1
|
Monchusi B, Dube P, Takundwa MM, Kenmogne VL, Malise T, Thimiri Govinda Raj DB. Combination Therapies in Drug Repurposing: Personalized Approaches to Combatting Leukaemia and Multiple Myeloma. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025. [PMID: 40279000 DOI: 10.1007/5584_2025_863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Abstract
Despite advances in cancer research, treating malignancies remains challenging due to issues like drug resistance, disease heterogeneity, and the limited efficacy of current therapies, particularly in relapsed or refractory cases. In recent years, several drugs originally approved for non-cancer indications have shown potential in cancer treatment, demonstrating anti-proliferative, anti-metastatic, and immunomodulatory effects. Drug repurposing has shown immense promise due to well-established safety profiles and mechanisms of action of the compounds. However, the implementation is fraught with clinical, logistical, regulatory, and ethical challenges, especially in diseases such as leukaemia and multiple myeloma. This chapter examines the treatment challenges in leukaemia and multiple myeloma, focusing on the role of drug repurposing in addressing therapeutic resistance and disease variability. It highlights the potential of personalized, tailored combination therapies, using repurposed drug components, to offer more effective, targeted, and cost-efficient treatment strategies, overcoming resistance and improving patient outcomes.
Collapse
Affiliation(s)
- B Monchusi
- Synthetic Nanobiotechnology and Biomachines, Synthetic Biology and Precision Medicine Centre, Future production Chemicals Cluster, Council for Scientific and Industrial Research, Pretoria, South Africa
- Department of Surgery, University of the Witwatersrand, Johannesburg, South Africa
| | - P Dube
- Synthetic Nanobiotechnology and Biomachines, Synthetic Biology and Precision Medicine Centre, Future production Chemicals Cluster, Council for Scientific and Industrial Research, Pretoria, South Africa
- Department of Haematology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - M M Takundwa
- Synthetic Nanobiotechnology and Biomachines, Synthetic Biology and Precision Medicine Centre, Future production Chemicals Cluster, Council for Scientific and Industrial Research, Pretoria, South Africa
| | - V L Kenmogne
- Synthetic Nanobiotechnology and Biomachines, Synthetic Biology and Precision Medicine Centre, Future production Chemicals Cluster, Council for Scientific and Industrial Research, Pretoria, South Africa
- Department of Surgery, University of the Witwatersrand, Johannesburg, South Africa
| | - T Malise
- Synthetic Nanobiotechnology and Biomachines, Synthetic Biology and Precision Medicine Centre, Future production Chemicals Cluster, Council for Scientific and Industrial Research, Pretoria, South Africa
- Department of Surgery, University of the Witwatersrand, Johannesburg, South Africa
| | - D B Thimiri Govinda Raj
- Synthetic Nanobiotechnology and Biomachines, Synthetic Biology and Precision Medicine Centre, Future production Chemicals Cluster, Council for Scientific and Industrial Research, Pretoria, South Africa.
- Department of Surgery, University of the Witwatersrand, Johannesburg, South Africa.
| |
Collapse
|
2
|
Saeger S, West-Jeppson K, Liao YR, Campuzano A, Yu JJ, Lopez-Ribot J, Hung CY. Discovery of novel antifungal drugs via screening repurposing libraries against Coccidioides posadasii spherule initials. mBio 2025:e0020525. [PMID: 40135873 DOI: 10.1128/mbio.00205-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 02/19/2025] [Indexed: 03/27/2025] Open
Abstract
Coccidioidomycosis or valley fever is a treatment-limited fungal infection endemic to the alkaline deserts of North and South America for which two classes of antifungals are typically used: the polyenes and the triazoles. In light of the limited usefulness of the echinocandins and a growing trend of azole resistance, it is essential that we identify novel antifungals. In this study, we have developed and optimized a screening methodology for identifying potential antifungals effective against Coccidioides spherule initials using a metabolic assay, used it to screen four diverse drug libraries with limited drug overlap, and established safety and efficacy data for a majority of the compounds, including the Broad Repurposing Hub, Prestwick Chemicals 1520, Selleck L8200 Anti-parasitic, and MedChemExpress CNS Penetrants libraries. Hits were defined as compounds with strong metabolic inhibition (≥70%), which were significantly different compared to the median plate readout (B-scores ≤ -3). We identified 30 promising hits and found 12 compounds exhibiting half-maximal inhibitory concentrations below 6 µM. Among these, oxethazaine, niclosamide ethanolamine, 10058-F4, niclosamide (NIC), and pentamidine isethionate showed synergy with amphotericin B, suggesting their potential use in combination therapy. Further assessment of lead compounds' effects on spherules was conducted by image flow cytometry. Additionally, we explored the potential to use an attenuated, Biosafety Level 2 containment mutant, C. posadasii ∆cts2/∆ard1/∆cts3 (∆T), as a surrogate model for drug screening. Overall, our findings provide a foundation for future research focused on screening and developing novel coccidioidomycosis treatments.IMPORTANCEThe antifungal treatment arsenal is especially limited against Coccidioides. Due to toxicity concerns, amphotericin B is generally reserved for triazole-recalcitrant infections. Recent laboratory susceptibility tests show an increase in fluconazole resistance, highlighting a need for new treatments. We have developed a large-scale metabolic screening assay under Biosafety Level 3 containment to identify existing drugs with novel activity against Coccidioides spherules. This drug-repurposing approach represents a convenient and cost-effective strategy to increase the available antifungals effective against these infections.
Collapse
Affiliation(s)
- Sarah Saeger
- Department of Molecular Microbiology and Immunology, South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, Texas, USA
| | - Kathryn West-Jeppson
- Department of Molecular Microbiology and Immunology, South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, Texas, USA
| | - Yu-Rou Liao
- Department of Molecular Microbiology and Immunology, South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, Texas, USA
| | - Althea Campuzano
- Department of Molecular Microbiology and Immunology, South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, Texas, USA
| | - Jieh-Juen Yu
- Department of Molecular Microbiology and Immunology, South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, Texas, USA
| | - Jose Lopez-Ribot
- Department of Molecular Microbiology and Immunology, South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, Texas, USA
| | - Chiung-Yu Hung
- Department of Molecular Microbiology and Immunology, South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, Texas, USA
| |
Collapse
|
3
|
Zhao Y, Zheng Z, Jin X, Liang S, Zhang C, Zhang M, Lang Y, Li P, Liu Z. Aurora kinase B inhibitor AZD1152: repurposing for treatment of lupus nephritis driven by the results of clinical trials. EBioMedicine 2025; 112:105553. [PMID: 39799765 PMCID: PMC11773216 DOI: 10.1016/j.ebiom.2024.105553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 12/24/2024] [Accepted: 12/26/2024] [Indexed: 01/15/2025] Open
Abstract
BACKGROUND Lupus nephritis (LN) is one of the most common and severe complications of systemic lupus erythematosus (SLE). Multitarget therapy (MT) achieves a 20% higher complete remission (CR) rate compared to conventional therapy in LN management. Intrigued by its excellent clinical efficacy, we aimed to develop a single-agent therapy with comparable efficacy to MT, offering a simplified treatment regimen. METHODS AZD1152, an Aurora kinase B (Aurkb) inhibitor, was identified through transcriptomic analyses and the L1000 CMap drug repurposing database. The therapeutic efficacy of AZD1152 was evaluated in MRL/lpr mice. Transcriptome sequencing and functional assays were performed to elucidate its mechanisms of action. Aurkb expression and its clinical relevance were assessed in lupus-prone mice and patients with LN. FINDINGS AZD1152 significantly attenuated systemic immune activation and renal injury in MRL/lpr mice, demonstrating efficacy comparable to MT regimens in animal studies. AZD1152 treatment modulated immune-inflammatory pathways in the kidney. Aurkb expression was upregulated in T cells infiltrating the renal interstitium in LN. Additionally, Aurkb expression levels positively correlated with the activity index (AI) and serum creatinine (Scr) in patients with LN. Mechanistic studies revealed that AZD1152 exerts therapeutic effects primarily by inhibiting T-cell proliferation. INTERPRETATION This study presents a drug development strategy that integrates clinically validated LN therapies with drug repurposing approaches. This strategy could accelerate drug development and clinical translation processes for LN. FUNDING A full list of funding sources can be found in the acknowledgements section.
Collapse
Affiliation(s)
- Yue Zhao
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, China
| | - Zuguo Zheng
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Xuexiao Jin
- Institute of Immunology and Department of Rheumatology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, PR China
| | - Shaoshan Liang
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, China
| | - Changming Zhang
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, China
| | - Mingchao Zhang
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, China
| | - Yue Lang
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, China
| | - Ping Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Zhihong Liu
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, China.
| |
Collapse
|
4
|
Ng MSY, Kaur G, Francis RS, Hawley CM, Johnson DW. Drug repurposing for glomerular diseases: an underutilized resource. Nat Rev Nephrol 2024; 20:707-721. [PMID: 39085415 DOI: 10.1038/s41581-024-00864-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2024] [Indexed: 08/02/2024]
Abstract
Drug repurposing in glomerular disease can deliver opportunities for steroid-free regimens, enable personalized multi-target options for resistant or relapsing disease and enhance treatment options for understudied populations (for example, children) and in resource-limited settings. Identification of drug-repurposing candidates can be data driven, which utilizes existing data on disease pathobiology, drug features and clinical outcomes, or experimental, which involves high-throughput drug screens. Information from databases of approved drugs, clinical trials and PubMed registries suggests that at least 96 drugs on the market cover 49 targets with immunosuppressive potential that could be candidates for drug repurposing in glomerular disease. Furthermore, evidence to support drug repurposing is available for 191 immune drug target-glomerular disease pairs. Non-immunological drug repurposing includes strategies to reduce haemodynamic overload, podocyte injury and kidney fibrosis. Recommended strategies to expand drug-repurposing capacity in glomerular disease include enriching drug databases with glomeruli-specific information, enhancing the accessibility of primary clinical trial data, biomarker discovery to improve participant selection into clinical trials and improve surrogate outcomes and initiatives to reduce patent, regulatory and organizational hurdles.
Collapse
Affiliation(s)
- Monica Suet Ying Ng
- Kidney Health Service, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia.
- Conjoint Internal Medicine Laboratory, Chemical Pathology, Pathology Queensland, Brisbane, Queensland, Australia.
- Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia.
- Department of Kidney and Transplant Services, Princess Alexandra Hospital, Brisbane, Queensland, Australia.
| | - Gursimran Kaur
- Department of Rheumatology, Saint Vincent's Hospital, Sydney, New South Wales, Australia
- Saint Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
- Rheumatology Department, Sunshine Coast University Hospital, Birtinya, Queensland, Australia
| | - Ross S Francis
- Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
- Department of Kidney and Transplant Services, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Carmel M Hawley
- Department of Kidney and Transplant Services, Princess Alexandra Hospital, Brisbane, Queensland, Australia
- Translational Research Institute, Brisbane, Queensland, Australia
- Centre for Kidney Disease Research, University of Queensland, Brisbane, Queensland, Australia
| | - David W Johnson
- Department of Kidney and Transplant Services, Princess Alexandra Hospital, Brisbane, Queensland, Australia
- Translational Research Institute, Brisbane, Queensland, Australia
- Centre for Kidney Disease Research, University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
5
|
Kombo DC, Stepp JD, Lim S, Elshorst B, Li Y, Cato L, Shomali M, Fink D, LaMarche MJ. Predictions of Colloidal Molecular Aggregation Using AI/ML Models. ACS OMEGA 2024; 9:28691-28706. [PMID: 38973835 PMCID: PMC11223200 DOI: 10.1021/acsomega.4c02886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/10/2024] [Accepted: 06/12/2024] [Indexed: 07/09/2024]
Abstract
To facilitate the triage of hits from small molecule screens, we have used various AI/ML techniques and experimentally observed data sets to build models aimed at predicting colloidal aggregation of small organic molecules in aqueous solution. We have found that Naïve Bayesian and deep neural networks outperform logistic regression, recursive partitioning tree, support vector machine, and random forest techniques by having the lowest balanced error rate (BER) for the test set. Derived predictive classification models consistently and successfully discriminated aggregator molecules from nonaggregator hits. An analysis of molecular descriptors in favor of colloidal aggregation confirms previous observations (hydrophobicity, molecular weight, and solubility) in addition to undescribed molecular descriptors such as the fraction of sp3 carbon atoms (Fsp3), and electrotopological state of hydroxyl groups (ES_Sum_sOH). Naïve Bayesian modeling and scaffold tree analysis have revealed chemical features/scaffolds contributing the most to colloidal aggregation and nonaggregation, respectively. These results highlight the importance of scaffolds with high Fsp3 values in promoting nonaggregation. Matched molecular pair analysis (MMPA) has also deciphered context-dependent substitutions, which can be used to design nonaggregator molecules. We found that most matched molecular pairs have a neutral effect on aggregation propensity. We have prospectively applied our predictive models to assist in chemical library triage for optimal plate selection diversity and purchase for high throughput screening (HTS) in drug discovery projects.
