered by cannabinoids (i.e., pain, arousal, mood, anxiety, or sleep-wake cycle). Anatomical, neurochemical, and functional data suggest that cannabinoids regulate both central noradrenergic and serotonergic neurotransmission. Thus, strong evidence has shown that the firing activity of LC and DRN monoamine neurons or the synthesis/release of noradrenaline (NA) and serotonin (5-HT) in the projection areas are all affected by cannabinoid administration. Herein, we propose that interaction between the endocannabinoid system and the noradrenergic-serotonergic systems could account for some of the anxiolytic, antidepressant, and antinociceptive effects of cannabinoids or the disruption of attention/sleep induced by these drugs.
Collapse
|
8
|
Abstract
This paper is the fortieth consecutive installment of the annual anthological review of research concerning the endogenous opioid system, summarizing articles published during 2017 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides and receptors as well as effects of opioid/opiate agonists and antagonists. The review is subdivided into the following specific topics: molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors (1), the roles of these opioid peptides and receptors in pain and analgesia in animals (2) and humans (3), opioid-sensitive and opioid-insensitive effects of nonopioid analgesics (4), opioid peptide and receptor involvement in tolerance and dependence (5), stress and social status (6), learning and memory (7), eating and drinking (8), drug abuse and alcohol (9), sexual activity and hormones, pregnancy, development and endocrinology (10), mental illness and mood (11), seizures and neurologic disorders (12), electrical-related activity and neurophysiology (13), general activity and locomotion (14), gastrointestinal, renal and hepatic functions (15), cardiovascular responses (16), respiration and thermoregulation (17), and immunological responses (18).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, CUNY, 65-30 Kissena Blvd., Flushing, NY, 11367, United States.
| |
Collapse
|
9
|
Enman NM, Reyes BAS, Shi Y, Valentino RJ, Van Bockstaele EJ. Sex differences in morphine-induced trafficking of mu-opioid and corticotropin-releasing factor receptors in locus coeruleus neurons. Brain Res 2018; 1706:75-85. [PMID: 30391476 DOI: 10.1016/j.brainres.2018.11.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 10/24/2018] [Accepted: 11/01/2018] [Indexed: 01/18/2023]
Abstract
The locus coeruleus (LC)-norepinephrine (NE) system is a key nucleus in which endogenous opioid and stress systems intersect to regulate the stress response. LC neurons of male rats become sensitized to stress following chronic morphine administration. Whether sex dictates this pattern of opioid-induced plasticity has not been demonstrated. Delineating the neurobiological adaptations produced by chronic opioids will enhance our understanding of stress vulnerability in opioid-dependent individuals, and may reveal how stress negatively impacts addiction recovery. In the present study, the effect of chronic morphine on the subcellular distribution of mu-opioid (MOR) and CRF receptors (CRFR) was investigated in the LC of male and female rats using immunoelectron microscopy. Results showed that placebo-treated females exhibited higher MOR and CRFR cytoplasmic distribution ratio when compared to placebo-treated males. Chronic morphine exposure induced a shift in the distribution of MOR immunogold-silver particles from the plasma membrane to the cytoplasm selectively in male LC neurons. Interestingly, chronic morphine exposure induced CRFR recruitment to the plasma membrane of both male and female LC neurons. These findings provide a potential mechanism by which chronic opioid administration increases stress vulnerability in males and females via an increase in surface availability of CRFR in LC neurons. However, our results also support the notion that cellular adaptations to chronic opioids differ across the sexes as redistribution of MOR following morphine exposure was only observed in male LC neurons.
Collapse
Affiliation(s)
- Nicole M Enman
- Department of Pharmacology and Physiology, College of Medicine, Drexel University, Philadelphia, PA 19102, USA.
| | - Beverly A S Reyes
- Department of Pharmacology and Physiology, College of Medicine, Drexel University, Philadelphia, PA 19102, USA.
| | - Yufan Shi
- Department of Pharmacology and Physiology, College of Medicine, Drexel University, Philadelphia, PA 19102, USA
| | - Rita J Valentino
- Department of Anesthesiology and Critical Care, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.
| | - Elisabeth J Van Bockstaele
- Department of Pharmacology and Physiology, College of Medicine, Drexel University, Philadelphia, PA 19102, USA.
| |
Collapse
|
10
|
Regulation of noradrenergic and serotonergic systems by cannabinoids: relevance to cannabinoid-induced effects. Life Sci 2018; 192:115-127. [DOI: 10.1016/j.lfs.2017.11.029] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 10/29/2017] [Accepted: 11/16/2017] [Indexed: 12/11/2022]
|
11
|
Medrano MC, Santamarta MT, Pablos P, Aira Z, Buesa I, Azkue JJ, Mendiguren A, Pineda J. Characterization of functional μ opioid receptor turnover in rat locus coeruleus: an electrophysiological and immunocytochemical study. Br J Pharmacol 2017; 174:2758-2772. [PMID: 28589556 DOI: 10.1111/bph.13901] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 05/16/2017] [Accepted: 05/26/2017] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND AND PURPOSE Regulation of μ receptor dynamics such as its trafficking is a possible mechanism underlying opioid tolerance that contributes to inefficient recycling of opioid responses. We aimed to characterize the functional turnover of μ receptors in the noradrenergic nucleus locus coeruleus (LC). EXPERIMENTAL APPROACH We measured opioid effect by single-unit extracellular recordings of LC neurons from rat brain slices. Immunocytochemical techniques were used to evaluate μ receptor trafficking. KEY RESULTS After near-complete, irreversible μ receptor inactivation with β-funaltrexamine (β-FNA), opioid effect spontaneously recovered in a rapid and efficacious manner. In contrast, α2 -adrenoceptor-mediated effect hardly recovered after receptor inactivation with the irreversible antagonist EEDQ. When the recovery of opioid effect was tested after various inactivating time schedules, we found that the longer the β-FNA pre-exposure, the less efficient and slower the functional μ receptor turnover became. Interestingly, μ receptor turnover was slower when β-FNA challenge was repeated in the same cell, indicating constitutive μ receptor recycling by trafficking from a depletable pool. Double immunocytochemistry confirmed the constitutive nature of μ receptor trafficking from a cytoplasmic compartment. The μ receptor turnover was slowed down when LC neuron calcium- or firing-dependent processes were prevented or vesicular protein trafficking was blocked by a low temperature or transport inhibitor. CONCLUSIONS AND IMPLICATIONS Constitutive trafficking of μ receptors from a depletable intracellular pool (endosome) may account for its rapid and efficient functional turnover in the LC. A finely-tuned regulation of μ receptor trafficking and endosomes could explain neuroadaptive plasticity to opioids in the LC.
Collapse
Affiliation(s)
- María Carmen Medrano
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - María Teresa Santamarta
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Patricia Pablos
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Zigor Aira
- Department of Neuroscience, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Itsaso Buesa
- Department of Neuroscience, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Jon Jatsu Azkue
- Department of Neuroscience, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Aitziber Mendiguren
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Joseba Pineda
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| |
Collapse
|