1
|
Pagare PP, McGinn M, Ghatge MS, Shekhar V, Alhashimi RT, Daniel Pierce B, Abdulmalik O, Zhang Y, Safo MK. The antisickling agent, 5-hydroxymethyl-2-furfural: Other potential pharmacological applications. Med Res Rev 2024; 44:2707-2729. [PMID: 38842004 PMCID: PMC11452283 DOI: 10.1002/med.22062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 08/30/2023] [Accepted: 05/21/2024] [Indexed: 06/07/2024]
Abstract
For the last two decades, the aromatic aldehyde 5-hydroxymethyl-furfural (5-HMF) has been the subject of several investigations for its pharmacologic potential. In 2004, the Safo group reported that 5-HMF has potent antisickling activity by targeting and ameliorating the primary pathophysiology of hypoxia-induced sickling of erythrocytes (red blood cells [RBC]). Following the encouraging outcome of the preclinical and phase I/II clinical studies of 5-HMF for the treatment of sickle cell disease (SCD), there have been multiple studies suggesting 5-HMF has several other biological or pharmacologic activities, including anti-allergic, antioxidant, anti-hypoxic, anti-ischemic, cognitive improvement, anti-tyrosinase, anti-proliferation, cytoprotective, and anti-inflammatory activities. The wide range of its effects makes 5-HMF a potential candidate for treating a variety of diseases including cognitive disorders, gout, allergic disorders, anemia, hypoxia, cancers, ischemia, hemorrhagic shock, liver fibrosis, and oxidative injury. Several of these therapeutic claims are currently under investigation and, while promising, vary in terms of the strength of their evidence. This review presents the research regarding the therapeutic potential of 5-HMF in addition to its sources, physicochemical properties, safety, absorption, distribution, metabolism, and excretion (ADME) profiles.
Collapse
Affiliation(s)
- Piyusha P. Pagare
- Department of Medicinal Chemistry, Development, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298
| | - Mina McGinn
- The Institute for Structural Biology, Drug Discovery and Development, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298
| | - Mohini S. Ghatge
- Department of Medicinal Chemistry, Development, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298
- The Institute for Structural Biology, Drug Discovery and Development, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298
| | - Vibha Shekhar
- The Institute for Structural Biology, Drug Discovery and Development, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298
| | - Rana T. Alhashimi
- Department of Medicinal Chemistry, Development, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298
- The Institute for Structural Biology, Drug Discovery and Development, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298
| | - B. Daniel Pierce
- Department of Biology, University of Richmond, Richmond, VA 23173
| | - Osheiza Abdulmalik
- Division of Hematology, The Children's Hospital of Philadelphia, PA 19104
| | - Yan Zhang
- Department of Medicinal Chemistry, Development, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298
- The Institute for Structural Biology, Drug Discovery and Development, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298
| | - Martin K. Safo
- Department of Medicinal Chemistry, Development, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298
- The Institute for Structural Biology, Drug Discovery and Development, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298
| |
Collapse
|
2
|
Geirola N, Greco S, Mare R, Ricupero D, Settino M, Tirinato L, Maurotti S, Montalcini T, Pujia A. Assessment of 5-Hydroxymethylfurfural in Food Matrix by an Innovative Spectrophotometric Assay. Int J Mol Sci 2024; 25:8501. [PMID: 39126070 PMCID: PMC11313681 DOI: 10.3390/ijms25158501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024] Open
Abstract
Foods contaminants pose a challenge for food producers and consumers. Due to its spontaneous formation during heating and storage, hydroxymethylfurfural (HMF) is a prevalent contaminant in foods rich in carbohydrates and proteins. Colorimetric assays, such as the Seliwanoff test, offer a rapid and cost-effective method for HMF quantification but require careful optimization to ensure accuracy. We addressed potential interference in the Seliwanoff assay by systematically evaluating parameters like incubation time, temperature, and resorcinol or hydrochloric acid concentration, as well as the presence of interfering carbohydrates. Samples were analyzed using a UV-Vis spectrophotometer in scan mode, and data obtained were validated using HPLC, which also enabled quantification of unreacted HMF for assessing the protocol's accuracy. Incubation time and hydrochloric acid percentage positively influenced the colorimetric assay, while the opposite effect was observed with the increase in resorcinol concentration. Interference from carbohydrates was eliminated by reducing the acid content in the working reagent. HPLC analyses corroborated the spectrophotometer data and confirmed the efficacy of the proposed method. The average HMF content in balsamic vinegar samples was 1.97 ± 0.94 mg/mL. Spectrophotometric approaches demonstrated to efficiently determine HMF in complex food matrices. The HMF levels detected in balsamic vinegars significantly exceeded the maximum limits established for honey. This finding underscores the urgent need for regulations that restrict contaminant levels in various food products.
Collapse
Affiliation(s)
- Nadia Geirola
- Department of Clinical and Experimental Medicine, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (N.G.); (D.R.); (M.S.); (S.M.); (T.M.)
| | - Simona Greco
- Department of Medical and Surgical Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (S.G.); (L.T.); (A.P.)
| | - Rosario Mare
- Department of Medical and Surgical Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (S.G.); (L.T.); (A.P.)
| | - Domenico Ricupero
- Department of Clinical and Experimental Medicine, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (N.G.); (D.R.); (M.S.); (S.M.); (T.M.)
| | - Mariagiovanna Settino
- Department of Clinical and Experimental Medicine, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (N.G.); (D.R.); (M.S.); (S.M.); (T.M.)
| | - Luca Tirinato
- Department of Medical and Surgical Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (S.G.); (L.T.); (A.P.)
| | - Samantha Maurotti
- Department of Clinical and Experimental Medicine, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (N.G.); (D.R.); (M.S.); (S.M.); (T.M.)
| | - Tiziana Montalcini
- Department of Clinical and Experimental Medicine, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (N.G.); (D.R.); (M.S.); (S.M.); (T.M.)
- Research Center for the Prevention and Treatment of Metabolic Diseases, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy
| | - Arturo Pujia
- Department of Medical and Surgical Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (S.G.); (L.T.); (A.P.)
- Research Center for the Prevention and Treatment of Metabolic Diseases, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy
| |
Collapse
|
3
|
Thomas OE, Oduwole RT, Akin-Taylor A. Comparison of the DNA-binding interactions of 5-hydroxymethylfurfural and its synthesized derivative, 5, 5’[oxy-bis(methylene)]bis-2-furfural: experimental, DFT and docking studies. JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE 2023. [DOI: 10.1080/16583655.2023.2183705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
4
|
Martišienė I, Zigmantaitė V, Pudžiuvelytė L, Bernatonienė J, Jurevičius J. Elsholtzia ciliata Essential Oil Exhibits a Smooth Muscle Relaxant Effect. Pharmaceuticals (Basel) 2023; 16:1464. [PMID: 37895935 PMCID: PMC10610041 DOI: 10.3390/ph16101464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/10/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
A recent in vivo study in pigs demonstrated the hypotensive properties of essential oil extracted from the blossoming plant Elsholtzia ciliata. This study was designed to examine the effect of E. ciliata essential oil (EO) on smooth muscle contraction. Tension measurements were performed on prostate strips and intact aortic rings isolated from rats. Results showed that EO caused a concentration-dependent reduction in phenylephrine-induced contraction of both the prostate and aorta, with a more pronounced inhibitory effect in the prostate. The IC50 of EO for the prostate was 0.24 ± 0.03 µL/mL (n = 10) and for the aorta was 0.72 ± 0.11 µL/mL (n = 4, p < 0.05 vs. prostate). The chromatographic analysis identified elsholtzia ketone (10.64%) and dehydroelsholtzia ketone (86.23%) as the predominant compounds in the tested EO. Since both compounds feature a furan ring within their molecular structure, other furan ring-containing compounds, 2-acetylfuran (2AF) and 5-methylfurfural (5MFF), were examined. For the first time, our study demonstrated the relaxant effects of 2AF and 5MFF on smooth muscles. Further, results showed that EO, 2AF, and 5MFF altered the responsiveness of prostate smooth muscle cells to phenylephrine. Under control conditions, the EC50 of phenylephrine was 0.18 ± 0.03 µM (n = 5), while in the presence of EO, 2AF, or 5MFF, the EC50 values were 0.81 ± 0.3 µM (n = 5), 0.89 ± 0.11 µM (n = 5), and 0.69 ± 0.23 µM (n = 4), respectively, p < 0.05 vs. control. Analysis of the affinity of EO for α1-adrenergic receptors in the prostate suggested that EO at a certain range of concentrations has a competitive antagonistic effect on α1-adrenergic receptors. In conclusion, EO elicits a relaxant effect on smooth muscles which may be related to the inhibition of α1-adrenoreceptors.
