1
|
Pergialiotis V, Sapantzoglou I, Rodolaki K, Varthaliti A, Theodora M, Antsaklis P, Thomakos N, Stavros S, Daskalakis G, Papapanagiotou A. Maternal and neonatal outcomes following magnesium sulfate in the setting of chorioamnionitis: a meta-analysis. Arch Gynecol Obstet 2024; 309:917-927. [PMID: 37768342 PMCID: PMC10866770 DOI: 10.1007/s00404-023-07221-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023]
Abstract
PURPOSE Magnesium sulfate (MgSO4) has been widely used in obstetrics as a mean to help decrease maternal and neonatal morbidity in various antenatal pathology. As a factor, it seems to regulate immunity and can, thus, predispose to infectious morbidity. To date, it remains unknown if its administration can increase the risk of chorioamnionitis. In the present meta-analysis, we sought to accumulate the available evidence. METHODS We systematically searched Medline, Scopus, Clinicaltrials.gov, EMBASE, Cochrane Central Register of Controlled Trials CENTRAL, and Google Scholar databases in our primary search along with the reference lists of electronically retrieved full-text papers. RESULTS Eight studies were included that investigated the incidence of chorioamnionitis among parturient that received MgSO4 and control patients. Magnesium sulfate was administered in 3229 women and 3330 women served as controls as they did not receive MgSO4. The meta-analysis of data revealed that there was no association between the administration of magnesium sulfate and the incidence of chorioamnionitis (OR 0.98, 95% CI 0.73, 1.32). Rucker's analysis revealed that small studies did not significantly influence the statistical significance of this finding (OR 1.12, 95% CI 0.82, 1.53). Trial sequential analysis revealed that the required number to safely interpret the primary outcome was not reached. Two studies evaluated the impact of MgSO4 in neonates delivered in the setting of chorioamnionitis. Neither of these indicated the presence of a beneficial effect in neonatal morbidity, including the risk of cerebral palsy, intraventricular hemorrhage, necrotizing enterocolitis, bronchopulmonary dysplasia, sepsis, stillbirth, or neonatal death. CONCLUSION Current evidence indicates that magnesium sulfate is not associated with an increased risk of maternal chorioamnionitis. However, it should be noted that its effect on neonatal outcomes of offspring born in the setting of chorioamnionitis might be subtle if any, although the available evidence is very limited.
Collapse
Affiliation(s)
- Vasilios Pergialiotis
- First Department of Obstetrics and Gynecology, "Alexandra" General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Ioakim Sapantzoglou
- First Department of Obstetrics and Gynecology, "Alexandra" General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Kalliopi Rodolaki
- First Department of Obstetrics and Gynecology, "Alexandra" General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Antonia Varthaliti
- First Department of Obstetrics and Gynecology, "Alexandra" General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Marianna Theodora
- First Department of Obstetrics and Gynecology, "Alexandra" General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Panagiotis Antsaklis
- First Department of Obstetrics and Gynecology, "Alexandra" General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikolaos Thomakos
- First Department of Obstetrics and Gynecology, "Alexandra" General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Sofoklis Stavros
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Georgios Daskalakis
- First Department of Obstetrics and Gynecology, "Alexandra" General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Aggeliki Papapanagiotou
- Third Department of Obstetrics and Gynecology, Attikon General Hospital, National and Kapodistrian University of Athens, 2, Lourou Str., 11523, Athens, Greece.
| |
Collapse
|
2
|
Fabà L, Aragon V, Litjens R, Galofré-Milà N, Segura M, Gottschalk M, Doelman J. Metabolic insights and background from naturally affected pigs during Streptococcus suis outbreaks. Transl Anim Sci 2023; 7:txad126. [PMID: 38023423 PMCID: PMC10660374 DOI: 10.1093/tas/txad126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/03/2023] [Indexed: 12/01/2023] Open
Abstract
Streptococcus suis (S. suis) is an endemic zoonotic pathogen still lacking adequate prevention in pigs. The present case study looked back to the occurrence and consequences of S. suis outbreaks in our swine research facilities in search of new metabolic and physiological insight. From a series of outbreaks, a dataset was created including 56 pigs sampled during disease detection based on clinical signs. Pigs suspected with S. suis infection were defined as diseased (n = 28) and included pigs defined as neurologically diseased (n = 20) when severe neurological signs (central nervous system dysfunctions, i.e., opisthotonos, ataxia, and generalized tremor) were observed. Another set of 28 pigs included respective pen mates from each case and were defined as control. Representative deaths were confirmed to be caused by S. suis. Tonsillar swabs were collected and analyzed by quantitative polymerase chain reaction (qPCR) for total bacteria, total S. suis, and S. suis serotypes (SS) 2 (and/or 1/2) and 9. Blood and sera were analyzed to quantify blood gases, minerals, and S. suis reactive immunoglobulins against current isolates. Data collected included litter sibling associations, birth and weaning body weight (BW), and average daily gain (ADG) 7 d after the disease detection. In general, the disease increased pH, sO2 and the incidence of alkalosis, but reduced pCO2, glucose, Ca, P, Mg, K, and Na in blood/serum compared to control. The SS2 (and/or SS1/2) prevalence was significantly (P < 0.05) increased in neurologically diseased pigs and its relative abundance tended (P < 0.10) to increase in tonsils. In contrast, the relative abundance of total S. suis was lower (P > 0.05) in diseased pigs than control pigs. Levels of S. suis reactive IgG2 were lower, but IgM were higher (P < 0.03) in neurologically affected pigs compared to control. Furthermore, there was an increased proportion of sibling pigs that were diseased compared to control. In conclusion, our results evidence that naturally affected pigs were associated to average performing pigs without any predisease trait to highlight but a sow/litter effect. Besides, neurologically affected pigs had increased S. suis (SS2 and/or 1/2) prevalence and relative abundance, a respiratory alkalosis profile, and mineral loss.