Collapse
Affiliation(s)
- David C. Kombo
- Integrated
Drug Discovery, Sanofi, 350 Water St., Cambridge, Massachusetts 02141, United States
| | - J. David Stepp
- Integrated
Drug Discovery, Sanofi, 350 Water St., Cambridge, Massachusetts 02141, United States
| | - Sungtaek Lim
- Integrated
Drug Discovery, Sanofi, 350 Water St., Cambridge, Massachusetts 02141, United States
| | - Bettina Elshorst
- CMC
Synthetics Early Development Analytics, Sanofi, Industriepark Hochst, Frankfurt 65926, Germany
| | - Yi Li
- Integrated
Drug Discovery, Sanofi, 350 Water St., Cambridge, Massachusetts 02141, United States
| | - Laura Cato
- Molecular
Oncology, Sanofi, 350
Water St., Cambridge, Massachusetts 02141, United States
| | - Maysoun Shomali
- Molecular
Oncology, Sanofi, 350
Water St., Cambridge, Massachusetts 02141, United States
| | - David Fink
- Integrated
Drug Discovery, Sanofi, 350 Water St., Cambridge, Massachusetts 02141, United States
| | - Matthew J. LaMarche
- Integrated
Drug Discovery, Sanofi, 350 Water St., Cambridge, Massachusetts 02141, United States
| |
Collapse
|
6
|
Al-Odat OS, Nelson E, Budak-Alpdogan T, Jonnalagadda SC, Desai D, Pandey MK. Discovering Potential in Non-Cancer Medications: A Promising Breakthrough for Multiple Myeloma Patients. Cancers (Basel) 2024; 16:2381. [PMID: 39001443 PMCID: PMC11240591 DOI: 10.3390/cancers16132381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/20/2024] [Accepted: 06/24/2024] [Indexed: 07/16/2024] Open
Abstract
MM is a common type of cancer that unfortunately leads to a significant number of deaths each year. The majority of the reported MM cases are detected in the advanced stages, posing significant challenges for treatment. Additionally, all MM patients eventually develop resistance or experience relapse; therefore, advances in treatment are needed. However, developing new anti-cancer drugs, especially for MM, requires significant financial investment and a lengthy development process. The study of drug repurposing involves exploring the potential of existing drugs for new therapeutic uses. This can significantly reduce both time and costs, which are typically a major concern for MM patients. The utilization of pre-existing non-cancer drugs for various myeloma treatments presents a highly efficient and cost-effective strategy, considering their prior preclinical and clinical development. The drugs have shown promising potential in targeting key pathways associated with MM progression and resistance. Thalidomide exemplifies the success that can be achieved through this strategy. This review delves into the current trends, the challenges faced by conventional therapies for MM, and the importance of repurposing drugs for MM. This review highlights a noncomprehensive list of conventional therapies that have potentially significant anti-myeloma properties and anti-neoplastic effects. Additionally, we offer valuable insights into the resources that can help streamline and accelerate drug repurposing efforts in the field of MM.
Collapse
Affiliation(s)
- Omar S. Al-Odat
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ 08103, USA; (O.S.A.-O.); (E.N.)
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, NJ 08028, USA;
| | - Emily Nelson
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ 08103, USA; (O.S.A.-O.); (E.N.)
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, NJ 08028, USA;
| | | | | | - Dhimant Desai
- Department of Pharmacology, Penn State Neuroscience Institute, Penn State College of Medicine, Hershey, PA 17033, USA;
| | - Manoj K. Pandey
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ 08103, USA; (O.S.A.-O.); (E.N.)
| |
Collapse
|
7
|
Glenn IS, Hall LN, Khalid MM, Ott M, Shoichet BK. Colloidal Aggregation Confounds Cell-Based Covid-19 Antiviral Screens. J Med Chem 2024; 67:10263-10274. [PMID: 38864383 PMCID: PMC11236530 DOI: 10.1021/acs.jmedchem.4c00597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Colloidal aggregation is one of the largest contributors to false positives in early drug discovery. Here, we consider aggregation's role in cell-based infectivity assays in Covid-19 drug repurposing. We investigated the potential aggregation of 41 drug candidates reported as SARs-CoV-2 entry inhibitors. Of these, 17 formed colloidal particles by dynamic light scattering and exhibited detergent-dependent enzyme inhibition. To evaluate the impact of aggregation on antiviral efficacy in cells, we presaturated the colloidal drug suspensions with BSA or spun them down by centrifugation and measured the effects on spike pseudovirus infectivity. Antiviral potencies diminished by at least 10-fold following both BSA and centrifugation treatments, supporting a colloid-based mechanism. Aggregates induced puncta of the labeled spike protein in fluorescence microscopy, consistent with sequestration of the protein on the colloidal particles. These observations suggest that colloidal aggregation is common among cell-based antiviral drug repurposing and offers rapid counter-screens to detect and eliminate these artifacts.
Collapse
Affiliation(s)
- Isabella S Glenn
- Department of Pharmaceutical Chemistry, University of California San Francisco (UCSF), San Francisco, California 94143, United States
| | - Lauren N Hall
- Department of Pharmaceutical Chemistry, University of California San Francisco (UCSF), San Francisco, California 94143, United States
| | - Mir M Khalid
- Gladstone Institutes, San Francisco, California 94158, United States
- Department of Medicine, University of California, San Francisco, San Francisco, California 94158, United States
| | - Melanie Ott
- Gladstone Institutes, San Francisco, California 94158, United States
- Department of Medicine, University of California, San Francisco, San Francisco, California 94158, United States
- Chan Zuckerberg Biohub, San Francisco, California 94158, United States
| | - Brian K Shoichet
- Department of Pharmaceutical Chemistry, University of California San Francisco (UCSF), San Francisco, California 94143, United States
| |
Collapse
|
8
|
Pisoni LA, Semple SJ, Liu S, Sykes MJ, Venter H. Combined Structure- and Ligand-Based Approach for the Identification of Inhibitors of AcrAB-TolC in Escherichia coli. ACS Infect Dis 2023; 9:2504-2522. [PMID: 37888944 DOI: 10.1021/acsinfecdis.3c00350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
The inhibition of efflux pumps is a promising approach to combating multidrug-resistant bacteria. We have developed a combined structure- and ligand-based model, using OpenEye software, for the identification of inhibitors of AcrB, the inner membrane protein component of the AcrAB-TolC efflux pump in Escherichia coli. From a database of 1391 FDA-approved drugs, 23 compounds were selected to test for efflux inhibition in E. coli. Seven compounds, including ivacaftor (25), butenafine (19), naftifine (27), pimozide (30), thioridazine (35), trifluoperazine (37), and meloxicam (26), enhanced the activity of at least one antimicrobial substrate and inhibited the efflux pump-mediated removal of the substrate Nile Red from cells. Ivacaftor (25) inhibited efflux dose dependently, had no effect on an E. coli strain with genomic deletion of the gene encoding AcrB, and did not damage the bacterial outer membrane. In the presence of a sub-minimum inhibitory concentration (MIC) of the outer membrane permeabilizer colistin, ivacaftor at 1 μg/mL reduced the MICs of erythromycin and minocycline by 4- to 8-fold. The identification of seven potential AcrB inhibitors shows the merits of a combined structure- and ligand-based approach to virtual screening.
Collapse
Affiliation(s)
- Lily A Pisoni
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, South Australia 5000, Australia
- Quality Use of Medicines and Pharmacy Research Centre, Clinical and Health Sciences, University of South Australia, Adelaide, South Australia 5000, Australia
| | - Susan J Semple
- Quality Use of Medicines and Pharmacy Research Centre, Clinical and Health Sciences, University of South Australia, Adelaide, South Australia 5000, Australia
| | - Sida Liu
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, South Australia 5000, Australia
| | - Matthew J Sykes
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, South Australia 5000, Australia
| | - Henrietta Venter
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, South Australia 5000, Australia
| |
Collapse
|
9
|
Glenn IS, Hall LN, Khalid MM, Ott M, Shoichet BK. Colloidal aggregation confounds cell-based Covid-19 antiviral screens. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.27.564435. [PMID: 37961552 PMCID: PMC10634915 DOI: 10.1101/2023.10.27.564435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Colloidal aggregation is one of the largest contributors to false-positives in early drug discovery and chemical biology. Much work has focused on its impact on pure-protein screens; here we consider aggregations role in cell-based infectivity assays in Covid-19 drug repurposing. We began by investigating the potential aggregation of 41 drug candidates reported as SARs-CoV-2 entry inhibitors. Of these, 17 formed colloidal-particles by dynamic light scattering and exhibited detergent-dependent enzyme inhibition. To evaluate antiviral efficacy of the drugs in cells we used spike pseudotyped lentivirus and pre-saturation of the colloids with BSA. The antiviral potency of the aggregators was diminished by at least 10-fold and often entirely eliminated in the presence of BSA, suggesting antiviral activity can be attributed to the non-specific nature of the colloids. In confocal microscopy, the aggregates induced fluorescent puncta of labeled spike protein, consistent with sequestration of the protein on the colloidal particles. Addition of either non-ionic detergent or of BSA disrupted these puncta. These observations suggest that colloidal aggregation is common among cell-based anti-viral drug repurposing, and perhaps cell-based assays more broadly, and offers rapid counter-screens to detect and eliminate these artifacts, allowing the community invest resources in compounds with true potential as a Covid-19 therapeutic.
Collapse
Affiliation(s)
- Isabella S Glenn
- Department of Pharmaceutical Chemistry, University of California San Francisco (UCSF), San Francisco, CA, USA
| | - Lauren N Hall
- Department of Pharmaceutical Chemistry, University of California San Francisco (UCSF), San Francisco, CA, USA
| | - Mir M Khalid
- Gladstone Institutes, San Francisco, California, United States
- Department of Medicine, University of California, San Francisco, San Francisco, California, United States
| | - Melanie Ott
- Gladstone Institutes, San Francisco, California, United States
- Department of Medicine, University of California, San Francisco, San Francisco, California, United States
- Chan Zuckerberg Biohub, San Francisco, California, United States
| | - Brian K Shoichet
- Department of Pharmaceutical Chemistry, University of California San Francisco (UCSF), San Francisco, CA, USA
| |
Collapse
|
10
|
do Amaral L, Dos Santos NAG, Sisti FM, Del Bel E, Dos Santos AC. Doxycycline inhibits dopaminergic neurodegeneration through upregulation of axonal and synaptic proteins. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:1787-1796. [PMID: 36843128 DOI: 10.1007/s00210-023-02435-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 02/18/2023] [Indexed: 02/28/2023]
Abstract
Doxycycline (DOX) is a widely used antibiotic that is able to cross the blood-brain barrier. Several studies have shown its neuroprotective effect against neurodegeneration and have associated it with antioxidant, anti-apoptotic, and anti-inflammatory mechanisms. We have recently demonstrated that DOX mimics nerve growth factor (NGF) signaling in PC12 cells. However, the involvement of this mechanism in the neuroprotective effect of DOX is unknown. Axonal degeneration and synaptic loss are key events at the early stages of neurodegeneration, and precede the neuronal death in neurodegenerative diseases, including Parkinson's disease (PD). Therefore, the regeneration of the axonal and synaptic network might be beneficial in PD. The effect of DOX in PC12 cells treated with the Parkinsonian neurotoxin 1-methyl-4-phenylpyridinium (MPP+) was addressed. Doxycycline reduced the inhibition of neuritogenesis induced by MPP+, even in cells deprived of NGF. The mechanism involved the upregulation of GAP-43, synapsin I, β-III-tubulin, F-actin, and neurofilament-200, proteins that are associated with axonal and synaptic plasticity. Considering the role of axonal degeneration and synaptic loss at the initial stages of PD, the recent advances in early diagnosis of neurodegeneration, and the advantages of drug repurposing, doxycycline is a promising candidate to treat PD.