Collapse
Affiliation(s)
- Irma Martišienė
- Laboratory of Membrane Biophysics, Institute of Cardiology, Lithuanian University of Health Sciences, Sukilėlių Ave. 15, LT50162 Kaunas, Lithuania; (V.Z.); (J.J.)
| | - Vilma Zigmantaitė
- Laboratory of Membrane Biophysics, Institute of Cardiology, Lithuanian University of Health Sciences, Sukilėlių Ave. 15, LT50162 Kaunas, Lithuania; (V.Z.); (J.J.)
- Biological Research Center, Lithuanian University of Health Sciences, Tilžės St. 18/7, LT47181 Kaunas, Lithuania
| | - Lauryna Pudžiuvelytė
- Institute of Pharmaceutical Technologies, Faculty of Pharmacy, Lithuanian University of Health Sciences, Sukilėlių Ave. 13, LT50162 Kaunas, Lithuania; (L.P.); (J.B.)
| | - Jurga Bernatonienė
- Institute of Pharmaceutical Technologies, Faculty of Pharmacy, Lithuanian University of Health Sciences, Sukilėlių Ave. 13, LT50162 Kaunas, Lithuania; (L.P.); (J.B.)
| | - Jonas Jurevičius
- Laboratory of Membrane Biophysics, Institute of Cardiology, Lithuanian University of Health Sciences, Sukilėlių Ave. 15, LT50162 Kaunas, Lithuania; (V.Z.); (J.J.)
| |
Collapse
|
5
|
Xiang Z, Liu S, Qiu J, Lin H, Li D, Jiang J. Identification and quality evaluation of Chinese rice wine using UPLC-PDA-QTOF/MS with dual-column separation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 108:154498. [PMID: 36272383 DOI: 10.1016/j.phymed.2022.154498] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 10/03/2022] [Accepted: 10/08/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Chinese rice wine (CRW) is a well-known drink and functional food that is used in traditional Chinese medicine. However, there is still a lack of quality control and evaluation methods for CRWs. PURPOSE The study aimed to establish a new method that can serve both as quality control and evaluation method and, as well as an identification method for CRWs. METHOD Compound identification in different CRW samples and determination of uracil, xanthine, uridine, adenine, guanosine, 5-hydroxymethylfurfural, and adenosine contents from 29 CRW samples from 14 brands were performed using UPLC-PDA/TOF-MS. The dual-column chromatographic separation of CRW was performed using CORTECS T3 coupled to HSS T3. The optimal mobile phase consisted of water with 0.1% formic acid, 40 mM ammonium acetate, and methanol: acetonitrile (2:1). Furthermore, to compare the UPLC fingerprints between CRWs of different brands, a similarity analysis was performed to classify the CRW samples. Finally, network pharmacology and in vitro efficacy and toxicity tests were used to investigate the biological function of the seven components and CRWs. RESULTS A total of 55 compounds were unambiguously or tentatively identified. Among them, nucleoside, pyrimidines and purines were reported in CRW for the first time. The seven components were successfully determined, and their contents showed large variations among different brands of CRW, which was consistent with the results of the chromatographic fingerprint similarities. The results of in vitro efficacy and toxicity tests indicated that CRWs and seven components had obvious protective effect on H9c2 cell injury induced by the H2O2 model. Network pharmacology analysis showed that these seven compounds might be the main active components of CRW that promote blood circulation and ventilation. CONCLUSION This study revealed that dual-column chromatographic separation is an effective method for quantitative and chromatographic fingerprint analyzes of complex samples, and seven compounds can be used for the quality evaluation and control of CRWs.
Collapse
Affiliation(s)
- Zheng Xiang
- Medical School, Zhejiang University City College, Hangzhou 310015, China.
| | - Shundi Liu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Jieying Qiu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Hao Lin
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Dan Li
- Shineway Pharmaceutical Group Co. Ltd., Shijiazhuang 051430, China
| | - Jianping Jiang
- Medical School, Zhejiang University City College, Hangzhou 310015, China
| |
Collapse
|
6
|
Saletti M, Maramai S, Reale A, Paolino M, Brogi S, Di Capua A, Cappelli A, Giorgi G, D'Avino D, Rossi A, Ghelardini C, Di Cesare Mannelli L, Sardella R, Carotti A, Woelkart G, Klösch B, Bigogno C, Dondio G, Anzini M. Novel analgesic/anti-inflammatory agents: 1,5-Diarylpyrrole nitrooxyethyl sulfides and related compounds as Cyclooxygenase-2 inhibitors containing a nitric oxide donor moiety endowed with vasorelaxant properties. Eur J Med Chem 2022; 241:114615. [DOI: 10.1016/j.ejmech.2022.114615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 11/04/2022]
|
7
|
Zhang H, Jiang Z, Shen C, Zou H, Zhang Z, Wang K, Bai R, Kang Y, Ye XY, Xie T. 5-Hydroxymethylfurfural Alleviates Inflammatory Lung Injury by Inhibiting Endoplasmic Reticulum Stress and NLRP3 Inflammasome Activation. Front Cell Dev Biol 2021; 9:782427. [PMID: 34966742 PMCID: PMC8711100 DOI: 10.3389/fcell.2021.782427] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/26/2021] [Indexed: 01/11/2023] Open
Abstract
5-Hydroxymethylfurfural (5-HMF) is a common reaction product during heat processing and the preparation of many types of foods and Traditional Chinese Medicine formulations. The aim of this study was to evaluate the protective effect of 5-HMF on endotoxin-induced acute lung injury (ALI) and the underlying mechanisms. Our findings indicate that 5-HMF attenuated lipopolysaccharide (LPS)-induced ALI in mice by mitigating alveolar destruction, neutrophil infiltration and the release of inflammatory cytokines. Furthermore, the activation of macrophages and human monocytes in response to LPS was remarkably suppressed by 5-HMF in vitro through inhibiting the NF-κB signaling pathway, NLRP3 inflammasome activation and endoplasmic reticulum (ER) stress. The inhibitory effect of 5-HMF on NLRP3 inflammasome was reversed by overexpressing ATF4 or CHOP, indicating the involvement of ER stress in the negative regulation of 5-HMF on NLRP3 inflammasome-mediated inflammation. Consistent with this, the ameliorative effect of 5-HMF on in vivo pulmonary dysfunction were reversed by the ER stress inducer tunicamycin. In conclusion, our findings elucidate the anti-inflammatory and protective efficacy of 5-HMF in LPS-induced acute lung injury, and also demonstrate the key mechanism of its action against NLRP3 inflammasome-related inflammatory disorders via the inhibition of ER stress.