Collapse
Affiliation(s)
- Lluís Fabà
- Trouw Nutrition R&D, Amersfoort 3811 MH, The Netherlands
| | - Virginia Aragon
- Unitat mixta d’Investigació IRTA-UAB en Sanitat Animal. Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, 08193, Catalonia, Spain
- IRTA. Programa de Sanitat Animal. Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, 08193 Catalonia, Spain
- OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, Barcelona, Spain
| | - Ralph Litjens
- Trouw Nutrition R&D, Amersfoort 3811 MH, The Netherlands
| | - Núria Galofré-Milà
- Unitat mixta d’Investigació IRTA-UAB en Sanitat Animal. Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, 08193, Catalonia, Spain
- IRTA. Programa de Sanitat Animal. Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, 08193 Catalonia, Spain
- OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, Barcelona, Spain
| | - Mariela Segura
- Faculty of Veterinary Medicine, Swine and Poultry Infectious Disease Research Centre, University of Montreal, Saint-Hyacinthe, QC, Canada
| | - Marcelo Gottschalk
- Faculty of Veterinary Medicine, Swine and Poultry Infectious Disease Research Centre, University of Montreal, Saint-Hyacinthe, QC, Canada
| | - John Doelman
- Trouw Nutrition R&D, Amersfoort 3811 MH, The Netherlands
| |
Collapse
|
3
|
Pramitasuri TI, Susilawathi NM, Tarini NMA, Sudewi AAR, Evans MC. Cholesterol dependent cytolysins and the brain: Revealing a potential therapeutic avenue for bacterial meningitis. AIMS Microbiol 2023; 9:647-667. [PMID: 38173970 PMCID: PMC10758573 DOI: 10.3934/microbiol.2023033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/24/2023] [Accepted: 08/14/2023] [Indexed: 01/05/2024] Open
Abstract
Bacterial meningitis is a catastrophic nervous system disorder with high mortality and wide range of morbidities. Some of the meningitis-causing bacteria occupy cholesterol dependent cytolysins (CDCs) to increase their pathogenicity and arrange immune-evasion strategy. Studies have observed that the relationship between CDCs and pathogenicity in these meningitides is complex and involves interactions between CDC, blood-brain barrier (BBB), glial cells and neurons. In BBB, these CDCs acts on capillary endothelium, tight junction (TJ) proteins and neurovascular unit (NVU). CDCs also observed to elicit intriguing effects on brain inflammation which involves microglia and astrocyte activations, along with neuronal damage as the end-point of pathological pathways in bacterial meningitis. As some studies mentioned potential advantage of CDC-targeted therapeutic mechanisms to combat CNS infections, it might be a fruitful avenue to deepen our understanding of CDC as a candidate for adjuvant therapy to combat bacterial meningitis.
Collapse
Affiliation(s)
- Tjokorda Istri Pramitasuri
- Doctoral Program in Medical Science, Faculty of Medicine, Universitas Udayana, Bali, Indonesia
- Postgraduate Research Student, Faculty of Medicine, Imperial College London, United Kingdom
| | - Ni Made Susilawathi
- Department of Neurology, Faculty of Medicine, Universitas Udayana, Bali, Indonesia
| | - Ni Made Adi Tarini
- Department of Microbiology, Faculty of Medicine, Universitas Udayana-Rumah Sakit Umum Pusat Prof Dr dr IGNG Ngoerah, Bali, Indonesia
| | - AA Raka Sudewi
- Department of Neurology, Faculty of Medicine, Universitas Udayana, Bali, Indonesia
| | - Matthew C Evans
- Pain Research, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, United Kingdom
- Department of Brain Sciences, Care Research and Technology Centre, UK Dementia Research Institute, London, United Kingdom
| |
Collapse
|
4
|
Cima Cabal MD, Molina F, López-Sánchez JI, Pérez-Santín E, Del Mar García-Suárez M. Pneumolysin as a target for new therapies against pneumococcal infections: A systematic review. PLoS One 2023; 18:e0282970. [PMID: 36947540 PMCID: PMC10032530 DOI: 10.1371/journal.pone.0282970] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 02/28/2023] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND This systematic review evaluates pneumolysin (PLY) as a target for new treatments against pneumococcal infections. Pneumolysin is one of the main virulence factors produced by all types of pneumococci. This toxin (53 kDa) is a highly conserved protein that binds to cholesterol in eukaryotic cells, forming pores that lead to cell destruction. METHODS The databases consulted were MEDLINE, Web of Science, and Scopus. Articles were independently screened by title, abstract, and full text by two researchers, and using consensus to resolve any disagreements that occurred. Articles in other languages different from English, patents, cases report, notes, chapter books and reviews were excluded. Searches were restricted to the years 2000 to 2021. Methodological quality was evaluated using OHAT framework. RESULTS Forty-one articles describing the effects of different molecules that inhibit PLY were reviewed. Briefly, the inhibitory molecules found were classified into three main groups: those exerting a direct effect by binding and/or blocking PLY, those acting indirectly by preventing its effects on host cells, and those whose mechanisms are unknown. Although many molecules are proposed as toxin blockers, only some of them, such as antibiotics, peptides, sterols, and statins, have the probability of being implemented as clinical treatment. In contrast, for other molecules, there are limited studies that demonstrate efficacy in animal models with sufficient reliability. DISCUSSION Most of the studies reviewed has a good level of confidence. However, one of the limitations of this systematic review is the lack of homogeneity of the studies, what prevented to carry out a statistical comparison of the results or meta-analysis. CONCLUSION A panel of molecules blocking PLY activity are associated with the improvement of the inflammatory process triggered by the pneumococcal infection. Some molecules have already been used in humans for other purposes, so they could be safe for use in patients with pneumococcal infections. These patients might benefit from a second line treatment during the initial stages of the infection preventing acute respiratory distress syndrome and invasive pneumococcal diseases. Additional research using the presented set of compounds might further improve the clinical management of these patients.