Collapse
Affiliation(s)
- Lilian do Amaral
- Department of Clinical, Toxicological and Bromatological Analysis, School of Pharmaceutical Sciences of Ribeirão Preto, Av Do Café S/N, University of São Paulo, Ribeirão Preto, SP, 14040-903, Brazil
| | - Neife Aparecida Guinaim Dos Santos
- Department of Clinical, Toxicological and Bromatological Analysis, School of Pharmaceutical Sciences of Ribeirão Preto, Av Do Café S/N, University of São Paulo, Ribeirão Preto, SP, 14040-903, Brazil
| | - Flávia Malvestio Sisti
- Department of Clinical, Toxicological and Bromatological Analysis, School of Pharmaceutical Sciences of Ribeirão Preto, Av Do Café S/N, University of São Paulo, Ribeirão Preto, SP, 14040-903, Brazil
| | - Elaine Del Bel
- Department of Basic and Oral Biology, Faculty of Dentistry of Ribeirão Preto, USP, Av Do Café S/N, 14040-904, Ribeirão Preto, SP, Brazil
| | - Antônio Cardozo Dos Santos
- Department of Clinical, Toxicological and Bromatological Analysis, School of Pharmaceutical Sciences of Ribeirão Preto, Av Do Café S/N, University of São Paulo, Ribeirão Preto, SP, 14040-903, Brazil.
| |
Collapse
|
11
|
Wang Y, Sharma A, Ge F, Chen P, Yang Y, Liu H, Liu H, Zhao C, Mittal L, Asthana S, Schmidt-Wolf IGH. Non-oncology drug (meticrane) shows anti-cancer ability in synergy with epigenetic inhibitors and appears to be involved passively in targeting cancer cells. Front Oncol 2023; 13:1157366. [PMID: 37274234 PMCID: PMC10235775 DOI: 10.3389/fonc.2023.1157366] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/05/2023] [Indexed: 06/06/2023] Open
Abstract
Emerging evidence suggests that chemotherapeutic agents and targeted anticancer drugs have serious side effects on the healthy cells/tissues of the patient. To overcome this, the use of non-oncology drugs as potential cancer therapies has been gaining momentum. Herein, we investigated one non-oncology drug named meticrane (a thiazide diuretic used to treat essential hypertension), which has been reported to indescribably improve the therapeutic efficacy of anti-CTLA4 in mice with AB1 HA tumors. In our hypothesis-driven study, we tested anti-cancer potential meticrane in hematological malignance (leukemia and multiple myeloma) and liver cancer cell lines. Our analysis showed that: 1) Meticrane induced alteration in the cell viability and proliferation in leukemia cells (Jurkat and K562 cells) and liver cancer (SK-hep-1), however, no evidence of apoptosis was detectable. 2) Meticrane showed additive/synergistic effects with epigenetic inhibitors (DNMT1/5AC, HDACs/CUDC-101 and HDAC6/ACY1215). 3) A genome-wide transcriptional analysis showed that meticrane treatment induces changes in the expression of genes associated with non-cancer associated pathways. Of importance, differentially expressed genes showed favorable correlation with the survival-related genes in the cancer genome. 4) We also performed molecular docking analysis and found considerable binding affinity scores of meticrane against PD-L1, TIM-3, CD73, and HDACs. Additionally, we tested its suitability for immunotherapy against cancers, but meticrane showed no response to the cytotoxicity of cytokine-induced killer (CIK) cells. To our knowledge, our study is the first attempt to identify and experimentally confirm the anti-cancer potential of meticrane, being also the first to test the suitability of any non-oncology drug in CIK cell therapy. Beyond that, we have expressed some concerns confronted during testing meticrane that also apply to other non-oncology drugs when considered for future clinical or preclinical purposes. Taken together, meticrane is involved in some anticancer pathways that are passively targeting cancer cells and may be considered as compatible with epigenetic inhibitors.
Collapse
Affiliation(s)
- Yulu Wang
- Department of Integrated Oncology, Center for Integrated Oncology (CIO), University Hospital Bonn, Bonn, Germany
| | - Amit Sharma
- Department of Integrated Oncology, Center for Integrated Oncology (CIO), University Hospital Bonn, Bonn, Germany
- Department of Neurosurgery, University Hospital Bonn, Bonn, Germany
| | - Fangfang Ge
- Department of Integrated Oncology, Center for Integrated Oncology (CIO), University Hospital Bonn, Bonn, Germany
| | - Peng Chen
- Department of Integrated Oncology, Center for Integrated Oncology (CIO), University Hospital Bonn, Bonn, Germany
| | - Yu Yang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Hongjia Liu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Hongde Liu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Chunxia Zhao
- School of Nursing, Nanchang University, Nanchang, China
| | - Lovika Mittal
- Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Shailendra Asthana
- Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Ingo G. H. Schmidt-Wolf
- Department of Integrated Oncology, Center for Integrated Oncology (CIO), University Hospital Bonn, Bonn, Germany
| |
Collapse
|
12
|
Araújo D, Ribeiro E, Amorim I, Vale N. Repurposed Drugs in Gastric Cancer. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010319. [PMID: 36615513 PMCID: PMC9822219 DOI: 10.3390/molecules28010319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 12/21/2022] [Accepted: 12/25/2022] [Indexed: 01/04/2023]
Abstract
Gastric cancer (GC) is one of the major causes of death worldwide, ranking as the fifth most incident cancer in 2020 and the fourth leading cause of cancer mortality. The majority of GC patients are in an advanced stage at the time of diagnosis, presenting a poor prognosis and outcome. Current GC treatment approaches involve endoscopic detection, gastrectomy and chemotherapy or chemoradiotherapy in an adjuvant or neoadjuvant setting. Drug development approaches demand extreme effort to identify molecular mechanisms of action of new drug candidates. Drug repurposing is based on the research of new therapeutic indications of drugs approved for other pathologies. In this review, we explore GC and the different drugs repurposed for this disease.
Collapse
Affiliation(s)
- Diana Araújo
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- Institute of Biomedical Sciences Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- Institute for Research and Innovation in Health (i3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- Institute of Molecular Pathology and Immunology, University of Porto (IPATIMUP), Rua Júlio Amaral de Carvalho, 45, 4200-135 Porto, Portugal
| | - Eduarda Ribeiro
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- Institute of Biomedical Sciences Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Irina Amorim
- Institute of Biomedical Sciences Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- Institute for Research and Innovation in Health (i3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- Institute of Molecular Pathology and Immunology, University of Porto (IPATIMUP), Rua Júlio Amaral de Carvalho, 45, 4200-135 Porto, Portugal
| | - Nuno Vale
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Department of Community Medicine, Health Information and Decision (MEDCIDS), Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- Correspondence: ; Tel.: +351-220426537
| |
Collapse
|
13
|
Hussein BH, Kasabri V, Al-Hiari Y, Arabiyat S, Ikhmais B, Alalawi S, Al-Qirim T. Selected Statins as Dual Antiproliferative-Antiinflammatory Compounds. Asian Pac J Cancer Prev 2022; 23:4047-4062. [PMID: 36579985 PMCID: PMC9971447 DOI: 10.31557/apjcp.2022.23.12.4047] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND We hypothesized that superlative dual cytotoxicity-antiinflammtion bioefficacies of 9 selected lipophilic statins correlate to their chelation effect of 3,5-dihydroxyheptanoic acid. METHODOLOGY Lipophilic-acid chelating statins have been screened for in vitro duality of proliferation inhibition and NO-radical scavenging capacities. RESULTS Their spectrum of selectivity indices for safety in PDL fibroblasts -based 72h incubations was reported. Surprisingly despite its lack on macrophages LPS-triggered inflammation over 5-200 µM and unlike the 8 statins; cerivastatin had growth inhibition IC50 values of 40nM (SW620), 110nM (HT29), 2.9 µM (HCT116), 6µM (SW480), and most notably 38µM (<50 µM, in Caco2). Exclusively cerivastatin exerted antitumorigenesis IC50 values <50 µM in all T47D, MCF7 and PANC1 72h cultures. In statins with greater antiinflammation affinity than indomethacin's; lovastatin had cytotoxicity IC50 values <20 µM in SW620<HT29<ACT116100 µM in Caco2. Atorvastatin was found of viability reduction IC50 value <20 µM in HCT11650µM in T47D, MCF7 and PANC1. Rosuvastatin had antineoplastic IC50 values (<50 µM) in SW620<SW48050 µM in remaining colorectal, breast and pancreatic cancer cell lines. In statins with appreciable antiinflammation but reasonably lower affinity than indomethacin's and cytotoxicity IC50 values >50µM in T47D, MCF7 and PANC1; pravastatin had viability reduction IC50 values <50µM in HT2950 µM were for statins in remaining colorectal cancer cell lines, breast cancer and pancreatic cancer cell lines. CONCLUSION Among the rest, cerivastatin warrants further novel scaffold development to maximize efficacy and optimal molecular action mechanisms of chemotherapy/prevention.
Collapse
Affiliation(s)
- Buchra Haj Hussein
- School of Pharmacy, University of Jordan, Amman 11942, Queen Rania Street, Jordan.
| | - Violet Kasabri
- School of Pharmacy, University of Jordan, Amman 11942, Queen Rania Street, Jordan. ,For Correspondence:
| | - Yusuf Al-Hiari
- School of Pharmacy, University of Jordan, Amman 11942, Queen Rania Street, Jordan. ,Faculty of Pharmacy, Al-Zaytoonah University of Jordan, P. O. Box 130, Amman 11733, Jordan.
| | | | - Balqis Ikhmais
- Faculty of Pharmacy, Al-Zaytoonah University of Jordan, P. O. Box 130, Amman 11733, Jordan.
| | - Sundus Alalawi
- School of Pharmacy, University of Jordan, Amman 11942, Queen Rania Street, Jordan.
| | - Tareq Al-Qirim
- Faculty of Pharmacy, Al-Zaytoonah University of Jordan, P. O. Box 130, Amman 11733, Jordan.
| |
Collapse
|
14
|
Belov KV, Batista de Carvalho LAE, Dyshin AA, Efimov SV, Khodov IA. The Role of Hidden Conformers in Determination of Conformational Preferences of Mefenamic Acid by NOESY Spectroscopy. Pharmaceutics 2022; 14:2276. [PMID: 36365095 PMCID: PMC9696638 DOI: 10.3390/pharmaceutics14112276] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 12/25/2023] Open
Abstract
Mefenamic acid has been used as a non-steroidal anti-inflammatory drug for a long time. However, its practical use is quite limited due to a number of side effects on the intestinal organs. Conformational polymorphism provides mefenamic acid with unique properties regarding possible modifications obtained during the micronization process, which can improve pharmacokinetics and minimize side effects. Micronization can be performed by decompression of supercritical fluids; methods such as rapid expansion of the supercritical solution have proven their efficiency. However, this group of methods is poorly applicable for compounds with low solubility, and the modification of the method using a pharmaceutically suitable co-solvent may be useful. In our case, addition of only 2 mol% dimethyl sulfoxide increased the solubility remarkably. Information on the conformational state may be critically important for carrying out micronization. In this work, structural analysis and estimate of conformational preferences of mefenamic acid in dimethyl sulfoxide-d6 (at 25 °C and 0.1 MPa) and in a mixed solvent supercritical carbon dioxide + dimethyl sulfoxide-d6 (45 °C, 9 MPa) were performed based on nuclear Overhauser effect spectroscopy. Results show changes in the conformation fractions depending on the medium used. The importance of allowing for hidden conformers in estimating the conformational state was demonstrated in the analysis. Obtained results may be useful for improving micronization parameters.
Collapse
Affiliation(s)
- Konstantin V. Belov
- Krestov Institute of Solution Chemistry, Russian Academy of Sciences, 153045 Ivanovo, Russia
| | | | - Alexey A. Dyshin
- Krestov Institute of Solution Chemistry, Russian Academy of Sciences, 153045 Ivanovo, Russia
| | - Sergey V. Efimov
- Institute of Physics, Kazan Federal University, 420008 Kazan, Russia
| | - Ilya A. Khodov
- Krestov Institute of Solution Chemistry, Russian Academy of Sciences, 153045 Ivanovo, Russia
| |
Collapse
|
15
|
Development and Challenges of Diclofenac-Based Novel Therapeutics: Targeting Cancer and Complex Diseases. Cancers (Basel) 2022; 14:cancers14184385. [PMID: 36139546 PMCID: PMC9496891 DOI: 10.3390/cancers14184385] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Diclofenac is a widely used drug for its anti-inflammatory and pain alleviating properties. This review summarizes the current understanding about the drug diclofenac. The potential applications of diclofenac beyond its well-known anti-inflammatory properties for other diseases such as cancer are discussed, along with existing limitations. Abstract Diclofenac is a highly prescribed non-steroidal anti-inflammatory drug (NSAID) that relieves inflammation, pain, fever, and aches, used at different doses depending on clinical conditions. This drug inhibits cyclooxygenase-1 and cyclooxygenase-2 enzymes, which are responsible for the generation of prostaglandin synthesis. To improve current diclofenac-based therapies, we require new molecular systematic therapeutic approaches to reduce complex multifactorial effects. However, the critical challenge that appears with diclofenac and other drugs of the same class is their side effects, such as signs of stomach injuries, kidney problems, cardiovascular issues, hepatic issues, and diarrhea. In this article, we discuss why defining diclofenac-based mechanisms, pharmacological features, and its medicinal properties are needed to direct future drug development against neurodegeneration and imperfect ageing and to improve cancer therapy. In addition, we describe various advance molecular mechanisms and fundamental aspects linked with diclofenac which can strengthen and enable the better designing of new derivatives of diclofenac to overcome critical challenges and improve their applications.