Collapse
Affiliation(s)
- Hang Zhang
- School of Basic Medical Science, Hangzhou Normal University, Hangzhou, China.,School of Pharmacy, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Elemene Class Anti-cancer Chinese Medicine of Zhejiang Province, Hangzhou Normal University, Hangzhou, China.,Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Zheyi Jiang
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Chuanbin Shen
- School of Basic Medical Science, Hangzhou Normal University, Hangzhou, China
| | - Han Zou
- School of Basic Medical Science, Hangzhou Normal University, Hangzhou, China
| | - Zhiping Zhang
- School of Basic Medical Science, Hangzhou Normal University, Hangzhou, China
| | - Kaitao Wang
- School of Basic Medical Science, Hangzhou Normal University, Hangzhou, China
| | - Renren Bai
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Elemene Class Anti-cancer Chinese Medicine of Zhejiang Province, Hangzhou Normal University, Hangzhou, China.,Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou Normal University, Hangzhou, China.,Collaborative Innovation Center of Traditional Chinese Medicines from Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Yanhua Kang
- School of Basic Medical Science, Hangzhou Normal University, Hangzhou, China
| | - Xiang-Yang Ye
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Elemene Class Anti-cancer Chinese Medicine of Zhejiang Province, Hangzhou Normal University, Hangzhou, China.,Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou Normal University, Hangzhou, China.,Collaborative Innovation Center of Traditional Chinese Medicines from Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Tian Xie
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China.,Key Laboratory of Elemene Class Anti-cancer Chinese Medicine of Zhejiang Province, Hangzhou Normal University, Hangzhou, China.,Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou Normal University, Hangzhou, China.,Collaborative Innovation Center of Traditional Chinese Medicines from Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
8
|
Koyani CN, Scheruebel S, Jin G, Kolesnik E, Zorn-Pauly K, Mächler H, Hoefler G, von Lewinski D, Heinzel FR, Pelzmann B, Malle E. Hypochlorite-Modified LDL Induces Arrhythmia and Contractile Dysfunction in Cardiomyocytes. Antioxidants (Basel) 2021; 11:25. [PMID: 35052529 PMCID: PMC8772905 DOI: 10.3390/antiox11010025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/17/2021] [Accepted: 12/21/2021] [Indexed: 02/05/2023] Open
Abstract
Neutrophil-derived myeloperoxidase (MPO) and its potent oxidant, hypochlorous acid (HOCl), gained attention as important oxidative mediators in cardiac damage and dysfunction. As cardiomyocytes generate low-density lipoprotein (LDL)-like particles, we aimed to identify the footprints of proatherogenic HOCl-LDL, which adversely affects cellular signalling cascades in various cell types, in the human infarcted myocardium. We performed immunohistochemistry for MPO and HOCl-LDL in human myocardial tissue, investigated the impact of HOCl-LDL on electrophysiology and contractility in primary cardiomyocytes, and explored underlying mechanisms in HL-1 cardiomyocytes and human atrial appendages using immunoblot analysis, qPCR, and silencing experiments. HOCl-LDL reduced ICa,L and IK1, and increased INaL, leading to altered action potential characteristics and arrhythmic events including early- and delayed-afterdepolarizations. HOCl-LDL altered the expression and function of CaV1.2, RyR2, NCX1, and SERCA2a, resulting in impaired contractility and Ca2+ homeostasis. Elevated superoxide anion levels and oxidation of CaMKII were mediated via LOX-1 signaling in HL-1 cardiomyocytes. Furthermore, HOCl-LDL-mediated alterations of cardiac contractility and electrophysiology, including arrhythmic events, were ameliorated by the CaMKII inhibitor KN93 and the INaL blocker, ranolazine. This study provides an explanatory framework for the detrimental effects of HOCl-LDL compared to native LDL and cardiac remodeling in patients with high MPO levels during the progression of cardiovascular disease.
Collapse
Affiliation(s)
- Chintan N. Koyani
- Division of Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, 8010 Graz, Austria;
- Department of Internal Medicine, Division of Cardiology, Medical University of Graz, 8036 Graz, Austria; (G.J.); (E.K.); (D.v.L.)
| | - Susanne Scheruebel
- Division of Biophysics, Gottfried Schatz Research Center, Medical University of Graz, 8010 Graz, Austria; (S.S.); (K.Z.-P.)
| | - Ge Jin
- Department of Internal Medicine, Division of Cardiology, Medical University of Graz, 8036 Graz, Austria; (G.J.); (E.K.); (D.v.L.)
- The 2nd Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Ewald Kolesnik
- Department of Internal Medicine, Division of Cardiology, Medical University of Graz, 8036 Graz, Austria; (G.J.); (E.K.); (D.v.L.)
| | - Klaus Zorn-Pauly
- Division of Biophysics, Gottfried Schatz Research Center, Medical University of Graz, 8010 Graz, Austria; (S.S.); (K.Z.-P.)
| | - Heinrich Mächler
- Department of Surgery, Division of Cardiac Surgery, Medical University of Graz, 8036 Graz, Austria;
| | - Gerald Hoefler
- Diagnostic and Research Center for Molecular BioMedicine, Diagnostic and Research Institute of Pathology, Medical University of Graz, 8010 Graz, Austria;
| | - Dirk von Lewinski
- Department of Internal Medicine, Division of Cardiology, Medical University of Graz, 8036 Graz, Austria; (G.J.); (E.K.); (D.v.L.)
| | - Frank R. Heinzel
- Department of Internal Medicine and Cardiology, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, 13353 Berlin, Germany;
- Deutsches Zentrum für Herz-Kreislauf-Forschung (German Centre for Cardiovascular Research), Partner Site Berlin, 10785 Berlin, Germany
| | - Brigitte Pelzmann
- Division of Biophysics, Gottfried Schatz Research Center, Medical University of Graz, 8010 Graz, Austria; (S.S.); (K.Z.-P.)
| | - Ernst Malle
- Division of Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, 8010 Graz, Austria;
| |
Collapse
|
9
|
Zou H, Wu T, Wang Y, Kang Y, Shan Q, Xu L, Jiang Z, Lin X, Ye XY, Xie T, Zhang H. 5-Hydroxymethylfurfural Enhances the Antiviral Immune Response in Macrophages through the Modulation of RIG-I-Mediated Interferon Production and the JAK/STAT Signaling Pathway. ACS OMEGA 2021; 6:28019-28030. [PMID: 34723002 PMCID: PMC8552330 DOI: 10.1021/acsomega.1c03862] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/29/2021] [Indexed: 05/13/2023]
Abstract
5-Hydroxymethylfurfural (5-HMF) exists in a wide range of sugar-rich foods and traditional Chinese medicines. The role of 5-HMF in antiviral innate immunity and its mechanism have not been reported previously. In this study, we reveal for the first time that 5-HMF upregulates the production of retinoic acid-inducible gene I (RIG-I)-mediated type I interferon (IFN) as a response to viral infection. IFN-β and IFN-stimulated chemokine gene expressions induced by the vesicular stomatitis virus (VSV) are upregulated in RAW264.7 cells and primary peritoneal macrophages after treatment with 5-HMF, a natural product that appears to inhibit the efficiency of viral replication. Meanwhile, 5-HMF-pretreated mice show enhanced innate antiviral immunity, increased serum levels of IFN-β, and reduced morbidity and viral loads upon infection with VSV. Thus, 5-HMF can be seen to have a positive effect on enhancing type I IFN production. Mechanistically, 5-HMF upregulates the expression of RIG-I in macrophages, resulting in an acceleration of the RIG-I signaling pathway activation. Additionally, STAT1 and STAT2 phosphorylations, along with the expression of IFN-stimulated chemokine genes induced by IFN-α/β, were also enhanced in macrophages cotreated with 5-HMF. In summary, these findings indicate that 5-HMF not only can induce type I IFN production but also can enhance IFN-JAK/STAT signaling, leading to a novel immunomodulatory mechanism against viral infection. In conclusion, our study reveals a previously unrecognized effect of 5-HMF in the antiviral innate immune response and suggests new potential of utilizing 5-HMF for controlling viral infection.