Collapse
Affiliation(s)
- María Dolores Cima Cabal
- Escuela Superior de Ingeniería y Tecnología (ESIT), Universidad Internacional de La Rioja, UNIR, Logroño, La Rioja, Spain
| | - Felipe Molina
- Genética, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | - José Ignacio López-Sánchez
- Escuela Superior de Ingeniería y Tecnología (ESIT), Universidad Internacional de La Rioja, UNIR, Logroño, La Rioja, Spain
| | - Efrén Pérez-Santín
- Escuela Superior de Ingeniería y Tecnología (ESIT), Universidad Internacional de La Rioja, UNIR, Logroño, La Rioja, Spain
| | - María Del Mar García-Suárez
- Escuela Superior de Ingeniería y Tecnología (ESIT), Universidad Internacional de La Rioja, UNIR, Logroño, La Rioja, Spain
| |
Collapse
|
5
|
Intracellularly Released Cholesterol from Polymer-Based Delivery Systems Alters Cellular Responses to Pneumolysin and Promotes Cell Survival. Metabolites 2021; 11:metabo11120821. [PMID: 34940579 PMCID: PMC8709088 DOI: 10.3390/metabo11120821] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 11/30/2022] Open
Abstract
Cholesterol is highly abundant within all human body cells and modulates critical cellular functions related to cellular plasticity, metabolism, and survival. The cholesterol-binding toxin pneumolysin represents an essential virulence factor of Streptococcus pneumoniae in establishing pneumonia and other pneumococcal infections. Thus, cholesterol scavenging of pneumolysin is a promising strategy to reduce S. pneumoniae induced lung damage. There may also be a second cholesterol-dependent mechanism whereby pneumococcal infection and the presence of pneumolysin increase hepatic sterol biosynthesis. Here we investigated a library of polymer particles varying in size and composition that allow for the cellular delivery of cholesterol and their effects on cell survival mechanisms following pneumolysin exposure. Intracellular delivery of cholesterol by nanocarriers composed of Eudragit E100–PLGA rescued pneumolysin-induced alterations of lipid homeostasis and enhanced cell survival irrespective of neutralization of pneumolysin.
Collapse
|
6
|
Zhang D, Xu S, Wang Y, Zhu G. The Potentials of Melatonin in the Prevention and Treatment of Bacterial Meningitis Disease. Molecules 2021; 26:1419. [PMID: 33808027 PMCID: PMC7961363 DOI: 10.3390/molecules26051419] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/23/2021] [Accepted: 03/02/2021] [Indexed: 02/08/2023] Open
Abstract
Bacterial meningitis (BM) is an acute infectious central nervous system (CNS) disease worldwide, occurring with 50% of the survivors left with a long-term serious sequela. Acute bacterial meningitis is more prevalent in resource-poor than resource-rich areas. The pathogenesis of BM involves complex mechanisms that are related to bacterial survival and multiplication in the bloodstream, increased permeability of blood-brain barrier (BBB), oxidative stress, and excessive inflammatory response in CNS. Considering drug-resistant bacteria increases the difficulty of meningitis treatment and the vaccine also has been limited to several serotypes, and the morbidity rate of BM still is very high. With recent development in neurology, there is promising progress for drug supplements of effectively preventing and treating BM. Several in vivo and in vitro studies have elaborated on understanding the significant mechanism of melatonin on BM. Melatonin is mainly secreted in the pineal gland and can cross the BBB. Melatonin and its metabolite have been reported as effective antioxidants and anti-inflammation, which are potentially useful as prevention and treatment therapy of BM. In bacterial meningitis, melatonin can play multiple protection effects in BM through various mechanisms, including immune response, antibacterial ability, the protection of BBB integrity, free radical scavenging, anti-inflammation, signaling pathways, and gut microbiome. This manuscript summarizes the major neuroprotective mechanisms of melatonin and explores the potential prevention and treatment approaches aimed at reducing morbidity and alleviating nerve injury of BM.