Collapse
|
16
|
Niranjan V, Setlur AS, Karunakaran C, Uttarkar A, Kumar KM, Skariyachan S. Scope of repurposed drugs against the potential targets of the latest variants of SARS-CoV-2. Struct Chem 2022; 33:1585-1608. [PMID: 35938064 PMCID: PMC9346052 DOI: 10.1007/s11224-022-02020-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 07/19/2022] [Indexed: 11/21/2022]
Abstract
The unprecedented outbreak of the severe acute respiratory syndrome (SARS) Coronavirus-2, across the globe, triggered a worldwide uproar in the search for immediate treatment strategies. With no specific drug and not much data available, alternative approaches such as drug repurposing came to the limelight. To date, extensive research on the repositioning of drugs has led to the identification of numerous drugs against various important protein targets of the coronavirus strains, with hopes of the drugs working against the major variants of concerns (alpha, beta, gamma, delta, omicron) of the virus. Advancements in computational sciences have led to improved scope of repurposing via techniques such as structure-based approaches including molecular docking, molecular dynamic simulations and quantitative structure activity relationships, network-based approaches, and artificial intelligence-based approaches with other core machine and deep learning algorithms. This review highlights the various approaches to repurposing drugs from a computational biological perspective, with various mechanisms of action of the drugs against some of the major protein targets of SARS-CoV-2. Additionally, clinical trials data on potential COVID-19 repurposed drugs are also highlighted with stress on the major SARS-CoV-2 targets and the structural effect of variants on these targets. The interaction modelling of some important repurposed drugs has also been elucidated. Furthermore, the merits and demerits of drug repurposing are also discussed, with a focus on the scope and applications of the latest advancements in repurposing.
Collapse
Affiliation(s)
- Vidya Niranjan
- Department of Biotechnology, RV College of Engineering, Bengaluru, Karnataka India
| | | | | | - Akshay Uttarkar
- Department of Biotechnology, RV College of Engineering, Bengaluru, Karnataka India
| | - Kalavathi Murugan Kumar
- Department of Bioinformatics, Pondicherry University, Chinna Kalapet, Kalapet, Puducherry, Tamil Nadu India
| | - Sinosh Skariyachan
- Department of Microbiology, St. Pius X College, Rajapuram, Kasaragod, Kerala India
| |
Collapse
|
17
|
Hiskens MI. Targets of Neuroprotection and Review of Pharmacological Interventions in Traumatic Brain Injury. J Pharmacol Exp Ther 2022; 382:149-166. [PMID: 35644464 DOI: 10.1124/jpet.121.001023] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 05/06/2022] [Indexed: 03/08/2025] Open
Abstract
Traumatic brain injury (TBI) is a major contributor to disability and death worldwide, and manifests in cognitive, behavioral, and motor impairment. Although there have been numerous pre-clinical studies that have identified promising pharmacologic treatments, to date, all Phase III clinical trials have failed. Thus, this is a priority area for ongoing research and development. Treatment strategies have traditionally focused on neuroprotection of the injured brain to reduce secondary injury, neuronal death, and lesion size. The aim of this minireview is to describe the secondary injury pathophysiology of TBI and give an examination of key targets of neuroprotection, select Phase III trials that have been undertaken, and future possibilities for successful drug development. SIGNIFICANCE STATEMENT: This minireview provides an up-to-date summary of the key Phase III clinical trials that have been undertaken in the development of a neuropharmacological treatment for traumatic brain injury. The article discusses the key targets for treatment, the potential reasons for the lack of translation of promising pre-clinical compounds, and the most promising avenues for future development.
Collapse
Affiliation(s)
- Matthew I Hiskens
- Mackay Institute of Research and Innovation, Mackay Hospital and Health Service, Mackay, QLD; and School of Health, Medical, and Applied Sciences, Central Queensland University, Rockhampton, QLD
| |
Collapse
|
18
|
Zajda A, Sikora J, Huttunen KM, Markowicz-Piasecka M. Structural Comparison of Sulfonamide-Based Derivatives That Can Improve Anti-Coagulation Properties of Metformin. Int J Mol Sci 2022; 23:ijms23084132. [PMID: 35456961 PMCID: PMC9029893 DOI: 10.3390/ijms23084132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 04/02/2022] [Accepted: 04/06/2022] [Indexed: 01/13/2023] Open
Abstract
Due to its high efficiency, good safety profile, and potential cardio-protective properties, metformin, a dimethyl biguanide, is the first-line medication in antihyperglycemic treatment for type 2 diabetic patients. The aim of our present study was to assess the effects of eight new sulfonamide-based derivatives of metformin on selected plasma parameters and vascular hemostasis, as well as on endothelial and smooth muscle cell function. The compounds with an alkyl chain (1–3), trifluoromethyl substituent (4), or acetyl group (5) significantly elevated glucose utilization in human umbilical endothelial cells (HUVECs), similarly to metformin. Our novel findings showed that metformin analogues 1–3 presented the most beneficial properties because of their greatest safety profile in the WST-1 cell viability assay, which was also proved in the further HUVEC integrity studies using RTCA DP. Compounds 1–3 did not affect either HUVEC or aortal smooth muscle cell (AoSMC) viability up to 3.0 mM. Importantly, these compounds beneficially affected some of the coagulation parameters, including factor X and antithrombin III activity. In contrast to the above-mentioned metformin analogues, derivatives 4 and 5 exerted more profound anticoagulation effects; however, they were also more cytotoxic towards HUVECs, as IC50 values were 1.0–1.5 mM. In conclusion, the chemical modification of a metformin scaffold into sulfonamides possessing alkyl substituents results in the formation of novel derivatives with potential bi-directional activity including anti-hyperglycemic properties and highly desirable anti-coagulant activity.
Collapse
Affiliation(s)
- Agnieszka Zajda
- Laboratory of Bioanalysis, Department of Pharmaceutical Chemistry, Drug Analysis and Radiopharmacy, Medical University of Lodz, ul. Muszyńskiego1, 90-151 Lodz, Poland;
| | - Joanna Sikora
- Department of Bioinorganic Chemistry, Medical University of Lodz, ul. Muszyńskiego1, 90-151 Lodz, Poland;
| | - Kristiina M. Huttunen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Yliopistonranta 1C, P.O. Box 1627, 70211 Kuopio, Finland;
| | - Magdalena Markowicz-Piasecka
- Laboratory of Bioanalysis, Department of Pharmaceutical Chemistry, Drug Analysis and Radiopharmacy, Medical University of Lodz, ul. Muszyńskiego1, 90-151 Lodz, Poland;
- Correspondence: ; Tel.: +48-42-677-92-50
| |
Collapse
|
19
|
Drug Repurposing: Escitalopram attenuates acute lung injury by inhibiting the SIK2/ HDAC4/ NF-κB signaling cascade. Biochem Biophys Res Commun 2022; 599:1-8. [DOI: 10.1016/j.bbrc.2022.02.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 02/05/2022] [Indexed: 11/19/2022]
|
20
|
Maurya SK, Bhattacharya A, Shukla P, Mishra R. Insights on Epidemiology, Pathogenesis, Diagnosis and Possible Treatment of COVID-19 Infection. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES, INDIA. SECTION B 2022; 92:485-493. [PMID: 35068664 PMCID: PMC8761055 DOI: 10.1007/s40011-021-01319-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/03/2021] [Accepted: 11/10/2021] [Indexed: 04/28/2023]
Abstract
The sudden outbreak of the novel coronavirus infection (COVID-19, SARS-CoV-2 virus) is posing a significant threat by affecting millions of people across the globe showing mild to severe symptoms of pneumonia and acute respiratory distress. The absence of precise information on primary transmission, diagnosis, prognosis, and therapeutics for patients with COVID-19 makes prevention and control tough. In the current scenario, only supportive treatment is available, which in turn possess a biggest challenge for scientists to develop specific drugs and vaccines for COVID-19. Further, India, with the second largest populated country and fluctuating climatic conditions quarterly, has high vulnerability towards COVID-19 infection. Thus, this highlights the importance of a better understanding of the COVID-19 infection, pathology, diagnosis and its treatment. The present review article has been intended to discuss the COVID-19 biology, mechanism of infection in humans with primary effects on pregnancy, the nervous system, diabetes, and cardiovascular disease. The article will also discuss the drug repurposing strategy as an alternative line of treatment and clinical practices recommended by the World Health Organization and other government agencies and represent the COVID-19 scenario with the Indian context.
Collapse
Affiliation(s)
| | - Amit Bhattacharya
- Department of Zoology, Ramjas College, University of Delhi, Delhi, 110007 India
| | - Pooja Shukla
- Department of Genetics and Molecular Biology, National Institute of Malaria Research, Indian Council of Medical Research, Delhi, 110077 India
| | - Rajnikant Mishra
- Biochemistry and Molecular Biology Laboratory, Department of Zoology, Banaras Hindu University, Varanasi, 221005 India
| |
Collapse
|
21
|
O'Donnell HR, Tummino TA, Bardine C, Craik CS, Shoichet BK. Colloidal Aggregators in Biochemical SARS-CoV-2 Repurposing Screens. J Med Chem 2021; 64:17530-17539. [PMID: 34812616 PMCID: PMC8665103 DOI: 10.1021/acs.jmedchem.1c01547] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
To fight COVID-19, much effort has been directed toward in vitro drug repurposing. Here, we investigate the impact of colloidal aggregation, a common screening artifact, in these repurposing campaigns. We tested 56 drugs reported as active in biochemical assays for aggregation by dynamic light scattering and by detergent-based enzyme counter screening; 19 formed colloids at concentrations similar to their literature IC50's, and another 14 were problematic. From a common repurposing library, we further selected another 15 drugs that had physical properties resembling known aggregators, finding that six aggregated at micromolar concentrations. This study suggests not only that many of the drugs repurposed for SARS-CoV-2 in biochemical assays are artifacts but that, more generally, at screening-relevant concentrations, even drugs can act artifactually via colloidal aggregation. Rapid detection of these artifacts will allow the community to focus on those molecules that genuinely have potential for treating COVID-19.
Collapse
Affiliation(s)
- Henry R O'Donnell
- Department of Pharmaceutical Chemistry, University of California San Francisco (UCSF), San Francisco, California 94158-2550, United States
| | - Tia A Tummino
- Department of Pharmaceutical Chemistry, University of California San Francisco (UCSF), San Francisco, California 94158-2550, United States
- Graduate Program in Pharmaceutical Sciences and Pharmacogenomics, UCSF, San Francisco, California 94158-2550, United States
- QBI COVID-19 Research Group (QCRG), San Francisco, California 94158-2550, United States
| | - Conner Bardine
- Graduate Program in Chemistry & Chemical Biology, UCSF, San Francisco, California 94158-2550, United States
| | - Charles S Craik
- Department of Pharmaceutical Chemistry, University of California San Francisco (UCSF), San Francisco, California 94158-2550, United States
- QBI COVID-19 Research Group (QCRG), San Francisco, California 94158-2550, United States
| | - Brian K Shoichet
- Department of Pharmaceutical Chemistry, University of California San Francisco (UCSF), San Francisco, California 94158-2550, United States
- QBI COVID-19 Research Group (QCRG), San Francisco, California 94158-2550, United States
| |
Collapse
|
22
|
Jain AS, Prasad A, Pradeep S, Dharmashekar C, Achar RR, Silina E, Stupin V, Amachawadi RG, Prasad SK, Pruthvish R, Syed A, Shivamallu C, Kollur SP. Everything Old Is New Again: Drug Repurposing Approach for Non-Small Cell Lung Cancer Targeting MAPK Signaling Pathway. Front Oncol 2021; 11:741326. [PMID: 34692523 PMCID: PMC8526962 DOI: 10.3389/fonc.2021.741326] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/15/2021] [Indexed: 12/12/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) is a prominent subtype of lung carcinoma that accounts for the majority of cancer-related deaths globally, and it is responsible for about 80% to 85% of lung cancers. Mitogen-Activated Protein Kinase (MAPK) signaling pathways are a vital aspect of NSCLC, and have aided in the advancement of therapies for this carcinoma. Targeting the Ras/Raf/MEK/ERK pathway is a promising and alternative method in NSCLC treatment, which is highlighted in this review. The introduction of targeted medicines has revolutionized the treatment of patients with this carcinoma. When combined with current systems biology-driven stratagems, repurposing non-cancer drugs into new therapeutic niches presents a cost-effective and efficient technique with enhancing outcomes for discovering novel pharmacological activity. This article highlights the successful cutting-edge techniques while focusing on NSCLC targeted therapies. The ultimate challenge will be integrating these repurposed drugs into the therapeutic regimen of patients affected with NSCLC to potentially increase lung cancer cure rates.