Collapse
Affiliation(s)
- Han Zou
- School
of Basic Medicine, Hangzhou Normal University, Hangzhou 310036, Zhejiang, China
| | - Tingyue Wu
- School
of Life Science, University of Science &
Technology of China, Hefei 230026, Anhui, China
- Key
Laboratory of Animal Models and Human Disease Mechanisms of the Chinese
Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650000, China
| | - Yuan Wang
- School
of Pharmacy, Hangzhou Normal University, Hangzhou 310036, Zhejiang, China
- Key
Laboratory of Elemene Class Anti-cancer Chinese Medicine of Zhejiang
Province, Hangzhou Normal University, Hangzhou 310036, Zhejiang, China
- Engineering
Laboratory of Development and Application of Traditional Chinese Medicine
from Zhejiang Province, Hangzhou Normal
University, Hangzhou 310036, Zhejiang, China
| | - Yanhua Kang
- School
of Basic Medicine, Hangzhou Normal University, Hangzhou 310036, Zhejiang, China
| | - Qingye Shan
- School
of Pharmacy, Hangzhou Normal University, Hangzhou 310036, Zhejiang, China
- Key
Laboratory of Elemene Class Anti-cancer Chinese Medicine of Zhejiang
Province, Hangzhou Normal University, Hangzhou 310036, Zhejiang, China
- Engineering
Laboratory of Development and Application of Traditional Chinese Medicine
from Zhejiang Province, Hangzhou Normal
University, Hangzhou 310036, Zhejiang, China
| | - Liqing Xu
- School
of Pharmacy, Hangzhou Normal University, Hangzhou 310036, Zhejiang, China
- Key
Laboratory of Elemene Class Anti-cancer Chinese Medicine of Zhejiang
Province, Hangzhou Normal University, Hangzhou 310036, Zhejiang, China
- Engineering
Laboratory of Development and Application of Traditional Chinese Medicine
from Zhejiang Province, Hangzhou Normal
University, Hangzhou 310036, Zhejiang, China
| | - Zheyi Jiang
- School
of Basic Medicine, Hangzhou Normal University, Hangzhou 310036, Zhejiang, China
| | - Xiaohan Lin
- School
of Basic Medicine, Hangzhou Normal University, Hangzhou 310036, Zhejiang, China
| | - Xiang-Yang Ye
- School
of Pharmacy, Hangzhou Normal University, Hangzhou 310036, Zhejiang, China
- Key
Laboratory of Elemene Class Anti-cancer Chinese Medicine of Zhejiang
Province, Hangzhou Normal University, Hangzhou 310036, Zhejiang, China
- Engineering
Laboratory of Development and Application of Traditional Chinese Medicine
from Zhejiang Province, Hangzhou Normal
University, Hangzhou 310036, Zhejiang, China
- Collaborative
Innovation Center of Traditional Chinese Medicines from Zhejiang Province, Hangzhou Normal University, Hangzhou 310036, Zhejiang, China
| | - Tian Xie
- School
of Pharmacy, Hangzhou Normal University, Hangzhou 310036, Zhejiang, China
- Key
Laboratory of Elemene Class Anti-cancer Chinese Medicine of Zhejiang
Province, Hangzhou Normal University, Hangzhou 310036, Zhejiang, China
- Engineering
Laboratory of Development and Application of Traditional Chinese Medicine
from Zhejiang Province, Hangzhou Normal
University, Hangzhou 310036, Zhejiang, China
- Collaborative
Innovation Center of Traditional Chinese Medicines from Zhejiang Province, Hangzhou Normal University, Hangzhou 310036, Zhejiang, China
| | - Hang Zhang
- School
of Basic Medicine, Hangzhou Normal University, Hangzhou 310036, Zhejiang, China
- School
of Pharmacy, Hangzhou Normal University, Hangzhou 310036, Zhejiang, China
- Key
Laboratory of Elemene Class Anti-cancer Chinese Medicine of Zhejiang
Province, Hangzhou Normal University, Hangzhou 310036, Zhejiang, China
- Engineering
Laboratory of Development and Application of Traditional Chinese Medicine
from Zhejiang Province, Hangzhou Normal
University, Hangzhou 310036, Zhejiang, China
- Collaborative
Innovation Center of Traditional Chinese Medicines from Zhejiang Province, Hangzhou Normal University, Hangzhou 310036, Zhejiang, China
| |
Collapse
|
10
|
Ledbetter M, Blidi S, Ackon S, Bruno F, Sturrock K, Pellegrini N, Fiore A. Effect of novel sequential soaking treatments on Maillard reaction products in potato and alternative vegetable crisps. Heliyon 2021; 7:e07441. [PMID: 34286122 PMCID: PMC8278335 DOI: 10.1016/j.heliyon.2021.e07441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/08/2021] [Accepted: 06/25/2021] [Indexed: 12/27/2022] Open
Abstract
Frying leads to the formation of numerous food contaminants through the Maillard reaction (MR). In this paper, commercially available vegetable crisps were analysed for and established to have high levels of acrylamide. Consequentially, the capability of two novel sequential pre-frying treatments were applied to potato, beetroot and parsnip snacks to inhibit the formation of acrylamide, 5-hydroxymethylfurfural (HMF), glyoxal (GO) and methylglyoxal (MGO) was investigated. Data revealed that immersion in cold tap water for 2 min followed by blanching at 70 ± 2 °C for 2 min (Cold soak, hot soak, (CSHS)) as well as soaking in a 0.01M CaCl2 solution for 2 min followed by blanching at 70 ± 2 °C in 0.1M citric acid for 2 min were both effective pre-treatments for potato crisps, simultaneously decreasing acrylamide concentration under the benchmark level of 750 μg/kg and lowering GO content by 55.19 and 54.67% and MGO concentration by 39.17% and 81.62%, respectively. CSHS was the only efficient treatment for concurrent mitigation of acrylamide (-41.64%) and HMF (-88.43%) with little GO and MGO development in beetroot. Sequential cold soak in 0.01M calcium chloride and hot soak in a 0.1M citric acid solution has been effective in decreasing acrylamide in alternative crisps. However, this led to an increase in HMF, 30 and 20-fold respectively from the initial concentration. Data reveal that the tested mitigation strategies are vegetable specific. Vegetable crisps contain more acrylamide than the benchmark for potato crisps. Vegetable crisps contain significant levels of HMF, GO and MGO than potato crisps. Wash additives effect on potato, are variable on vegetable. Mitigation strategies for the reduction of acrylamide are vegetable specific.