Collapse
Affiliation(s)
- Dong Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (D.Z.); (S.X.); (Y.W.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Shu Xu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (D.Z.); (S.X.); (Y.W.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Yiting Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (D.Z.); (S.X.); (Y.W.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Guoqiang Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (D.Z.); (S.X.); (Y.W.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| |
Collapse
|
7
|
Role of astroglial Connexin 43 in pneumolysin cytotoxicity and during pneumococcal meningitis. PLoS Pathog 2020; 16:e1009152. [PMID: 33370401 PMCID: PMC7793270 DOI: 10.1371/journal.ppat.1009152] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 01/08/2021] [Accepted: 11/11/2020] [Indexed: 12/19/2022] Open
Abstract
Streptococcus pneumoniae or pneumococcus (PN) is a major causative agent of bacterial meningitis with high mortality in young infants and elderly people worldwide. The mechanism underlying PN crossing of the blood brain barrier (BBB) and specifically, the role of non-endothelial cells of the neurovascular unit that control the BBB function, remains poorly understood. Here, we show that the astroglial connexin 43 (aCx43), a major gap junctional component expressed in astrocytes, plays a predominant role during PN meningitis. Following intravenous PN challenge, mice deficient for aCx43 developed milder symptoms and showed severely reduced bacterial counts in the brain. Immunofluorescence analysis of brain slices indicated that PN induces the aCx43–dependent destruction of the network of glial fibrillary acid protein (GFAP), an intermediate filament protein specifically expressed in astrocytes and up-regulated in response to brain injury. PN also induced nuclear shrinkage in astrocytes associated with the loss of BBB integrity, bacterial translocation across endothelial vessels and replication in the brain cortex. We found that aCx4-dependent astrocyte damages could be recapitulated using in vitro cultured cells upon challenge with wild-type PN but not with a ply mutant deficient for the pore-forming toxin pneumolysin (Ply). Consistently, we showed that purified Ply requires Cx43 to promote host cell plasma membrane permeabilization in a process involving the Cx43-dependent release of extracellular ATP and prolonged increase of cytosolic Ca2+ in host cells. These results point to a critical role for astrocytes during PN meningitis and suggest that the cytolytic activity of the major virulence factor Ply at concentrations relevant to bacterial infection requires co-opting of connexin plasma membrane channels. The role of non-endothelial cells constituting the neurovascular unit during infectious meningitis is poorly appreciated despite their key regulatory functions on the blood-brain barrier integrity. Here, we show that Streptococcus pneumoniae or pneumococcus, a major causative agent of bacterial meningitis, targets astroglial cells to translocate across brain endothelial vessels. We found that astroglial connexin 43, a gap junctional component, played a major role during PN meningitis in mice. PN translocation and replication in the brain cortex were associated with connexin-dependent fragmentation of astrocytic the GFAP network, a process associated with brain injury. These findings were recapitulated and extended in vitro using cultured primary astrocytes and the major PN virulence determinant Pneumolysin. Ply-mediated cytotoxicity was linked to Ca2+ increase and required aCx43, arguing against a direct toxin activity. The results reveal a key role for astroglial signaling during PN crossing of the BBB and shed light on the mechanism of Ply-mediated cytotoxicity during meningitis.
Collapse
|
8
|
Devraj G, Guérit S, Seele J, Spitzer D, Macas J, Khel MI, Heidemann R, Braczynski AK, Ballhorn W, Günther S, Ogunshola OO, Mittelbronn M, Ködel U, Monoranu CM, Plate KH, Hammerschmidt S, Nau R, Devraj K, Kempf VAJ. HIF-1α is involved in blood-brain barrier dysfunction and paracellular migration of bacteria in pneumococcal meningitis. Acta Neuropathol 2020; 140:183-208. [PMID: 32529267 PMCID: PMC7360668 DOI: 10.1007/s00401-020-02174-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/03/2020] [Accepted: 06/03/2020] [Indexed: 02/06/2023]
Abstract
Bacterial meningitis is a deadly disease most commonly caused by Streptococcus pneumoniae, leading to severe neurological sequelae including cerebral edema, seizures, stroke, and mortality when untreated. Meningitis is initiated by the transfer of S. pneumoniae from blood to the brain across the blood-cerebrospinal fluid barrier or the blood-brain barrier (BBB). The underlying mechanisms are still poorly understood. Current treatment strategies include adjuvant dexamethasone for inflammation and cerebral edema, followed by antibiotics. The success of dexamethasone is however inconclusive, necessitating new therapies for controlling edema, the primary reason for neurological complications. Since we have previously shown a general activation of hypoxia inducible factor (HIF-1α) in bacterial infections, we hypothesized that HIF-1α, via induction of vascular endothelial growth factor (VEGF) is involved in transmigration of pathogens across the BBB. In human, murine meningitis brain samples, HIF-1α activation was observed by immunohistochemistry. S. pneumoniae infection in brain endothelial cells (EC) resulted in in vitro upregulation of HIF-1α/VEGF (Western blotting/qRT-PCR) associated with increased paracellular permeability (fluorometry, impedance measurements). This was supported by bacterial localization at cell-cell junctions in vitro and in vivo in brain ECs from mouse and humans (confocal, super-resolution, electron microscopy, live-cell imaging). Hematogenously infected mice showed increased permeability, S. pneumoniae deposition in the brain, along with upregulation of genes in the HIF-1α/VEGF pathway (RNA sequencing of brain microvessels). Inhibition of HIF-1α with echinomycin, siRNA in bEnd5 cells or using primary brain ECs from HIF-1α knock-out mice revealed reduced endothelial permeability and transmigration of S. pneumoniae. Therapeutic rescue using the HIF-1α inhibitor echinomycin resulted in increased survival and improvement of BBB function in S. pneumoniae-infected mice. We thus demonstrate paracellular migration of bacteria across BBB and a critical role for HIF-1α/VEGF therein and hence propose targeting this pathway to prevent BBB dysfunction and ensuing brain damage in infections.