Collapse
Affiliation(s)
- Anisha S. Jain
- Department of Microbiology, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru, India
| | - Ashwini Prasad
- Department of Microbiology, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru, India
| | - Sushma Pradeep
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru, India
| | - Chandan Dharmashekar
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru, India
| | - Raghu Ram Achar
- Division of Biochemistry, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru, India
| | - Ekaterina Silina
- Department of Human Pathology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Victor Stupin
- Department of Hospital Surgery, N.I. Pirogov Russian National Research Medical University (RNRMU), Moscow, Russia
| | - Raghavendra G. Amachawadi
- Department of Clinical Sciences, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| | - Shashanka K. Prasad
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru, India
| | - R Pruthvish
- Department of Biotechnology, Acharya Institute of Technology, Bengaluru, India
| | - Asad Syed
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Chandan Shivamallu
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru, India
| | - Shiva Prasad Kollur
- Department of Sciences, Amrita School of Arts and Sciences, Amrita Vishwa Vidyapeetham, Mysuru, India
| |
Collapse
|
23
|
Guo X, Qi X, Fan P, Gilbert M, La AD, Liu Z, Bertz R, Kellum JA, Chen Y, Wang L. Effect of ondansetron on reducing ICU mortality in patients with acute kidney injury. Sci Rep 2021; 11:19409. [PMID: 34593872 PMCID: PMC8484575 DOI: 10.1038/s41598-021-98734-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 09/01/2021] [Indexed: 12/02/2022] Open
Abstract
The purpose of this study is to identify medications with potentially beneficial effects on decreasing mortality in patients with acute kidney injury (AKI) while in the intensive care unit (ICU). We used logistic regression to investigate associations between medications received and ICU mortality in patients with AKI in the MIMIC III database. Drugs associated with reduced mortality were then validated using the eICU database. Propensity score matching (PSM) was used for matching the patients’ baseline severity of illness followed by a chi-square test to calculate the significance of drug use and mortality. Finally, we examined gene expression signatures to explore the drug’s molecular mechanism on AKI. While several drugs demonstrated potential beneficial effects on reducing mortality, most were used for potentially fatal illnesses (e.g. antibiotics, cardiac medications). One exception was found, ondansetron, a drug without previously identified life-saving effects, has correlation with lower mortality among AKI patients. This association was confirmed in a subsequent analysis using the eICU database. Based on the comparison of gene expression signatures, the presumed therapeutic effect of ondansetron may be elicited through the NF-KB pathway and JAK-STAT pathway. Our findings provide real-world evidence to support clinical trials of ondansetron for treatment of AKI.
Collapse
Affiliation(s)
- Xiaojiang Guo
- Department of Pharmaceutical Sciences, Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, 5607 Baum Boulevard, Pittsburgh, PA, 15206, USA
| | - Xiguang Qi
- Department of Pharmaceutical Sciences, Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, 5607 Baum Boulevard, Pittsburgh, PA, 15206, USA
| | - Peihao Fan
- Department of Pharmaceutical Sciences, Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, 5607 Baum Boulevard, Pittsburgh, PA, 15206, USA
| | - Michael Gilbert
- Department of Pharmacy and Therapeutics, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, 15206, USA
| | - Andrew D La
- Department of Pharmacy and Therapeutics, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, 15206, USA
| | - Zeyu Liu
- The Dietrich School of Arts & Sciences, University of Pittsburgh, Pittsburgh, PA, 15206, USA
| | - Richard Bertz
- Department of Pharmaceutical Sciences, Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, 5607 Baum Boulevard, Pittsburgh, PA, 15206, USA
| | - John A Kellum
- The Center for Critical Care Nephrology Department of Critical Care Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15206, USA.
| | - Yu Chen
- Eli Lilly and Company, Lilly Corporate Center, Indiana, IN, 46225, USA.
| | - Lirong Wang
- Department of Pharmaceutical Sciences, Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, 5607 Baum Boulevard, Pittsburgh, PA, 15206, USA.
| |
Collapse
|
24
|
Luo L, Qiu Q, Huang F, Liu K, Lan Y, Li X, Huang Y, Cui L, Luo H. Drug repurposing against coronavirus disease 2019 (COVID-19): A review. J Pharm Anal 2021; 11:683-690. [PMID: 34513115 PMCID: PMC8416689 DOI: 10.1016/j.jpha.2021.09.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 08/16/2021] [Accepted: 09/03/2021] [Indexed: 02/07/2023] Open
Abstract
Since December 2019, severe acute respiratory syndrome coronavirus 2 has been found to be the culprit in the coronavirus disease 2019 (COVID-19), causing a global pandemic. Despite the existence of many vaccine programs, the number of confirmed cases and fatalities due to COVID-19 is still increasing. Furthermore, a number of variants have been reported. Because of the absence of approved anti-coronavirus drugs, the treatment and management of COVID-19 has become a global challenge. Under these circumstances, drug repurposing is an effective method to identify candidate drugs with a shorter cycle of clinical trials. Here, we summarize the current status of the application of drug repurposing in COVID-19, including drug repurposing based on virtual computer screening, network pharmacology, and bioactivity, which may be a beneficial COVID-19 treatment. Mechanism of SARS-CoV-2 infection and drug targets were reviewed. Drug repurposing against COVID-19 based on computer virtual screening, network pharmacology, bioactivity were summarized. The use of drug repurposing in COVID-19 was addressed.
Collapse
Affiliation(s)
- Lianxiang Luo
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, 524023, Guangdong, China.,Marine Medical Research Institute of Zhanjiang, Zhanjiang, 524023, Guangdong, China
| | - Qin Qiu
- Graduate School, Guangdong Medical University, Zhanjiang, 524023, Guangdong, China
| | - Fangfang Huang
- Graduate School, Guangdong Medical University, Zhanjiang, 524023, Guangdong, China
| | - Kaifeng Liu
- The First Clinical College, Guangdong Medical University, Zhanjiang, 524023, Guangdong, China
| | - Yongqi Lan
- The First Clinical College, Guangdong Medical University, Zhanjiang, 524023, Guangdong, China
| | - Xiaoling Li
- Animal Experiment Center, Guangdong Medical University, Zhanjiang, 524023, Guangdong, China
| | - Yuge Huang
- Department of Pediatrics, the Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524023, Guangdong, China
| | - Liao Cui
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang, Guangdong, 524023, China
| | - Hui Luo
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, 524023, Guangdong, China
| |
Collapse
|
25
|
Oâ Donnell HR, Tummino TA, Bardine C, Craik CS, Shoichet BK. Colloidal aggregators in biochemical SARS-CoV-2 repurposing screens. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.08.31.458413. [PMID: 34494023 PMCID: PMC8423219 DOI: 10.1101/2021.08.31.458413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
To fight the SARS-CoV-2 pandemic, much effort has been directed toward drug repurposing, testing investigational and approved drugs against several viral or human proteins in vitro . Here we investigate the impact of colloidal aggregation, a common artifact in early drug discovery, in these repurposing screens. We selected 56 drugs reported to be active in biochemical assays and tested them for aggregation by both dynamic light scattering and by enzyme counter screening with and without detergent; seventeen of these drugs formed colloids at concentrations similar to their literature reported IC 50 s. To investigate the occurrence of colloidal aggregators more generally in repurposing libraries, we further selected 15 drugs that had physical properties resembling known aggregators from a common repurposing library, and found that 6 of these aggregated at micromolar concentrations. An attraction of repurposing is that drugs active on one target are considered de-risked on another. This study suggests not only that many of the drugs repurposed for SARS-CoV-2 in biochemical assays are artifacts, but that, more generally, when screened at relevant concentrations, drugs can act artifactually via colloidal aggregation. Understanding the role of aggregation, and detecting its effects rapidly, will allow the community to focus on those drugs and leads that genuinely have potential for treating COVID-19. ABSTRACT FIGURE
Collapse
|
26
|
Badkas A, De Landtsheer S, Sauter T. Topological network measures for drug repositioning. Brief Bioinform 2021; 22:bbaa357. [PMID: 33348366 PMCID: PMC8294518 DOI: 10.1093/bib/bbaa357] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 11/03/2020] [Accepted: 11/05/2020] [Indexed: 12/15/2022] Open
Abstract
Drug repositioning has received increased attention since the past decade as several blockbuster drugs have come out of repositioning. Computational approaches are significantly contributing to these efforts, of which, network-based methods play a key role. Various structural (topological) network measures have thereby contributed to uncovering unintuitive functional relationships and repositioning candidates in drug-disease and other networks. This review gives a broad overview of the topic, and offers perspectives on the application of topological measures for network analysis. It also discusses unexplored measures, and draws attention to a wider scope of application efforts, especially in drug repositioning.
Collapse
|
27
|
Ru X, Ye X, Sakurai T, Zou Q, Xu L, Lin C. Current status and future prospects of drug-target interaction prediction. Brief Funct Genomics 2021; 20:312-322. [PMID: 34189559 DOI: 10.1093/bfgp/elab031] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/01/2021] [Accepted: 06/04/2021] [Indexed: 01/09/2023] Open
Abstract
Drug-target interaction prediction is important for drug development and drug repurposing. Many computational methods have been proposed for drug-target interaction prediction due to their potential to the time and cost reduction. In this review, we introduce the molecular docking and machine learning-based methods, which have been widely applied to drug-target interaction prediction. Particularly, machine learning-based methods are divided into different types according to the data processing form and task type. For each type of method, we provide a specific description and propose some solutions to improve its capability. The knowledge of heterogeneous network and learning to rank are also summarized in this review. As far as we know, this is the first comprehensive review that summarizes the knowledge of heterogeneous network and learning to rank in the drug-target interaction prediction. Moreover, we propose three aspects that can be explored in depth for future research.
Collapse
Affiliation(s)
| | - Xiucai Ye
- Department of Computer Science, and Center for Artificial Intelligence Research (C-AIR), University of Tsukuba
| | - Tetsuya Sakurai
- Department of Computer Science and is the director of the C-AIR, University of Tsukuba
| | - Quan Zou
- University of Electronic Science and Technology of China
| | - Lei Xu
- School of Electronic and Communication Engineering, Shenzhen Polytechnic
| | | |
Collapse
|
28
|
Repurposing of Antimicrobial Agents for Cancer Therapy: What Do We Know? Cancers (Basel) 2021; 13:cancers13133193. [PMID: 34206772 PMCID: PMC8269327 DOI: 10.3390/cancers13133193] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 02/07/2023] Open
Abstract
The substantial costs of clinical trials, the lengthy timelines of new drug discovery and development, along the high attrition rates underscore the need for alternative strategies for finding quickly suitable therapeutics agents. Given that most approved drugs possess more than one target tightly linked to other diseases, it encourages promptly testing these drugs in patients. Over the past decades, this has led to considerable attention for drug repurposing, which relies on identifying new uses for approved or investigational drugs outside the scope of the original medical indication. The known safety of approved drugs minimizes the possibility of failure for adverse toxicology, making them attractive de-risked compounds for new applications with potentially lower overall development costs and shorter development timelines. This latter case is an exciting opportunity, specifically in oncology, due to increased resistance towards the current therapies. Indeed, a large body of evidence shows that a wealth of non-cancer drugs has beneficial effects against cancer. Interestingly, 335 drugs are currently being evaluated in different clinical trials for their potential activities against various cancers (Redo database). This review aims to provide an extensive discussion about the anti-cancer activities exerted by antimicrobial agents and presents information about their mechanism(s) of action and stage of development/evaluation.
Collapse
|
29
|
Sonaye HV, Sheikh RY, Doifode CA. Drug repurposing: Iron in the fire for older drugs. Biomed Pharmacother 2021; 141:111638. [PMID: 34153846 DOI: 10.1016/j.biopha.2021.111638] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 04/19/2021] [Accepted: 04/19/2021] [Indexed: 12/22/2022] Open
Abstract
Repositioning or "repurposing" of existing therapies for indications of alternative disease is an attractive approach that can generate lower costs and require a shorter approval time than developing a de novo drug. The development of experimental drugs is time-consuming, expensive, and limited to a fairly small number of targets. The incorporation of separate and complementary data should be used, as each type of data set exposes a specific feature of organism knowledge Drug repurposing opportunities are often focused on sporadic findings or on time-consuming pre-clinical drug tests which are often not guided by hypothesis. In comparison, repurposing in-silico drugs is a new, hypothesis-driven method that takes advantage of big-data use. Nonetheless, the widespread use of omics technology, enhanced data storage, data sense, machine learning algorithms, and computational modeling all give unparalleled knowledge of the methods of action of biological processes and drugs, providing wide availability, for both disease-related data and drug-related data. This review has taken an in-depth look at the current state, possibilities, and limitations of further progress in the field of drug repositioning.