Collapse
Affiliation(s)
- Moira Ledbetter
- School of Applied Sciences, Division of Engineering and Food Science, University of Abertay, Bell Street, DD1 1HG, Dundee, Scotland, United Kingdom
| | - Slim Blidi
- School of Applied Sciences, Division of Engineering and Food Science, University of Abertay, Bell Street, DD1 1HG, Dundee, Scotland, United Kingdom
| | - Stefania Ackon
- School of Applied Sciences, Division of Engineering and Food Science, University of Abertay, Bell Street, DD1 1HG, Dundee, Scotland, United Kingdom
| | - Francesca Bruno
- School of Applied Sciences, Division of Engineering and Food Science, University of Abertay, Bell Street, DD1 1HG, Dundee, Scotland, United Kingdom
| | - Keith Sturrock
- School of Applied Sciences, Division of Psychology and Forensic Science, University of Abertay, Bell Street, DD1 1HG, Dundee, Scotland, United Kingdom
| | - Nicoletta Pellegrini
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Italy
| | - Alberto Fiore
- School of Applied Sciences, Division of Engineering and Food Science, University of Abertay, Bell Street, DD1 1HG, Dundee, Scotland, United Kingdom
| |
Collapse
|
11
|
Boby N, Abbas MA, Lee EB, Im ZE, Hsu WH, Park SC. Protective Effect of Pyrus ussuriensis Maxim. Extract against Ethanol-Induced Gastritis in Rats. Antioxidants (Basel) 2021; 10:antiox10030439. [PMID: 33809380 PMCID: PMC8002011 DOI: 10.3390/antiox10030439] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/05/2021] [Accepted: 03/09/2021] [Indexed: 12/16/2022] Open
Abstract
Pyrus ussuriensis Maxim (Korean pear) has been used for hundreds of years as a traditional herbal medicine for asthma, cough, and atopic dermatitis in Korea and China. Although it was originally shown to possess anti-inflammatory, antioxidant, and antiatopic properties, its gastroprotective effects have not been investigated. In the present study, we evaluated the protective effects of Pyrus ussuriensis Maxim extract (PUE) against ethanol-induced gastritis in rats. The bioactive compound profile of PUE was determined by gas chromatography mass spectroscopy (GC-MS) and high-performance liquid chromatography (HPLC). The gastroprotection of PUE at different doses (250 and 500 mg/kg body weight) prior to ethanol ingestion was evaluated using an in vivo gastritis rat model. Several endpoints were evaluated, including gastric mucosal lesions, cellular degeneration, intracellular damage, and immunohistochemical localization of leucocyte common antigen. The gastric mucosal injury and ulcer score were determined by evaluating the inflamed gastric mucosa and by histological examination. To identify the mechanisms of gastroprotection by PUE, antisecretory action and plasma prostaglandin E2 (PGE2), gastric mucosal cyclic adenosine monophosphate (cAMP), and histamine levels were measured. PUE exhibited significant antioxidant effects with IC50 values of 56.18 and 22.49 µg/mL for 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2′- azino-di-(3-ethylbenzothiazoline)-6-sulfonic acid (ABTS) inhibition (%), respectively. In addition, GC/MS and HPLC analyses revealed several bioactive compounds of PUE. Pretreatment with PUE significantly (p < 0.05) decreased the ulcer index by preventing gastric mucosal lesions, erosion, and cellular degeneration. An immunohistochemical analysis revealed that PUE markedly attenuated leucocyte infiltration in a dose-dependent manner. The enhancement of PGE2 levels and attenuation of cAMP levels along with the inhibition of histamine release following PUE pretreatment was associated with the cytoprotective and healing effects of PUE. In contrast, the downregulation of the H+/K+ ATPase pathway as well as muscarinic receptor (M3R) and histamine receptor (H2R) inhibition was also involved in the gastroprotective effects of PUE; however, the expression of cholecystokinin-2 receptors (CCK2R) was unchanged. Finally, no signs of toxicity were observed following PUE treatment. Based on our results, we conclude that PUE represents an effective therapeutic option to reduce the risk of gastritis and warrants further study.
Collapse
Affiliation(s)
- Naila Boby
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Korea; (N.B.); (M.A.A.); (E.-B.L.)
| | - Muhammad Aleem Abbas
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Korea; (N.B.); (M.A.A.); (E.-B.L.)
| | - Eon-Bee Lee
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Korea; (N.B.); (M.A.A.); (E.-B.L.)
| | - Zi-Eum Im
- Institute of Forest Resources Development, Gyeongsangbuk-do, Andong-si, Gyeongsangbuk-do 36605, Korea;
| | - Walter H. Hsu
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA;
| | - Seung-Chun Park
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Korea; (N.B.); (M.A.A.); (E.-B.L.)
- Correspondence: ; Tel.: +82-53-950-5964
| |
Collapse
|
12
|
Clinacanthus nutans Leaves Extract Reverts Endothelial Dysfunction in Type 2 Diabetes Rats by Improving Protein Expression of eNOS. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:7572892. [PMID: 32879653 PMCID: PMC7448219 DOI: 10.1155/2020/7572892] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/13/2020] [Accepted: 07/23/2020] [Indexed: 02/07/2023]
Abstract
Diabetes mellitus is associated with endothelial dysfunction; it causes progressive vascular damage resulting from an impaired endothelium-dependent vasorelaxation. In the diabetes state, presence of hyperglycemia and insulin resistance predisposes to endothelial dysfunction. Clinacanthus nutans, widely used as a traditional medicine for diabetes is reported to have hypoglycemic, hypolipidemic, antioxidant, and anti-inflammatory properties. However, the possibility of C. nutans affecting the vascular endothelial function in diabetes remains unclear. This study was aimed at evaluating the effects of C. nutans methanolic leaves extract (CNME) on endothelial function in a type 2 diabetes (T2DM) rat model. Sixty male Sprague-Dawley rats were divided into five groups (n = 12 per group): nondiabetic control, nondiabetic treated with four weeks of CNME (500 mg/kg/daily), untreated diabetic rats, diabetic treated with metformin (300 mg/kg/daily), and diabetic treated with CNME (500 mg/kg/daily). T2DM was induced by a single intraperitoneal injection of low-dose streptozotocin (STZ) to rats fed with high-fat diet (HFD). Endothelial-dependent and endothelial-independent relaxations and contractions of the thoracic aorta were determined using the organ bath. Aortic endothelial nitric oxide synthase (eNOS) expression was determined using Western blotting. Endothelial-dependent relaxation was reduced in diabetic rats. Both diabetic groups treated with CNME or metformin significantly improved the impairment in endothelium-dependent vasorelaxation; this was associated with increased expression of aortic eNOS protein. CNME- and metformin-treated groups also reduced aortic endothelium-dependent and aortic endothelium-independent contractions in diabetics. Both of these diabetic-treated groups also reduced blood glucose levels and increased body weight compared to the untreated diabetic group. In conclusion, C. nutans improves endothelial-dependent vasodilatation and reduces endothelial-dependent contraction, thus ameliorating endothelial dysfunction in diabetic rats. This may occur due to its effect on increasing eNOS protein expression.