Collapse
Affiliation(s)
- Gayatri Devraj
- Institute for Medical Microbiology and Infection Control, Goethe University, Frankfurt am Main, Germany
| | - Sylvaine Guérit
- Edinger Institute/Neurological Institute, Goethe University, Frankfurt am Main, Germany
| | - Jana Seele
- Institute of Neuropathology, University Medical Center, Göttingen, Germany ,Department of Geriatrics, Evangelisches Krankenhaus, Göttingen-Weende, Germany
| | - Daniel Spitzer
- Edinger Institute/Neurological Institute, Goethe University, Frankfurt am Main, Germany ,Department of Neurology, Goethe University, Frankfurt am Main, Germany
| | - Jadranka Macas
- Edinger Institute/Neurological Institute, Goethe University, Frankfurt am Main, Germany
| | - Maryam I. Khel
- Edinger Institute/Neurological Institute, Goethe University, Frankfurt am Main, Germany
| | - Roxana Heidemann
- Institute of Neuropathology, University Medical Center, Göttingen, Germany
| | - Anne K. Braczynski
- Edinger Institute/Neurological Institute, Goethe University, Frankfurt am Main, Germany ,Department of Neurology, Technische Hochschule University Hospital, Aachen, Germany
| | - Wibke Ballhorn
- Institute for Medical Microbiology and Infection Control, Goethe University, Frankfurt am Main, Germany
| | - Stefan Günther
- Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | | | - Michel Mittelbronn
- Edinger Institute/Neurological Institute, Goethe University, Frankfurt am Main, Germany ,Luxembourg Centre of Neuropathology (LCNP), Luxembourg, Luxembourg ,Laboratoire National de Santé (LNS), Dudelange, Luxembourg ,Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Luxembourg, Luxembourg ,NORLUX Neuro-Oncology Laboratory, Luxembourg Institute of Health (LIH), Luxembourg, Luxembourg
| | - Uwe Ködel
- Department of Neurology, Ludwig-Maximilians University, Munich, Germany
| | - Camelia M. Monoranu
- Department of Neuropathology, Institute of Pathology, Julius Maximilians University, Würzburg, Germany
| | - Karl H. Plate
- Edinger Institute/Neurological Institute, Goethe University, Frankfurt am Main, Germany ,Frankfurt Cancer Institute (FCI), Goethe University, Frankfurt am Main, Germany
| | - Sven Hammerschmidt
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, Center for Functional Genomics of Microbes, University of Greifswald, Greifswald, Germany
| | - Roland Nau
- Institute of Neuropathology, University Medical Center, Göttingen, Germany
| | - Kavi Devraj
- Edinger Institute/Neurological Institute, Goethe University, Frankfurt am Main, Germany. .,Frankfurt Cancer Institute (FCI), Goethe University, Frankfurt am Main, Germany.
| | - Volkhard A. J. Kempf
- Institute for Medical Microbiology and Infection Control, Goethe University, Frankfurt am Main, Germany
| |
Collapse
|
9
|
Yu S, Yan J, Chen X, Zhu X, Li X, Liao L. Expression of cysteinyl leukotriene receptor in brain tissues of rats with Streptococcus pneumoniae meningitis. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2019; 12:4242-4252. [PMID: 31933824 PMCID: PMC6949881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 11/25/2019] [Indexed: 06/10/2023]
Abstract
Streptococcus pneumoniae meningitis is an infection of the central nervous system associated with high mortality rates and serious neurologic sequelae in children. The principal reason for the severity of S. pneumoniae meningitis is widespread ignorance of the pathogenesis of the disease. This study aimed at exploring whether cysteinyl leukotriene receptor (CysLTR) participates in the inflammatory response and elucidates the pathologic process of S. pneumoniae meningitis. Bacterial meningitis disease models were constructed by intracisternal inoculation of rats with serotype III Streptococcus pneumoniae while control models were inoculated with the same volume of normal saline. Rats were sacrificed at different time points (1 d, 2 d, and 5 d) following the administration of Streptococcus pneumoniae. Results from the body-weight, Loeffler neurologic deficit score, and cerebrospinal fluid culture confirmed that a successful pneumococcal meningitis rat model was established. Pathologic changes in brain tissues mainly consisted of inflammation in the meninges and subarachnoid space and significant neuronal injury in the cerebral cortex and hippocampus (P < 0.05). Immunohistochemical analysis revealed that microglial activation and astrocyte proliferation were associated with the development of bacterial meningitis. The expression levels of CysLTR and inflammatory factor tumor necrosis factor-α (TNF-α) were examined by quantitative real-time polymerase chain reaction (qRT-PCR) and western blot analysis. The results of this study indicate that CysLTR expression was markedly elevated in the 5 d infection group (P < 0.05), which was consistent with time-dependent release of TNF-α. The findings of this study indicate that CysLTR participates in the pneumococcal meningitis infection process by mediating neuronal injury and glial cell proliferation. Cysteinyl leukotriene receptors could, therefore, be novel targets to mitigate the progression of pneumococcal meningitis.