Collapse
Affiliation(s)
- H V Sonaye
- Shri Sachhidanand Shikshan Santh's Taywade College of Pharmacy, Nagpur 441111, India.
| | - R Y Sheikh
- K.E.M. Hospital Research Centre, Pune 411011, India.
| | - C A Doifode
- Shri Sachhidanand Shikshan Santh's Taywade College of Pharmacy, Nagpur 441111, India.
| |
Collapse
|
30
|
Abou-El-Naga IF, El-Temsahy MM, Mogahed NMFH, Sheta E, Makled S, Ibrahim EI. Effect of celecoxib against different developmental stages of experimental Schistosoma mansoni infection. Acta Trop 2021; 218:105891. [PMID: 33773944 DOI: 10.1016/j.actatropica.2021.105891] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 01/27/2021] [Accepted: 03/15/2021] [Indexed: 01/18/2023]
Abstract
Due to the high prevalence of schistosomiasis and the wide use of praziquantel solely for mass drug administration to control the disease, there is a great concern about the potential emergence of reduced susceptibility strains. This, together with the concern that praziquantel is ineffective against juvenile worms highlight the importance of developing an alternative anti-schistosomal drug. Using nonsteroidal anti-inflammatory drugs against schistosome infection is considerable. The present study evaluated the effect of oral administration of five days celecoxib regimen (20 mg/kg/day) against different developmental stages of Schistosoma mansoni infection. This regimen induced significant reduction in worm burden, tissue egg count, individual female fecundity and the mean percentage of immature and mature eggs with increased mean percentage of dead eggs. More importantly, celecoxib was more potent than praziquantel in all these parasitological parameters (except in the worm burden when given against the adult stage where the difference was statistically non-significant). Scanning and transmission electron microscopy of the adult worms revealed severe tegumental damage, laceration of the muscular layers and oedema of the syncytial layer. There was disruption of the testicular, ovarian and vitelline glandular tissues with signs of apoptosis and abnormalities of the spermatozoa and the oocytes. Additionally, celecoxib induced reduction in the number and the size of the hepatic granulomata and also amelioration of the hepatic tissue pathology.
Collapse
|
31
|
Singh VK, Seed TM. Repurposing Pharmaceuticals Previously Approved by Regulatory Agencies to Medically Counter Injuries Arising Either Early or Late Following Radiation Exposure. Front Pharmacol 2021; 12:624844. [PMID: 34040517 PMCID: PMC8141805 DOI: 10.3389/fphar.2021.624844] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 04/26/2021] [Indexed: 12/12/2022] Open
Abstract
The increasing risks of radiological or nuclear attacks or associated accidents have served to renew interest in developing radiation medical countermeasures. The development of prospective countermeasures and the subsequent gain of Food and Drug Administration (FDA) approval are invariably time consuming and expensive processes, especially in terms of generating essential human data. Due to the limited resources for drug development and the need for expedited drug approval, drug developers have turned, in part, to the strategy of repurposing agents for which safety and clinical data are already available. Approval of drugs that are already in clinical use for one indication and are being repurposed for another indication is inherently faster and more cost effective than for new agents that lack regulatory approval of any sort. There are four known growth factors which have been repurposed in the recent past as radiomitigators following the FDA Animal Rule: Neupogen, Neulasta, Leukine, and Nplate. These four drugs were in clinic for several decades for other indications and were repurposed. A large number of additional agents approved by various regulatory authorities for given indications are currently under investigation for dual use for acute radiation syndrome or for delayed pathological effects of acute radiation exposure. The process of drug repurposing, however, is not without its own set of challenges and limitations.
Collapse
Affiliation(s)
- Vijay K. Singh
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | | |
Collapse
|
32
|
Clare RH, Hall SR, Patel RN, Casewell NR. Small Molecule Drug Discovery for Neglected Tropical Snakebite. Trends Pharmacol Sci 2021; 42:340-353. [DOI: 10.1016/j.tips.2021.02.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 02/24/2021] [Accepted: 02/26/2021] [Indexed: 12/31/2022]
|
33
|
Gil C, Martinez A. Is drug repurposing really the future of drug discovery or is new innovation truly the way forward? Expert Opin Drug Discov 2021; 16:829-831. [PMID: 33834929 DOI: 10.1080/17460441.2021.1912733] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Carmen Gil
- Centro de Investigaciones Biologicas Margarita Salas, CSIC, Madrid, Spain
| | - Ana Martinez
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
34
|
Ascenção K, Dilek N, Augsburger F, Panagaki T, Zuhra K, Szabo C. Pharmacological induction of mesenchymal-epithelial transition via inhibition of H2S biosynthesis and consequent suppression of ACLY activity in colon cancer cells. Pharmacol Res 2021; 165:105393. [PMID: 33484818 DOI: 10.1016/j.phrs.2020.105393] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/12/2020] [Accepted: 12/12/2020] [Indexed: 02/07/2023]
Abstract
Hydrogen sulfide (H2S) is an important endogenous gaseous transmitter mediator, which regulates a variety of cellular functions in autocrine and paracrine manner. The enzymes responsible for the biological generation of H2S include cystathionine-β-synthase (CBS), cystathionine-γ-lyase (CSE) and 3-mercaptopyruvate sulfurtransferase (3-MST). Increased expression of these enzymes and overproduction of H2S has been implicated in essential processes of various cancer cells, including the stimulation of metabolism, maintenance of cell proliferation and cytoprotection. Cancer cell identity is characterized by so-called "transition states". The progression from normal (epithelial) to transformed (mesenchymal) state is termed epithelial-to-mesenchymal transition (EMT) whereby epithelial cells lose their cell-to-cell adhesion capacity and gain mesenchymal characteristics. The transition process can also proceed in the opposite direction, and this process is termed mesenchymal-to-epithelial transition (MET). The current project was designed to determine whether inhibition of endogenous H2S production in colon cancer cells affects the EMT/MET balance in vitro. Inhibition of H2S biosynthesis in HCT116 human colon cancer cells was achieved either with aminooxyacetic acid (AOAA) or 2-[(4-hydroxy-6-methylpyrimidin-2-yl)sulfanyl]-1-(naphthalen-1-yl)ethan-1-one (HMPSNE). These inhibitors induced an upregulation of E-cadherin and Zonula occludens-1 (ZO-1) expression and downregulation of fibronectin expression, demonstrating that H2S biosynthesis inhibitors can produce a pharmacological induction of MET in colon cancer cells. These actions were functionally reflected in an inhibition of cell migration, as demonstrated in an in vitro "scratch wound" assay. The mechanisms involved in the action of endogenously produced H2S in cancer cells in promoting (or maintaining) EMT (or tonically inhibiting MET) relate, at least in part, in the induction of ATP citrate lyase (ACLY) protein expression, which occurs via upregulation of ACLY mRNA (via activation of the ACLY promoter). ACLY in turn, regulates the Wnt-β-catenin pathway, an essential regulator of the EMT/MET balance. Taken together, pharmacological inhibition of endogenous H2S biosynthesis in cancer cells induces MET. We hypothesize that this may contribute to anti-cancer / anti-metastatic effects of H2S biosynthesis inhibitors.
Collapse
Affiliation(s)
- Kelly Ascenção
- Chair of Pharmacology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland.
| | - Nahzli Dilek
- Chair of Pharmacology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland.
| | - Fiona Augsburger
- Chair of Pharmacology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland.
| | - Theodora Panagaki
- Chair of Pharmacology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland.
| | - Karim Zuhra
- Chair of Pharmacology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland.
| | - Csaba Szabo
- Chair of Pharmacology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland.
| |
Collapse
|
35
|
Radanovic I, Likic R, Groeneveld GJ. Spotlight Commentary: Importance of dose redefining in the process of drug repurposing. Br J Clin Pharmacol 2020; 87:1705-1707. [PMID: 33150593 DOI: 10.1111/bcp.14562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 08/14/2020] [Accepted: 09/11/2020] [Indexed: 12/11/2022] Open
Affiliation(s)
| | - Robert Likic
- University of Zagreb School of Medicine, Zagreb, Croatia.,Unit of Clinical Pharmacology, Department of Internal Medicine, Clinical Hospital Centre Zagreb, Zagreb, Croatia
| | | |
Collapse
|
36
|
Achilonu I, Iwuchukwu EA, Achilonu OJ, Fernandes MA, Sayed Y. Targeting the SARS-CoV-2 main protease using FDA-approved Isavuconazonium, a P2-P3 α-ketoamide derivative and Pentagastrin: An in-silico drug discovery approach. J Mol Graph Model 2020; 101:107730. [PMID: 32920239 PMCID: PMC7462840 DOI: 10.1016/j.jmgm.2020.107730] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/01/2020] [Accepted: 08/18/2020] [Indexed: 12/16/2022]
Abstract
The SARS-CoV-2 main protease (Mpro) is an attractive target towards discovery of drugs to treat COVID-19 because of its key role in virus replication. The atomic structure of Mpro in complex with an α-ketoamide inhibitor (Lig13b) is available (PDB ID:6Y2G). Using 6Y2G and the prior knowledge that protease inhibitors could eradicate COVID-19, we designed a computational study aimed at identifying FDA-approved drugs that could interact with Mpro. We searched the DrugBank and PubChem for analogs and built a virtual library containing ∼33,000 conformers. Using high-throughput virtual screening and ligand docking, we identified Isavuconazonium, a ketoamide inhibitor (α-KI) and Pentagastrin as the top three molecules (Lig13b as the benchmark) based on docking energy. The ΔGbind of Lig13b, Isavuconazonium, α-KI, Pentagastrin was −28.1, −45.7, −44.7, −34.8 kcal/mol, respectively. Molecular dynamics simulation revealed that these ligands are stable within the Mpro active site. Binding of these ligands is driven by a variety of non-bonded interaction, including polar bonds, H-bonds, van der Waals and salt bridges. The overall conformational dynamics of the complexed-Mpro was slightly altered relative to apo-Mpro. This study demonstrates that three distinct classes molecules, Isavuconazonium (triazole), α-KI (ketoamide) and Pentagastrin (peptide) could serve as potential drugs to treat patients with COVID-19. Using computational modelling, we show that SARS-CoV-2 main protease (Mpro) interacts with peptidomimetic drugs. The interaction between the Mpro and the peptidomimetics is energetically favourable. Isavuconazonium, a P2–P3 α-ketoamide derivative and Pentagastrin showed the tightest and most favourable binding to Mpro.
Collapse
Affiliation(s)
- Ikechukwu Achilonu
- Protein Structure-Function Research Unit, School of Molecular and Cell Biology, Faculty of Sciences, University of Witwatersrand, Johannesburg, 2050, South Africa.
| | - Emmanuel Amarachi Iwuchukwu
- Protein Structure-Function Research Unit, School of Molecular and Cell Biology, Faculty of Sciences, University of Witwatersrand, Johannesburg, 2050, South Africa
| | - Okechinyere Juliet Achilonu
- Division of Biostatistics, School of Public Health, Faculty of Health Sciences, University of Witwatersrand, Johannesburg, 2050, South Africa
| | - Manuel Antonio Fernandes
- Molecular Sciences Institute, School of Chemistry, University of Witwatersrand, Johannesburg, 2050, South Africa
| | - Yasien Sayed
- Protein Structure-Function Research Unit, School of Molecular and Cell Biology, Faculty of Sciences, University of Witwatersrand, Johannesburg, 2050, South Africa
| |
Collapse
|
37
|
Making NSCLC Crystal Clear: How Kinase Structures Revolutionized Lung Cancer Treatment. CRYSTALS 2020. [DOI: 10.3390/cryst10090725] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The parallel advances of different scientific fields provide a contemporary scenario where collaboration is not a differential, but actually a requirement. In this context, crystallography has had a major contribution on the medical sciences, providing a “face” for targets of diseases that previously were known solely by name or sequence. Worldwide, cancer still leads the number of annual deaths, with 9.6 million associated deaths, with a major contribution from lung cancer and its 1.7 million deaths. Since the relationship between cancer and kinases was unraveled, these proteins have been extensively explored and became associated with drugs that later attained blockbuster status. Crystallographic structures of kinases related to lung cancer and their developed and marketed drugs provided insight on their conformation in the absence or presence of small molecules. Notwithstanding, these structures were also of service once the initially highly successful drugs started to lose their effectiveness in the emergence of mutations. This review focuses on a subclassification of lung cancer, non-small cell lung cancer (NSCLC), and major oncogenic driver mutations in kinases, and how crystallographic structures can be used, not only to provide awareness of the function and inhibition of these mutations, but also how these structures can be used in further computational studies aiming at addressing these novel mutations in the field of personalized medicine.