Collapse
|
13
|
Chow PH, Kourghi M, Pei JV, Nourmohammadi S, Yool AJ. 5-Hydroxymethyl-Furfural and Structurally Related Compounds Block the Ion Conductance in Human Aquaporin-1 Channels and Slow Cancer Cell Migration and Invasion. Mol Pharmacol 2020; 98:38-48. [PMID: 32434851 DOI: 10.1124/mol.119.119172] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 04/20/2020] [Indexed: 12/18/2022] Open
Abstract
Aquaporin-1 (AQP1) dual water and ion channels enhance migration and invasion when upregulated in leading edges of certain classes of cancer cells. Work here identifies structurally related furan compounds as novel inhibitors of AQP1 ion channels. 5-Hydroxymethyl-2-furfural (5HMF), a component of natural medicinal honeys, and three structurally related compounds, 5-nitro-2-furoic acid (5NFA), 5-acetoxymethyl-2-furaldehyde (5AMF), and methyl-5-nitro-2-furoate (M5NF), were analyzed for effects on water and ion channel activities of human AQP1 channels expressed in Xenopus oocytes. Two-electrode voltage clamp showed dose-dependent block of the AQP1 ion current by 5HMF (IC50 0.43 mM), 5NFA (IC50 1.2 mM), and 5AMF (IC50 ∼3 mM) but no inhibition by M5NF. In silico docking predicted the active ligands interacted with glycine 165, located in loop D gating domains surrounding the intracellular vestibule of the tetrameric central pore. Water fluxes through separate intrasubunit pores were unaltered by the furan compounds (at concentrations up to 5 mM). Effects on cell migration, invasion, and cytoskeletal organization in vitro were tested in high-AQP1-expressing cancer lines, colon cancer (HT29) and AQP1-expressing breast cancer (MDA), and low-AQP1-expressing SW480. 5HMF, 5NFA, and 5AMF selectively impaired cell motility in the AQP1-enriched cell lines. In contrast, M5NF immobilized all the cancer lines by disrupting actin cytoskeleton. No reduction in cell viability was observed at doses that were effective in blocking motility. These results define furans as a new class of AQP1 ion channel inhibitors for basic research and potential lead compounds for development of therapeutic agents targeting aquaporin channel activity. SIGNIFICANCE STATEMENT: 5-Hydroxymethyl-2-furfural (5HMF), a component of natural medicinal honeys, blocks the ion conductance but not the water flux through human Aquaporin-1 (AQP1) channels and impairs AQP1-dependent cell migration and invasiveness in cancer cell lines. Analyses of 5HMT and structural analogs demonstrate a structure-activity relationship for furan compounds, supported by in silico docking modeling. This work identifies new low-cost pharmacological antagonists for AQP1 available to researchers internationally. Furans merit consideration as a new class of therapeutic agents for controlling cancer metastasis.
Collapse
Affiliation(s)
- Pak Hin Chow
- Adelaide Medical School, University of Adelaide, Adelaide, Australia (P.H.C., M.K., J.V.P., S.N., A.J.Y.) and College of Science, The Australian National University, Canberra, Australia (J.V.P.)
| | - Mohamad Kourghi
- Adelaide Medical School, University of Adelaide, Adelaide, Australia (P.H.C., M.K., J.V.P., S.N., A.J.Y.) and College of Science, The Australian National University, Canberra, Australia (J.V.P.)
| | - Jinxin V Pei
- Adelaide Medical School, University of Adelaide, Adelaide, Australia (P.H.C., M.K., J.V.P., S.N., A.J.Y.) and College of Science, The Australian National University, Canberra, Australia (J.V.P.)
| | - Saeed Nourmohammadi
- Adelaide Medical School, University of Adelaide, Adelaide, Australia (P.H.C., M.K., J.V.P., S.N., A.J.Y.) and College of Science, The Australian National University, Canberra, Australia (J.V.P.)
| | - Andrea J Yool
- Adelaide Medical School, University of Adelaide, Adelaide, Australia (P.H.C., M.K., J.V.P., S.N., A.J.Y.) and College of Science, The Australian National University, Canberra, Australia (J.V.P.)
| |
Collapse
|
14
|
Woyke S, Rauch S, Ströhle M, Gatterer H. Modulation of Hb-O 2 affinity to improve hypoxemia in COVID-19 patients. Clin Nutr 2020; 40:38-39. [PMID: 32360083 PMCID: PMC7195129 DOI: 10.1016/j.clnu.2020.04.036] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 04/24/2020] [Indexed: 01/06/2023]
Abstract
This opinion paper aims at discussing the potential impact of modulating the Hb-O2 affinity by the nutritional supplement 5-HMF on patients affected by COVID-19. The paper describes the critical role of the oxygen affinity in hypoxemic COVID-19 patients and the potential positive effect of 5-HMF, a compound shown to increase the Hb-O2 affinity.
Collapse
Affiliation(s)
- Simon Woyke
- Department of Anesthesiology and Intensive Care Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Simon Rauch
- Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy; Department of Anesthesia and Intensive Care Medicine, "F. Tappeiner" Hospital, Merano, Italy
| | - Mathias Ströhle
- Department of General and Surgical Critical Care Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Hannes Gatterer
- Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy.
| |
Collapse
|
15
|
Identification of 5-Hydroxymethylfurfural (5-HMF) as an Active Component Citrus Jabara That Suppresses FcεRI-Mediated Mast Cell Activation. Int J Mol Sci 2020; 21:ijms21072472. [PMID: 32252468 PMCID: PMC7177689 DOI: 10.3390/ijms21072472] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 03/31/2020] [Indexed: 12/15/2022] Open
Abstract
Jabara (Citrus jabara Hort. ex Y. Tanaka) is a type of citrus fruit known for its beneficial effect against seasonal allergies. Jabara is rich in the antioxidant narirutin whose anti-allergy effect has been demonstrated. One of the disadvantages in consuming Jabara is its bitter flavor. Therefore, we fermented the fruit to reduce the bitterness and make Jabara easy to consume. Here, we examined whether fermentation alters the anti-allergic property of Jabara. Suppression of degranulation and cytokine production was observed in mast cells treated with fermented Jabara and the effect was dependent on the length of fermentation. We also showed that 5-hydroxymethylfurfural (5-HMF) increases as fermentation progresses and was identified as an active component of fermented Jabara, which inhibited mast cell degranulation. Mast cells treated with 5-HMF also exhibited reduced degranulation and cytokine production. In addition, we showed that the expression levels of phospho-PLCγ1 and phospho-ERK1/2 were markedly reduced upon FcεRI stimulation. These results indicate that 5-HMF is one of the active components of fermented Jabara that is involved in the inhibition of mast cell activation.
Collapse
|
16
|
Study on the potential chemical markers for the discrimination between raw and processed Schisandrae Chinensis Fructus using UPLC-Q-TOF/MS coupled with multivariate statistical analyses. J Herb Med 2020. [DOI: 10.1016/j.hermed.2019.100311] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
17
|
The Active Compounds of Yixin Ningshen Tablet and Their Potential Action Mechanism in Treating Coronary Heart Disease- A Network Pharmacology and Proteomics Approach. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:4912395. [PMID: 32419806 PMCID: PMC7204378 DOI: 10.1155/2020/4912395] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 09/15/2019] [Accepted: 10/10/2019] [Indexed: 12/22/2022]
Abstract
Yixin Ningshen tablet is a CFDA-approved TCM formula for treating coronary heart disease (CHD) clinically. However, its active compounds and mechanism of action in treating CHD are unknown. In this study, a novel strategy with the combination of network pharmacology and proteomics was proposed to identify the active components of Yixin Ningshen tablet and the mechanism by which they treat CHD. With the application of network pharmacology, 62 active compounds in Yixin Ningshen tablet were screened out by text mining, and their 313 potential target proteins were identified by a tool in SwissTargetPrediction. These data were integrated with known CHD-related proteomics results to predict the most possible targets, which reduced the 313 potential target proteins to 218. The STRING database was retrieved to find the enriched pathways and related diseases of these target proteins, which indicated that the Calcium, MAPK, PI3K-Akt, cAMP, Rap1, AGE-RAGE, Relaxin, HIF-1, Prolactin, Sphingolipid, Estrogen, IL-17, Jak-STAT signaling pathway, necroptosis, arachidonic acid metabolism, insulin resistance, endocrine resistance, and steroid hormone biosynthesis might be the main pathways regulated by Yixin Ningshen tablet for the treatment of CHD. Through further enrichment analysis and literature study, EGFR, ERBB2, VGFR2, FGF1, ESR1, LOX15, PGH2, HMDH, ADRB1, and ADRB2 were selected and then validated to be the target proteins of Yixin Ningshen tablet by molecular docking, which indicated that Yixin Ningshen tablet might treat CHD mainly through promoting heart regeneration, new vessels' formation, and the blood supply of the myocardial region and reducing cardiac output, oxygen demand, and inflammation as well as arteriosclerosis (promoting vasodilation and intraplaque neoangiogenesis, lowering blood lipid). This study is expected to benefit the clinical application of Yixin Ningshen tablet for the treatment of CHD.