Collapse
Affiliation(s)
- Shuying Yu
- Department of Pharmacy, Hangzhou Children's Hospital Hangzhou, China
| | - Jun Yan
- Department of Pharmacy, Hangzhou Children's Hospital Hangzhou, China
| | - Xiaojin Chen
- Department of Pharmacy, Hangzhou Children's Hospital Hangzhou, China
| | - Xiaofei Zhu
- Department of Pharmacy, Hangzhou Children's Hospital Hangzhou, China
| | - Xiaoyu Li
- Department of Pharmacy, Hangzhou Children's Hospital Hangzhou, China
| | - Li Liao
- Department of Pharmacy, Hangzhou Children's Hospital Hangzhou, China
| |
Collapse
|
10
|
Ellis J, Luintel A, Chandna A, Heyderman RS. Community-acquired acute bacterial meningitis in adults: a clinical update. Br Med Bull 2019; 131:57-70. [PMID: 31556944 DOI: 10.1093/bmb/ldz023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 06/20/2019] [Accepted: 06/27/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Acute bacterial meningitis (ABM) in adults is associated with a mortality that may exceed 30%. Immunization programs have reduced the global burden; in the UK, declining incidence but persistently high mortality and morbidity mean that clinicians must remain vigilant. SOURCES OF DATA A systematic electronic literature search of PubMed was performed to identify all ABM literature published within the past 5 years. AREAS OF AGREEMENT AND CONTROVERSY Clinical features cannot reliably distinguish between ABM and other important infectious and non-infectious aetiologies. Prompt investigation and empirical treatment are imperative. Lumbar puncture (LP) and cerebrospinal fluid microscopy, biochemistry and culture remain the mainstay of diagnosis, but molecular techniques are increasingly useful. The 2016 UK joint specialist societies' guideline provides expert recommendations for the management of ABM, yet published data suggest clinical care delivered in the UK is frequently not adherent. Anxiety regarding risk of cerebral herniation following LP, unnecessary neuroimaging, underutilization of molecular diagnostics and suboptimal uptake of adjunctive corticosteroids compromise management. GROWING POINTS There is increasing recognition that current antibiotic regimens and adjunctive therapies alone are insufficient to reduce the mortality and morbidity associated with ABM. AREAS TIMELY FOR DEVELOPING RESEARCH Research should be focused on optimization of vaccines (e.g. pneumococcal conjugate vaccines with extended serotype coverage), targeting groups at risk for disease and reservoirs for transmission; improving adherence to management guidelines; development of new faster, more accurate diagnostic platforms (e.g. novel point-of-care molecular diagnostics); and development of new adjunctive therapies (aimed at the host-inflammatory response and bacterial virulence factors).
Collapse
Affiliation(s)
- Jayne Ellis
- Hospital for Tropical Diseases, University College London Hospitals NHS Foundation Trust, 235 Euston Rd, Bloomsbury, London, UK
| | - Akish Luintel
- Hospital for Tropical Diseases, University College London Hospitals NHS Foundation Trust, 235 Euston Rd, Bloomsbury, London, UK
| | - Arjun Chandna
- Hospital for Tropical Diseases, University College London Hospitals NHS Foundation Trust, 235 Euston Rd, Bloomsbury, London, UK
| | - Robert S Heyderman
- Hospital for Tropical Diseases, University College London Hospitals NHS Foundation Trust, 235 Euston Rd, Bloomsbury, London, UK
- Division of Infection and Immunity, University College London, Rayne Building, 5 University Street, London, UK
| |
Collapse
|
11
|
Zhang XX, Guo LY, Liu LL, Shen A, Feng WY, Huang WH, Hu HL, Hu B, Guo X, Chen TM, Chen HY, Jiang YQ, Liu G. The diagnostic value of metagenomic next-generation sequencing for identifying Streptococcus pneumoniae in paediatric bacterial meningitis. BMC Infect Dis 2019; 19:495. [PMID: 31164085 PMCID: PMC6549306 DOI: 10.1186/s12879-019-4132-y] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 05/24/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND There is currently no research on the diagnostic value of metagenomic next-generation sequencing (mNGS) for a single pathogens in CSF. The aim of this study was to analyse the value of mNGS for identifying Streptococcus pneumoniae (S. pneumoniae) in paediatric bacterial meningitis. METHODS Bacterial meningitis (BM) cases from October 23, 2014, to December 31, 2016, and December 1, 2017, to July 31, 2018 at Beijing Children's Hospital were reviewed. Clinical features and pathogens were analysed. RESULTS We diagnosed 135 patients with BM in this study. A total of 43 S. pneumoniae were identified by combination methods. 26/135 (19.3%) patients had positive results in S. pneumoniae by blood and/or cerebrospinal fluid (CSF) culture. Alere BinaxNow®Streptococcus pneumoniae Antigen test was positive in 35/135(25.9%) cases. 32/135 (23.7%) S. pneumoniae were identified by mNGS. Six CSF samples were identified as S. pneumoniae only by mNGS technology. Taking culture as the gold standard, the sensitivity and specificity of mNGS for diagnosing S. pneumoniae meningitis were 73.1 and 88.1%, respectively. The positive predictive value (PPV) and negative predictive value (NPV) of diagnosing S. pneumoniae meningitis by mNGS were 59.4 and 93.2%, respectively. When comparison between mNGS and combined tests (culture and Alere BinaxNow®Streptococcus pneumoniae Antigen test), the sensitivity and specificity of mNGS for S. pneumoniae identification were 70.3 and 93.9%, the PPV and NPV in the identification of S. pneumoniae by mNGS were 81.4 and 89.3%, respectively. The difference in number of unique reads of S. pneumoniaein from CSF sample (< 14 days onset) and CSF sample (> 14 days from onset) was statistically significant (170.5 VS. 13, P = 0.019). The difference in the collected time of CSF for culture and mNGS was statistically significant (4 days VS. 14 days, P < 0.001). CONCLUSIONS mNGS has high sensitivity and specificity for S. pneumoniae identification. The pathogen load (number of unique reads) of S. pneumonia is related to the CSF collection time. mNGS was less affected than culture by the use of antibiotics before CSF collection.