Collapse
|
38
|
Dattilo R, Mottini C, Camera E, Lamolinara A, Auslander N, Doglioni G, Muscolini M, Tang W, Planque M, Ercolani C, Buglioni S, Manni I, Trisciuoglio D, Boe A, Grande S, Luciani AM, Iezzi M, Ciliberto G, Ambs S, De Maria R, Fendt SM, Ruppin E, Cardone L. Pyrvinium Pamoate Induces Death of Triple-Negative Breast Cancer Stem-Like Cells and Reduces Metastases through Effects on Lipid Anabolism. Cancer Res 2020; 80:4087-4102. [PMID: 32718996 DOI: 10.1158/0008-5472.can-19-1184] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/18/2020] [Accepted: 07/20/2020] [Indexed: 12/19/2022]
Abstract
Cancer stem-like cells (CSC) induce aggressive tumor phenotypes such as metastasis formation, which is associated with poor prognosis in triple-negative breast cancer (TNBC). Repurposing of FDA-approved drugs that can eradicate the CSC subcompartment in primary tumors may prevent metastatic disease, thus representing an effective strategy to improve the prognosis of TNBC. Here, we investigated spheroid-forming cells in a metastatic TNBC model. This strategy enabled us to specifically study a population of long-lived tumor cells enriched in CSCs, which show stem-like characteristics and induce metastases. To repurpose FDA-approved drugs potentially toxic for CSCs, we focused on pyrvinium pamoate (PP), an anthelmintic drug with documented anticancer activity in preclinical models. PP induced cytotoxic effects in CSCs and prevented metastasis formation. Mechanistically, the cell killing effects of PP were a result of inhibition of lipid anabolism and, more specifically, the impairment of anabolic flux from glucose to cholesterol and fatty acids. CSCs were strongly dependent upon activation of lipid biosynthetic pathways; activation of these pathways exhibited an unfavorable prognostic value in a cohort of breast cancer patients, where it predicted high probability of metastatic dissemination and tumor relapse. Overall, this work describes a new approach to target aggressive CSCs that may substantially improve clinical outcomes for patients with TNBC, who currently lack effective targeted therapeutic options. SIGNIFICANCE: These findings provide preclinical evidence that a drug repurposing approach to prevent metastatic disease in TNBC exploits lipid anabolism as a metabolic vulnerability against CSCs in primary tumors.
Collapse
Affiliation(s)
- Rosanna Dattilo
- Department of Research, Advanced Diagnostics, and Technological Innovations, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Carla Mottini
- Department of Research, Advanced Diagnostics, and Technological Innovations, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Emanuela Camera
- Laboratory of Cutaneous Physiopathology and Integrated Center for Metabolomics Research, San Gallicano Dermatological Institute (ISG)-IRCCS, Rome, Italy
| | - Alessia Lamolinara
- Department of Medicine and Aging Science, CAST, "G. D'Annunzio" University, Chieti-Pescara, Italy
| | - Noam Auslander
- Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Ginevra Doglioni
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | | | - Wei Tang
- Laboratory of Human Carcinogenesis, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Melanie Planque
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Cristiana Ercolani
- S.C. Anatomia Patologica, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Simonetta Buglioni
- S.C. Anatomia Patologica, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Isabella Manni
- Department of Research, Advanced Diagnostics, and Technological Innovations, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Daniela Trisciuoglio
- Department of Research, Advanced Diagnostics, and Technological Innovations, IRCCS Regina Elena National Cancer Institute, Rome, Italy
- Institute of Molecular Biology and Pathology, CNR National Research Council, Rome, Italy
| | - Alessandra Boe
- Core Facilities, Italian National Institute of Health, Rome, Italy
| | - Sveva Grande
- Centro Nazionale per le Tecnologie Innovative in Sanità Pubblica, Istituto Superiore di Sanità, Rome, Italy
- Istituto Nazionale di Fisica Nucleare INFN Sez. di Roma, Rome, Italy
| | - Anna Maria Luciani
- Centro Nazionale per le Tecnologie Innovative in Sanità Pubblica, Istituto Superiore di Sanità, Rome, Italy
- Istituto Nazionale di Fisica Nucleare INFN Sez. di Roma, Rome, Italy
| | - Manuela Iezzi
- Department of Medicine and Aging Science, CAST, "G. D'Annunzio" University, Chieti-Pescara, Italy
| | - Gennaro Ciliberto
- Scientific Directorate, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Stefan Ambs
- Laboratory of Human Carcinogenesis, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Ruggero De Maria
- Dipartimento di Medicina e Chirurgia traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario "A. Gemelli" - IRCCS, Rome, Italy
| | - Sarah-Maria Fendt
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Eytan Ruppin
- Center for Cancer Research, NCI, NIH, Bethesda, Maryland.
| | - Luca Cardone
- Department of Research, Advanced Diagnostics, and Technological Innovations, IRCCS Regina Elena National Cancer Institute, Rome, Italy.
- Institute of Biochemistry and Cellular Biology, CNR National Research Council, Rome, Italy
| |
Collapse
|
39
|
Van Norman GA. Limitations of Animal Studies for Predicting Toxicity in Clinical Trials: Part 2: Potential Alternatives to the Use of Animals in Preclinical Trials. JACC Basic Transl Sci 2020; 5:387-397. [PMID: 32363250 PMCID: PMC7185927 DOI: 10.1016/j.jacbts.2020.03.010] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 03/25/2020] [Indexed: 12/28/2022]
Abstract
Dramatically rising costs in drug development are in large part because of the high failure rates in clinical phase trials. The poor correlation of animal studies to human toxicity and efficacy have led many developers to question the value of requiring animal studies in determining which drugs should enter in-human trials. Part 1 of this 2-part series examined some of the data regarding the lack of concordance between animal toxicity studies and human trials, as well as some of the potential reasons behind it. This second part of the series focuses on some alternatives to animal trials (hereafter referred to as animal research) as well as current regulatory discussions and developments regarding such alternatives.
Collapse
Affiliation(s)
- Gail A. Van Norman
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, Washington
| |
Collapse
|
40
|
Kale VP, Habib H, Chitren R, Patel M, Pramanik KC, Jonnalagadda SC, Challagundla K, Pandey MK. Old drugs, new uses: Drug repurposing in hematological malignancies. Semin Cancer Biol 2020; 68:242-248. [PMID: 32151704 DOI: 10.1016/j.semcancer.2020.03.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 02/16/2020] [Accepted: 03/04/2020] [Indexed: 12/13/2022]
Abstract
Discovery and development of novel anti-cancer drugs are expensive and time consuming. Systems biology approaches have revealed that a drug being developed for a non-cancer indication can hit other targets as well, which play critical roles in cancer progression. Since drugs for non-cancer indications would have already gone through the preclinical and partial or full clinical development, repurposing such drugs for hematological malignancies would cost much less, and drastically reduce the development time, which is evident in case of thalidomide. Here, we have reviewed some of the drugs for their potential to repurpose for treating the hematological malignancies. We have also enlisted resources that can be helpful in drug repurposing.
Collapse
Affiliation(s)
- Vijay P Kale
- Clinical and Nonclinical Research, Battelle Memorial Institute, Columbus, OH, USA
| | - Hasan Habib
- School of Osteopathic Medicine, Stratford, NJ, USA
| | - Robert Chitren
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, USA; Department of Chemistry and Biochemistry, Rowan University, Glassboro, NJ, USA
| | - Milan Patel
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, USA
| | - Kartick C Pramanik
- Department of Pharmacology, Kentucky College of Osteopathic Medicine (KYCOM), University of Pikeville, KY, USA
| | | | - Kishore Challagundla
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Manoj K Pandey
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, USA
| |
Collapse
|
41
|
Palve V, Liao Y, Remsing Rix LL, Rix U. Turning liabilities into opportunities: Off-target based drug repurposing in cancer. Semin Cancer Biol 2020; 68:209-229. [PMID: 32044472 DOI: 10.1016/j.semcancer.2020.02.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 01/29/2020] [Accepted: 02/03/2020] [Indexed: 12/12/2022]
Abstract
Targeted drugs and precision medicine have transformed the landscape of cancer therapy and significantly improved patient outcomes in many cases. However, as therapies are becoming more and more tailored to smaller patient populations and acquired resistance is limiting the duration of clinical responses, there is an ever increasing demand for new drugs, which is not easily met considering steadily rising drug attrition rates and development costs. Considering these challenges drug repurposing is an attractive complementary approach to traditional drug discovery that can satisfy some of these needs. This is facilitated by the fact that most targeted drugs, despite their implicit connotation, are not singularly specific, but rather display a wide spectrum of target selectivity. Importantly, some of the unintended drug "off-targets" are known anticancer targets in their own right. Others are becoming recognized as such in the process of elucidating off-target mechanisms that in fact are responsible for a drug's anticancer activity, thereby revealing potentially new cancer vulnerabilities. Harnessing such beneficial off-target effects can therefore lead to novel and promising precision medicine approaches. Here, we will discuss experimental and computational methods that are employed to specifically develop single target and network-based off-target repurposing strategies, for instance with drug combinations or polypharmacology drugs. By illustrating concrete examples that have led to clinical translation we will furthermore examine the various scientific and non-scientific factors that cumulatively determine the success of these efforts and thus can inform the future development of new and potentially lifesaving off-target based drug repurposing strategies for cancers that constitute important unmet medical needs.
Collapse
Affiliation(s)
- Vinayak Palve
- Department of Drug Discovery, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, 33612, USA
| | - Yi Liao
- Department of Drug Discovery, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, 33612, USA
| | - Lily L Remsing Rix
- Department of Drug Discovery, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, 33612, USA
| | - Uwe Rix
- Department of Drug Discovery, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, 33612, USA.
| |
Collapse
|
42
|
O'Daniel MP, Petrunich-Rutherford ML. Effects of chronic prazosin, an alpha-1 adrenergic antagonist, on anxiety-like behavior and cortisol levels in a chronic unpredictable stress model in zebrafish ( Danio rerio). PeerJ 2020; 8:e8472. [PMID: 32030326 PMCID: PMC6996499 DOI: 10.7717/peerj.8472] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 12/27/2019] [Indexed: 01/05/2023] Open
Abstract
Post-traumatic stress disorder (PTSD) is often associated with significant neuroendocrine dysfunction and a variety of other symptoms. Today, there are limited efficacious treatment options for PTSD, none of which directly target the dysfunction observed with the hypothalamic-pituitary-adrenal (HPA) axis. The development of new pharmacological treatments is expensive and time consuming; thus, there is utility in repurposing compounds already approved for use in other conditions. One medication in particular that has shown promise for the alleviation of PTSD symptoms is prazosin, an alpha-1 adrenergic receptor antagonist used to treat hypertension. While there have been many studies indicating the efficacy of prazosin in the treatment of PTSD symptoms, no studies fully elucidate mechanisms elicited by this treatment, nor is it clear if prazosin normalizes neuroendocrine dysfunction associated with trauma exposure. The use of zebrafish (Danio rerio) has been growing in popularity, in part, due to the homology of the stress response system with mammals. In this study, the zebrafish model was utilized to determine behavioral and biological changes induced by chronic unpredictable stress (CUS) and how these effects could be modulated by chronic prazosin treatment. The results indicated that 7d of CUS increased anxiety-like behavior in the novel tank test and decreased basal levels of cortisol. Chronic (7d) prazosin treatment decreased anxiety-like behaviors overall but did not appear to affect CUS-induced changes in behavior and basal cortisol levels. This suggests that the clinical effectiveness of prazosin may not normalize dysregulated stress responses prevalent in many patients with PTSD, but that prazosin-induced relief from anxiety in stress-related conditions may involve an alternative mechanism other than by normalizing neuroendocrine dysfunction.
Collapse
Affiliation(s)
- Michael P O'Daniel
- Department of Psychology, Indiana University Northwest, Gary, IN, United States of America
| | | |
Collapse
|
43
|
AlKhalil M, Al-Hiari Y, Kasabri V, Arabiyat S, Al-Zweiri M, Mamdooh N, Telfah A. Selected pharmacotherapy agents as antiproliferative and anti-inflammatory compounds. Drug Dev Res 2020; 81:470-490. [PMID: 31943302 DOI: 10.1002/ddr.21640] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 12/14/2019] [Accepted: 12/30/2019] [Indexed: 12/11/2022]
Abstract
The repurposing of safe therapeutic drugs has emerged as an alternative approach to rapidly identify effective, safe, and conveniently available therapeutics to treat/prevent cancer. Therefore, it was hypothesized that acidic chelator drugs could have a genuine potential as antiproliferative agents. Based on their pKa, the selected 15 acidic drugs of eight classes-namely sulfonylureas, proton pump inhibitors, fluoroquinolones, nonsteroidal anti-inflammatory agents, thiazolidinediones, thienopyridines, statins, and nicotinic acid-were assayed for anticancer HTS against the lung A549, skin A375, breast MCF7 and T47D, pancreatic PANC1, cervical HeLa, and leukemia K562 cancer cell lines and normal fibroblasts. Lipopolysaccharide-prompted inflammation in RAW264.7 macrophages was the potential anticancer mechanism. Atorvastatin exerted remarkably superior cytotoxicity against A375.2S (IC50 value 0.02 μM p < .001 vs. cisplatin 0.07 μM IC50 value). Atorvastatin exhibited an equipotency to cisplatin's T47D growth inhibition (34.6 μM vs. 34.59 μM; p > .05). Levofloxacin as well as ciprofloxacin superbly superseded the antineoplastic cisplatin activity against the K562 cell line (respective IC50 values [μM] 10.4 and 19.5 vs. 29.3; p < .05-<.01). Gemifloxacin and lansoprazole had comparable antiproliferation in K562 to cisplatin's (respective IC50 values [μM] 34.9 and 36.3 vs. 29.3; p > .05). The selected agents lacked cytotoxicity in the panel of MCF7, HeLa, A549, or Panc1 cancer cells. Most notably, LPS prompted RAW264.7 macrophages, atorvastatin, piroxicam, clopidogrel, esomeprazole, and lansoprazole were of higher anti-inflammation potency than indomethacin (p < .01-.001). Evidently, omeprazole, pioglitazone, gemifloxacin, and indomethacin were of comparable anti-inflammation potencies (p > .05). Collectively, this work reveals acidic chelator drugs (atorvastatin, gemifloxacin, and lansoprazole with dual anti-inflammation and antiproliferation propensities) as authentic agents for the repurposing approach in anticancer chemotherapy/prevention.