Collapse
|
18
|
Wölkart G, Kollau A, Stessel H, Russwurm M, Koesling D, Schrammel A, Schmidt K, Mayer B. Effects of flavoring compounds used in electronic cigarette refill liquids on endothelial and vascular function. PLoS One 2019; 14:e0222152. [PMID: 31498828 PMCID: PMC6733504 DOI: 10.1371/journal.pone.0222152] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 08/18/2019] [Indexed: 12/26/2022] Open
Abstract
Electronic cigarette refill liquids are commercially provided with a wide variety of flavoring agents. A recent study suggested that several common flavors may scavenge nitric oxide (NO) and cause endothelial dysfunction. It was the aim of the present study to investigate the effects of these flavors on NO/cyclic GMP-mediated signaling and vascular relaxation. We tested the flavoring agents for effects on Ca2+-induced cGMP accumulation and NO synthase activation in cultured endothelial cells. NO scavenging was studied with NO-activated soluble guanylate cyclase and as NO release from a NO donor, measured with a NO electrode. Blood vessel function was studied with precontracted rat aortic rings in the absence and presence of acetylcholine or a NO donor. Cinnamaldehyde inhibited Ca2+-stimulated endothelial cGMP accumulation and NO synthase activation at ≥0.3 mM. Cinnamaldehyde and diacetyl inhibited NO-activated soluble guanylate cyclase with IC50 values of 0.56 (0.54–0.58) and 0.29 (0.24–0.36) mM, respectively, and caused moderate NO scavenging at 1 mM that was not mediated by superoxide anions. The other compounds did not scavenge NO at 1 mM. None of the flavorings interfered with acetylcholine-induced vascular relaxation, but they caused relaxation of pre-contracted aortas. The most potent compounds were eugenol and cinnamaldehyde with EC50 values of ~0.5 mM. Since the flavors did not affect endothelium-dependent vascular relaxation, NO scavenging by cinnamaldehyde and diacetyl does not result in impaired blood vessel function. Although not studied in vivo, the low potency of the compounds renders it unlikely that the observed effects are relevant to humans inhaling flavored vapor from electronic cigarettes.
Collapse
Affiliation(s)
- Gerald Wölkart
- Department of Pharmacology and Toxicology, Institute of Pharmaceutical Sciences, Karl-Franzens-Universität Graz, Graz, Austria
| | - Alexander Kollau
- Department of Pharmacology and Toxicology, Institute of Pharmaceutical Sciences, Karl-Franzens-Universität Graz, Graz, Austria
| | - Heike Stessel
- Department of Pharmacology and Toxicology, Institute of Pharmaceutical Sciences, Karl-Franzens-Universität Graz, Graz, Austria
| | - Michael Russwurm
- Department of Pharmacology and Toxicology, Ruhr-Universität Bochum, Bochum, Germany
| | - Doris Koesling
- Department of Pharmacology and Toxicology, Ruhr-Universität Bochum, Bochum, Germany
| | - Astrid Schrammel
- Department of Pharmacology and Toxicology, Institute of Pharmaceutical Sciences, Karl-Franzens-Universität Graz, Graz, Austria
| | - Kurt Schmidt
- Department of Pharmacology and Toxicology, Institute of Pharmaceutical Sciences, Karl-Franzens-Universität Graz, Graz, Austria
| | - Bernd Mayer
- Department of Pharmacology and Toxicology, Institute of Pharmaceutical Sciences, Karl-Franzens-Universität Graz, Graz, Austria
- * E-mail:
| |
Collapse
|
19
|
Kong F, Lee BH, Wei K. 5-Hydroxymethylfurfural Mitigates Lipopolysaccharide-Stimulated Inflammation via Suppression of MAPK, NF-κB and mTOR Activation in RAW 264.7 Cells. Molecules 2019; 24:molecules24020275. [PMID: 30642099 PMCID: PMC6359491 DOI: 10.3390/molecules24020275] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 01/07/2019] [Accepted: 01/09/2019] [Indexed: 01/01/2023] Open
Abstract
5-Hydroxymethylfurfural (5-HMF) is found in many food products including honey, dried fruits, coffee and black garlic extracts. Here, we investigated the anti-inflammatory activity of 5-HMF and its underlying mechanisms in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. 5-HMF pretreatment ranging from 31.5 to 126.0 μg/mL reduced the production of nitric oxide (NO), prostaglandin E2 (PGE2) and pro-inflammatory cytokines (TNF-α, IL-1β and IL-6) in a concentration-dependent manner in LPS-stimulated cells. Moreover, 5-HMF-pretreated cells significantly down-regulated the mRNA expression of two major inflammatory mediators, nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) and suppressed the production of pro-inflammatory cytokines, as compared with the only LPS-stimulated cells. 5-HMF suppressed the phosphorylation of extracellular regulated protein kinases (ERK1/2), c-Jun N-terminal kinase (JNK), IκBα, NF-κB p65, the mammalian target of rapamycin (mTOR) and protein kinase B (Akt). Besides, 5-HMF was proved to inhibit NF-κB p65 translocation into nucleus to activate inflammatory gene transcription. These results suggest that 5-HMF could exert the anti-inflammatory activity in the LPS-induced inflammatory response by inhibiting the MAPK, NF-κB and Akt/mTOR pathways. Thus, 5-HMF could be considered as a therapeutic ingredient in functional foods.
Collapse
Affiliation(s)
- Fanhui Kong
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, Guangdong, China.
| | - Bae Hoon Lee
- Wenzhou Institute of Biomaterials and Engineering, CAS, Wenzhou 325011, Zhejiang, China.
- School of Ophthalmology & Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China.
| | - Kun Wei
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, Guangdong, China.
- Wenzhou Institute of Biomaterials and Engineering, CAS, Wenzhou 325011, Zhejiang, China.
| |
Collapse
|
20
|
Fernández-Morales JC, Hua W, Yao Y, Morad M. Regulation of Ca 2+ signaling by acute hypoxia and acidosis in cardiomyocytes derived from human induced pluripotent stem cells. Cell Calcium 2018; 78:1-14. [PMID: 30579812 DOI: 10.1016/j.ceca.2018.12.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 12/11/2018] [Accepted: 12/11/2018] [Indexed: 12/20/2022]
Abstract
AIMS The effects of acute (100 s) hypoxia and/or acidosis on Ca2+ signaling parameters of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM) are explored here for the first time. METHODS AND RESULTS 1) hiPSC-CMs express two cell populations: rapidly-inactivating ICa myocytes (τi<40 ms, in 4-5 day cultures) and slowly-inactivating ICa (τi ≥ 40 ms, in 6-8 day cultures). 2) Hypoxia suppressed ICa by 10-20% in rapidly- and 40-55% in slowly-inactivating ICa cells. 3) Isoproterenol enhanced ICa in hiPSC-CMs, but either enhanced or did not alter the hypoxic suppression. 4) Hypoxia had no differential suppressive effects in the two cell-types when Ba2+ was the charge carrier through the calcium channels, implicating Ca2+-dependent inactivation in O2 sensing. 5) Acidosis suppressed ICa by ∼35% and ∼25% in rapidly and slowly inactivating ICa cells, respectively. 6) Hypoxia and acidosis suppressive effects on Ca-transients depended on whether global or RyR2-microdomain were measured: with acidosis suppression was ∼25% in global and ∼37% in RyR2 Ca2+-microdomains in either cell type, whereas with hypoxia suppression was ∼20% and ∼25% respectively in global and RyR2-microdomaine in rapidly and ∼35% and ∼45% respectively in global and RyR2-microdomaine in slowly-inactivating cells. CONCLUSIONS Variability in ICa inactivation kinetics rather than cellular ancestry seems to underlie the action potential morphology differences generally attributed to mixed atrial and ventricular cell populations in hiPSC-CMs cultures. The differential hypoxic regulation of Ca2+-signaling in the two-cell types arises from differential Ca2+-dependent inactivation of the Ca2+-channel caused by proximity of Ca2+-release stores to the Ca2+ channels.