Collapse
MESH Headings
- Adolescent
- Age Factors
- Antigens, Bacterial/analysis
- Antigens, Bacterial/blood
- Antigens, Bacterial/cerebrospinal fluid
- Antigens, Bacterial/genetics
- Child
- Child, Preschool
- Diagnostic Tests, Routine
- Female
- High-Throughput Nucleotide Sequencing
- Humans
- Infant
- Infant, Newborn
- Male
- Meningitis, Bacterial/blood
- Meningitis, Bacterial/cerebrospinal fluid
- Meningitis, Bacterial/diagnosis
- Meningitis, Bacterial/microbiology
- Metagenomics/methods
- Pediatrics/methods
- Polymerase Chain Reaction/methods
- Predictive Value of Tests
- Sensitivity and Specificity
- Streptococcus pneumoniae/genetics
- Streptococcus pneumoniae/isolation & purification
Collapse
Affiliation(s)
- Xi-Xi Zhang
- Key Laboratory of Major Diseases in Children, Ministry of Education, Department of Infectious Diseases, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, No. 56 Nan Lishi Road, Beijing, 100045, China
| | - Ling-Yun Guo
- Key Laboratory of Major Diseases in Children, Ministry of Education, Department of Infectious Diseases, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, No. 56 Nan Lishi Road, Beijing, 100045, China
| | - Lin-Lin Liu
- Key Laboratory of Major Diseases in Children, Ministry of Education, Department of Infectious Diseases, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, No. 56 Nan Lishi Road, Beijing, 100045, China
| | - Ao Shen
- Tianjin Medical Laboratory, BGI-Tianjin, Tianjin, China
| | - Wen-Ya Feng
- Key Laboratory of Major Diseases in Children, Ministry of Education, Department of Infectious Diseases, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, No. 56 Nan Lishi Road, Beijing, 100045, China
| | - Wen-Hua Huang
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Science, Beijing, 100071, China
| | - Hui-Li Hu
- Key Laboratory of Major Diseases in Children, Ministry of Education, Department of Infectious Diseases, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, No. 56 Nan Lishi Road, Beijing, 100045, China
| | - Bing Hu
- Key Laboratory of Major Diseases in Children, Ministry of Education, Department of Infectious Diseases, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, No. 56 Nan Lishi Road, Beijing, 100045, China
| | - Xin Guo
- Key Laboratory of Major Diseases in Children, Ministry of Education, Department of Infectious Diseases, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, No. 56 Nan Lishi Road, Beijing, 100045, China
| | - Tian-Ming Chen
- Key Laboratory of Major Diseases in Children, Ministry of Education, Department of Infectious Diseases, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, No. 56 Nan Lishi Road, Beijing, 100045, China
| | - He-Ying Chen
- Key Laboratory of Major Diseases in Children, Ministry of Education, Department of Infectious Diseases, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, No. 56 Nan Lishi Road, Beijing, 100045, China
| | - Yong-Qiang Jiang
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Science, Beijing, 100071, China
| | - Gang Liu
- Key Laboratory of Major Diseases in Children, Ministry of Education, Department of Infectious Diseases, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, No. 56 Nan Lishi Road, Beijing, 100045, China.
| |
Collapse
|
12
|
Anderson R, Nel JG, Feldman C. Multifaceted Role of Pneumolysin in the Pathogenesis of Myocardial Injury in Community-Acquired Pneumonia. Int J Mol Sci 2018; 19:E1147. [PMID: 29641429 PMCID: PMC5979279 DOI: 10.3390/ijms19041147] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 03/14/2018] [Accepted: 03/21/2018] [Indexed: 12/14/2022] Open
Abstract
Pneumolysin (PLY), a member of the family of Gram-positive bacterial, cholesterol-dependent, β-barrel pore-forming cytolysins, is the major protein virulence factor of the dangerous respiratory pathogen, Streptococcus pneumoniae (pneumococcus). PLY plays a major role in the pathogenesis of community-acquired pneumonia (CAP), promoting colonization and invasion of the upper and lower respiratory tracts respectively, as well as extra-pulmonary dissemination of the pneumococcus. Notwithstanding its role in causing acute lung injury in severe CAP, PLY has also been implicated in the development of potentially fatal acute and delayed-onset cardiovascular events, which are now recognized as being fairly common complications of this condition. This review is focused firstly on updating mechanisms involved in the immunopathogenesis of PLY-mediated myocardial damage, specifically the direct cardiotoxic and immunosuppressive activities, as well as the indirect pro-inflammatory/pro-thrombotic activities of the toxin. Secondly, on PLY-targeted therapeutic strategies including, among others, macrolide antibiotics, natural product antagonists, cholesterol-containing liposomes, and fully humanized monoclonal antibodies, as well as on vaccine-based preventive strategies. These sections are preceded by overviews of CAP in general, the role of the pneumococcus as the causative pathogen, the occurrence and types of CAP-associated cardiac complication, and the structure and biological activities of PLY.