Collapse
Affiliation(s)
| | - Wei Hua
- Cardiac Signaling Center of MUSC, USC and Clemson, Charleston, SC, USA
| | - Yuyu Yao
- Cardiac Signaling Center of MUSC, USC and Clemson, Charleston, SC, USA
| | - Martin Morad
- Cardiac Signaling Center of MUSC, USC and Clemson, Charleston, SC, USA; Department of Pharmacology,Georgetown University Medical Center, Washington, DC, USA.
| |
Collapse
|
21
|
Kfoury N, Baydakov E, Gankin Y, Robbat A. Differentiation of key biomarkers in tea infusions using a target/nontarget gas chromatography/mass spectrometry workflow. Food Res Int 2018; 113:414-423. [PMID: 30195536 DOI: 10.1016/j.foodres.2018.07.028] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 06/12/2018] [Accepted: 07/23/2018] [Indexed: 01/01/2023]
Abstract
Climatic conditions affect the chemical composition of edible crops, which can impact flavor, nutrition and overall consumer preferences. To understand these effects new data analysis software capable of tracking hundreds of compounds across years of samples under various environmental conditions is needed. Our recently developed mass spectral (MS) subtraction algorithms have been used with spectral deconvolution to efficiently analyze complex samples by 2-dimensional gas chromatography/mass spectrometry (GC-GC/MS). In this paper, we address the accuracy of identifying target and nontarget compounds by GC/MS. Findings indicate that Yunnan tea contains higher concentrations of floral compounds. In contrast, Fujian tea contains higher concentrations of compounds that exhibit fruity characteristics, but contains much less monoterpenes. Principal components analysis shows that seasonal changes in climate impact tea plants similarly despite location differences. For example, spring teas contained more of the sweet, floral and fruity compounds compared to summer teas, which had higher concentrations of green, woody, herbal compounds.
Collapse
Affiliation(s)
- Nicole Kfoury
- Department of Chemistry, Tufts University, 200 Boston Ave, Suite G700, Medford, MA 02155, USA
| | | | - Yuriy Gankin
- EPAM Systems, 41 University Drive, Newtown, PA 18940, USA
| | - Albert Robbat
- Department of Chemistry, Tufts University, 200 Boston Ave, Suite G700, Medford, MA 02155, USA.
| |
Collapse
|
22
|
Wölkart G, Schrammel A, Koyani CN, Scherübel S, Zorn‐Pauly K, Malle E, Pelzmann B, Andrä M, Ortner A, Mayer B. Cardioprotective effects of 5-hydroxymethylfurfural mediated by inhibition of L-type Ca 2+ currents. Br J Pharmacol 2017; 174:3640-3653. [PMID: 28768052 PMCID: PMC5610158 DOI: 10.1111/bph.13967] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 07/11/2017] [Accepted: 07/14/2017] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND AND PURPOSE The antioxidant 5-hydroxymethylfurfural (5-HMF) exerts documented beneficial effects in several experimental pathologies and is currently tested as an antisickling drug in clinical trials. In the present study, we examined the cardiovascular effects of 5-HMF and elucidated the mode of action of the drug. EXPERIMENTAL APPROACH The cardiovascular effects of 5-HMF were studied with pre-contracted porcine coronary arteries and rat isolated normoxic-perfused hearts. Isolated hearts subjected to ischaemia/reperfusion (I/R) injury were used to test for potential cardioprotective effects of the drug. The effects of 5-HMF on action potential and L-type Ca2+ current (ICa,L ) were studied by patch-clamping guinea pig isolated ventricular cardiomyocytes. KEY RESULTS 5-HMF relaxed coronary arteries in a concentration-dependent manner and exerted negative inotropic, lusitropic and chronotropic effects in rat isolated perfused hearts. On the other hand, 5-HMF improved recovery of inotropic and lusitropic parameters in isolated hearts subjected to I/R. Patch clamp experiments revealed that 5-HMF inhibits L-type Ca2+ channels. Reduced ICa,L density, shift of ICa,L steady-state inactivation curves toward negative membrane potentials and slower recovery of ICa,L from inactivation in response to 5-HMF accounted for the observed cardiovascular effects. CONCLUSIONS AND IMPLICATIONS Our data revealed a cardioprotective effect of 5-HMF in I/R that is mediated by inhibition of L-type Ca2+ channels. Thus, 5-HMF is suggested as a beneficial additive to cardioplegic solutions, but adverse effects and contraindications of Ca2+ channel blockers have to be considered in therapeutic application of the drug.
Collapse
Affiliation(s)
- G Wölkart
- Institute of Pharmaceutical Sciences, Department of Pharmacology and ToxicologyUniversity of GrazGrazAustria
| | - A Schrammel
- Institute of Pharmaceutical Sciences, Department of Pharmacology and ToxicologyUniversity of GrazGrazAustria
| | - C N Koyani
- Institute of Molecular Biology and BiochemistryMedical University of GrazGrazAustria
| | - S Scherübel
- Institute of BiophysicsMedical University of GrazGrazAustria
| | - K Zorn‐Pauly
- Institute of BiophysicsMedical University of GrazGrazAustria
| | - E Malle
- Institute of Molecular Biology and BiochemistryMedical University of GrazGrazAustria
| | - B Pelzmann
- Institute of BiophysicsMedical University of GrazGrazAustria
| | - M Andrä
- Department of Thoracic and Cardiovascular SurgeryKlinikum KlagenfurtKlagenfurtAustria
| | - A Ortner
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical ChemistryUniversity of GrazGrazAustria
| | - B Mayer
- Institute of Pharmaceutical Sciences, Department of Pharmacology and ToxicologyUniversity of GrazGrazAustria
| |
Collapse
|
23
|
Dipeptidyl peptidase-4 independent cardiac dysfunction links saxagliptin to heart failure. Biochem Pharmacol 2017; 145:64-80. [PMID: 28859968 DOI: 10.1016/j.bcp.2017.08.021] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 08/25/2017] [Indexed: 12/20/2022]
Abstract
Saxagliptin treatment has been associated with increased rate of hospitalization for heart failure in type 2 diabetic patients, though the underlying mechanism(s) remain elusive. To address this, we assessed the effects of saxagliptin on human atrial trabeculae, guinea pig hearts and cardiomyocytes. We found that the primary target of saxagliptin, dipeptidyl peptidase-4, is absent in cardiomyocytes, yet saxagliptin internalized into cardiomyocytes and impaired cardiac contractility via inhibition of the Ca2+/calmodulin-dependent protein kinase II-phospholamban-sarcoplasmic reticulum Ca2+-ATPase 2a axis and Na+-Ca2+ exchanger function in Ca2+ extrusion. This resulted in reduced sarcoplasmic reticulum Ca2+ content, diastolic Ca2+ overload, systolic dysfunction and impaired contractile force. Furthermore, saxagliptin reduced protein kinase C-mediated delayed rectifier K+ current that prolonged action potential duration and consequently QTc interval. Importantly, saxagliptin aggravated pre-existing cardiac dysfunction induced by ischemia/reperfusion injury. In conclusion, our novel results provide mechanisms for the off-target deleterious effects of saxagliptin on cardiac function and support the outcome of SAVOR-TIMI 53 trial that linked saxagliptin with the risk of heart failure.
Collapse
|