Collapse
Affiliation(s)
- Ronald Anderson
- Department of Immunology and Institute for Cellular and Molecular Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa.
| | - Jan G Nel
- Department of Haematology, Faculty of Health Sciences, University of Pretoria and Tshwane Academic Division of the National Health Laboratory Service, Pretoria 0001, South Africa.
| | - Charles Feldman
- Division of Pulmonology, Department of Internal Medicine, Charlotte Maxeke Johannesburg Academic Hospital and Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 0002, South Africa.
| |
Collapse
|
13
|
Hupp S, Ribes S, Seele J, Bischoff C, Förtsch C, Maier E, Benz R, Mitchell TJ, Nau R, Iliev AI. Magnesium therapy improves outcome in Streptococcus pneumoniae meningitis by altering pneumolysin pore formation. Br J Pharmacol 2017; 174:4295-4307. [PMID: 28888095 DOI: 10.1111/bph.14027] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 08/26/2017] [Accepted: 08/29/2017] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND AND PURPOSE Streptococcus pneumoniae is the most common cause of bacterial meningitis in adults and is characterized by high lethality and substantial cognitive disabilities in survivors. Here, we have studied the capacity of an established therapeutic agent, magnesium, to improve survival in pneumococcal meningitis by modulating the neurological effects of the major pneumococcal pathogenic factor, pneumolysin. EXPERIMENTAL APPROACH We used mixed primary glial and acute brain slice cultures, pneumolysin injection in infant rats, a mouse meningitis model and complementary approaches such as Western blot, a black lipid bilayer conductance assay and live imaging of primary glial cells. KEY RESULTS Treatment with therapeutic concentrations of magnesium chloride (500 mg·kg-1 in animals and 2 mM in cultures) prevented pneumolysin-induced brain swelling and tissue remodelling both in brain slices and in animal models. In contrast to other divalent ions, which diminish the membrane binding of pneumolysin in non-therapeutic concentrations, magnesium delayed toxin-driven pore formation without affecting its membrane binding or the conductance profile of its pores. Finally, magnesium prolonged the survival and improved clinical condition of mice with pneumococcal meningitis, in the absence of antibiotic treatment. CONCLUSIONS AND IMPLICATIONS Magnesium is a well-established and safe therapeutic agent that has demonstrated capacity for attenuating pneumolysin-triggered pathogenic effects on the brain. The improved animal survival and clinical condition in the meningitis model identifies magnesium as a promising candidate for adjunctive treatment of pneumococcal meningitis, together with antibiotic therapy.
Collapse
Affiliation(s)
- Sabrina Hupp
- Institute of Anatomy, University of Bern, Bern, Switzerland.,DFG Membrane/Cytoskeleton Interaction Group, Institute of Pharmacology and Toxicology & Rudolf Virchow Center for Experimental Medicine, University of Würzburg, Würzburg, Germany
| | - Sandra Ribes
- Department of Neuropathology, University Medical Center Göttingen, Göttingen, Germany.,Department of Geriatrics, Evangelisches Krankenhaus Göttingen-Weende, Göttingen, Germany
| | - Jana Seele
- Department of Neuropathology, University Medical Center Göttingen, Göttingen, Germany.,Department of Geriatrics, Evangelisches Krankenhaus Göttingen-Weende, Göttingen, Germany
| | - Carolin Bischoff
- DFG Membrane/Cytoskeleton Interaction Group, Institute of Pharmacology and Toxicology & Rudolf Virchow Center for Experimental Medicine, University of Würzburg, Würzburg, Germany
| | - Christina Förtsch
- DFG Membrane/Cytoskeleton Interaction Group, Institute of Pharmacology and Toxicology & Rudolf Virchow Center for Experimental Medicine, University of Würzburg, Würzburg, Germany
| | - Elke Maier
- Rudolf Virchow Center for Experimental Medicine, University of Würzburg, Würzburg, Germany
| | - Roland Benz
- Rudolf Virchow Center for Experimental Medicine, University of Würzburg, Würzburg, Germany
| | - Timothy J Mitchell
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Roland Nau
- Department of Neuropathology, University Medical Center Göttingen, Göttingen, Germany.,Department of Geriatrics, Evangelisches Krankenhaus Göttingen-Weende, Göttingen, Germany
| | - Asparouh I Iliev
- Institute of Anatomy, University of Bern, Bern, Switzerland.,DFG Membrane/Cytoskeleton Interaction Group, Institute of Pharmacology and Toxicology & Rudolf Virchow Center for Experimental Medicine, University of Würzburg, Würzburg, Germany
| |
Collapse
|