Collapse
Affiliation(s)
| | | | | | - Shereen Arabiyat
- Dept. of Pharmacology, Salt College, Al-Balqa Applied University, Salt, Jordan
| | | | - Noor Mamdooh
- School of Pharmacy, University of Jordan, Amman, Jordan
| | - Ahmad Telfah
- Leibniz-Institut für Analytische Wissenschaften - ISAS, Dortmund, Germany
| |
Collapse
|
44
|
Drug repurposing to improve treatment of rheumatic autoimmune inflammatory diseases. Nat Rev Rheumatol 2019; 16:32-52. [PMID: 31831878 DOI: 10.1038/s41584-019-0337-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2019] [Indexed: 02/08/2023]
Abstract
The past century has been characterized by intensive efforts, within both academia and the pharmaceutical industry, to introduce new treatments to individuals with rheumatic autoimmune inflammatory diseases (RAIDs), often by 'borrowing' treatments already employed in one RAID or previously used in an entirely different disease, a concept known as drug repurposing. However, despite sharing some clinical manifestations and immune dysregulation, disease pathogenesis and phenotype vary greatly among RAIDs, and limited understanding of their aetiology has made repurposing drugs for RAIDs challenging. Nevertheless, the past century has been characterized by different 'waves' of repurposing. Early drug repurposing occurred in academia and was based on serendipitous observations or perceived disease similarity, often driven by the availability and popularity of drug classes. Since the 1990s, most biologic therapies have been developed for one or several RAIDs and then tested among the others, with varying levels of success. The past two decades have seen data-driven repurposing characterized by signature-based approaches that rely on molecular biology and genomics. Additionally, many data-driven strategies employ computational modelling and machine learning to integrate multiple sources of data. Together, these repurposing periods have led to advances in the treatment for many RAIDs.
Collapse
|
45
|
Computer-aided drug repurposing for cancer therapy: Approaches and opportunities to challenge anticancer targets. Semin Cancer Biol 2019; 68:59-74. [PMID: 31562957 DOI: 10.1016/j.semcancer.2019.09.023] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/24/2019] [Accepted: 09/24/2019] [Indexed: 12/14/2022]
Abstract
Despite huge efforts made in academic and pharmaceutical worldwide research, current anticancer therapies achieve effective treatment in a limited number of neoplasia cases only. Oncology terms such as big killers - to identify tumours with yet a high mortality rate - or undruggable cancer targets, and chemoresistance, represent the current therapeutic debacle of cancer treatments. In addition, metastases, tumour microenvironments, tumour heterogeneity, metabolic adaptations, and immunotherapy resistance are essential features controlling tumour response to therapies, but still, lack effective therapeutics or modulators. In this scenario, where the pharmaceutical productivity and drug efficacy in oncology seem to have reached a plateau, the so-called drug repurposing - i.e. the use of old drugs, already in clinical use, for a different therapeutic indication - is an appealing strategy to improve cancer therapy. Opportunities for drug repurposing are often based on occasional observations or on time-consuming pre-clinical drug screenings that are often not hypothesis-driven. In contrast, in-silico drug repurposing is an emerging, hypothesis-driven approach that takes advantage of the use of big-data. Indeed, the extensive use of -omics technologies, improved data storage, data meaning, machine learning algorithms, and computational modeling all offer unprecedented knowledge of the biological mechanisms of cancers and drugs' modes of action, providing extensive availability for both disease-related data and drugs-related data. This offers the opportunity to generate, with time and cost-effective approaches, computational drug networks to predict, in-silico, the efficacy of approved drugs against relevant cancer targets, as well as to select better responder patients or disease' biomarkers. Here, we will review selected disease-related data together with computational tools to be exploited for the in-silico repurposing of drugs against validated targets in cancer therapies, focusing on the oncogenic signaling pathways activation in cancer. We will discuss how in-silico drug repurposing has the promise to shortly improve our arsenal of anticancer drugs and, likely, overcome certain limitations of modern cancer therapies against old and new therapeutic targets in oncology.
Collapse
|
46
|
Promethazine exhibits antiparasitic properties in vitro and reduces worm burden, egg production, hepato-, and splenomegaly in a schistosomiasis animal model. Antimicrob Agents Chemother 2019:AAC.01208-19. [PMID: 31527034 DOI: 10.1128/aac.01208-19] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The treatment and control of schistosomiasis, a neglected disease that affects more than 200 million people worldwide, rely on the use of a single drug, praziquantel. A vaccine has yet to be developed and since new drug design and development is a lengthy and costly process, drug repurposing is a promising strategy. In this study, the efficacy of promethazine, a first-generation antihistamine, was evaluated against Schistosoma mansoni ex vivo and in a murine model of schistosomiasis. In vitro assays demonstrated that promethazine affected parasite motility, viability, and it induced severe tegumental damage in schistosomes. The LC50 of the drug was 5.84 μM. Similar to promethazine, schistosomes incubated with atropine, a classical anticholinergic drug, displayed reduced motor activity. In an animal model, promethazine treatment was introduced at an oral dose of 100 mg/kg for five successive days at different intervals from the time of infection, for the evaluation of the stage-specific susceptibility (pre-patent and patent infections). Various parasitological criteria indicated the in vivo antischistosomal effects of promethazine: there were significant reductions in worm burden, egg production, and hepato- and splenomegaly. The highest worm burden reduction was achieved with promethazine in patent infections (> 90%). Taken together, considering the importance of the repositioning of drugs in infectious diseases, especially those related to poverty, our data revealed the possibility of promethazine repositioning as an antischistosomal agent.
Collapse
|
47
|
Wu K, Xiu Y, Zhou P, Qiu Y, Li Y. A New Use for an Old Drug: Carmofur Attenuates Lipopolysaccharide (LPS)-Induced Acute Lung Injury via Inhibition of FAAH and NAAA Activities. Front Pharmacol 2019; 10:818. [PMID: 31379583 PMCID: PMC6659393 DOI: 10.3389/fphar.2019.00818] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 06/24/2019] [Indexed: 01/10/2023] Open
Abstract
Acute lung injury (ALI), characterized by a severe inflammatory process, is a complex syndrome that can lead to multisystem organ failure. Fatty acid amide hydrolase (FAAH) and N-acylethanolamine acid amidase (NAAA) are two potential therapeutic targets for inflammation-related diseases. Herein, we identified carmofur, a 5-fluorouracil-releasing drug and clinically used as a chemotherapeutic agent, as a dual FAAH and NAAA inhibitor. In Raw264.7 macrophages, carmofur effectively reduced the mRNA expression of pro-inflammatory factors, including IL-1β, IL-6, iNOS, and TNF-α, and down-regulated signaling proteins of the nuclear transcription factor κB (NF-κB) pathway. Furthermore, carmofur significantly ameliorated the inflammatory responses and promoted resolution of pulmonary injury in lipopolysaccharide (LPS)-induced ALI mice. The pharmacological effects of carmofur were partially blocked by peroxisome proliferator-activated receptor-α (PPARα) antagonist MK886 and cannabinoid receptor 2 (CB2) antagonist SR144528, indicating that carmofur attenuated LPS-induced ALI in a PPARα- and CB2-dependent mechanism. Our study suggested that carmofur might be a novel therapeutic agent for ALI, and drug repurposing may provide us effective therapeutic strategies for ALI.
Collapse
Affiliation(s)
- Kangni Wu
- Department of Hematology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Yanghui Xiu
- Eye Institute & Affiliated Xiamen Eye Center, Xiamen University, Xiamen, China
| | - Pan Zhou
- Eye Institute & Affiliated Xiamen Eye Center, Xiamen University, Xiamen, China.,Institute of Hematology, Medical College of Xiamem University, Xiamen, China
| | - Yan Qiu
- Eye Institute & Affiliated Xiamen Eye Center, Xiamen University, Xiamen, China.,Institute of Hematology, Medical College of Xiamem University, Xiamen, China
| | - Yuhang Li
- Xiamen Institute of Rare-earth Materials, Haixi Institutes, Chinese Academy of Sciences, Fujian, China.,CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fujian, China
| |
Collapse
|
48
|
Gazerani P. Identification of novel analgesics through a drug repurposing strategy. Pain Manag 2019; 9:399-415. [DOI: 10.2217/pmt-2018-0091] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The identification of new indications for approved or failed drugs is a process called drug repositioning or drug repurposing. The motivation includes overcoming the productivity gap that exists in drug development, which is a high-cost–high-risk process. Repositioning also includes rescuing drugs that have safely entered the market but have failed to demonstrate sufficient efficiency for the initial clinical indication. Considering the high prevalence of chronic pain, the lack of sufficient efficacy and the safety issues of current analgesics, repositioning seems to be an attractive approach. This review presents example of drugs that already have been repositioned and highlights new technologies that are available for the identification of additional compounds to stimulate the curiosity of readers for further exploration.
Collapse
Affiliation(s)
- Parisa Gazerani
- Biomedicine, Department of Health Science & Technology, Aalborg University, Frederik Bajers Vej 3 B, 9220 Aalborg East, Denmark
| |
Collapse
|
49
|
Lago EM, Silva MP, Queiroz TG, Mazloum SF, Rodrigues VC, Carnaúba PU, Pinto PL, Rocha JA, Ferreira LLG, Andricopulo AD, de Moraes J. Phenotypic screening of nonsteroidal anti-inflammatory drugs identified mefenamic acid as a drug for the treatment of schistosomiasis. EBioMedicine 2019; 43:370-379. [PMID: 31027918 PMCID: PMC6557910 DOI: 10.1016/j.ebiom.2019.04.029] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/04/2019] [Accepted: 04/15/2019] [Indexed: 12/03/2022] Open
Abstract
Background Treatment and control of schistosomiasis, one of the most insidious and serious parasitic diseases, depend almost entirely on a single drug, praziquantel. Since the funding for drug development for poverty-associated diseases is very limited, drug repurposing is a promising strategy. In this study, 73 nonsteroidal anti-inflammatory drugs (NSAIDs) commonly used in medical and veterinary fields were evaluated for their anti-schistosomal properties. Methods The efficacy of NSAIDs was first tested against adult Schistosoma mansoni ex vivo using phenotypic screening strategy, effective drugs were further tested in a murine model of schistosomiasis. The disease parameters measured were worm and egg burden, hepato- and splenomegaly. Findings From 73 NSAIDs, five (mefenamic acid, tolfenamic acid, meclofenamic acid, celecoxib, and diclofenac) were identified to effectively kill schistosomes. These results were further supported by scanning electron microscopy analysis. In addition, the octanol-water partition coefficient, both for neutral and ionized species, revealed to be a critical property for the ex vivo activity profile. Compounds were then tested in vivo using both patent and a prepatent S. mansoni infection in a mouse model. The most effective NSAID was mefenamic acid, which highly reduced worm burden, egg production, and hepato- and splenomegaly. Interpretation The treatment regimen used in this study is within the range for which mefenamic acid has been used in clinical practice, thus, it is demonstrated the capacity of mefenamic acid to act as a potent anti-schistosomal agent suitable for clinical repurposing in the treatment of schistosomiasis.
Collapse
Affiliation(s)
- Eloi M Lago
- Research Center for Neglected Diseases, University of Guarulhos, Praça Tereza Cristina, 229, Centro, 07023-070, Guarulhos, SP, Brazil
| | - Marcos P Silva
- Research Center for Neglected Diseases, University of Guarulhos, Praça Tereza Cristina, 229, Centro, 07023-070, Guarulhos, SP, Brazil
| | - Talita G Queiroz
- Research Center for Neglected Diseases, University of Guarulhos, Praça Tereza Cristina, 229, Centro, 07023-070, Guarulhos, SP, Brazil
| | - Susana F Mazloum
- Research Center for Neglected Diseases, University of Guarulhos, Praça Tereza Cristina, 229, Centro, 07023-070, Guarulhos, SP, Brazil
| | - Vinícius C Rodrigues
- Research Center for Neglected Diseases, University of Guarulhos, Praça Tereza Cristina, 229, Centro, 07023-070, Guarulhos, SP, Brazil
| | - Paulo U Carnaúba
- Research Center for Neglected Diseases, University of Guarulhos, Praça Tereza Cristina, 229, Centro, 07023-070, Guarulhos, SP, Brazil
| | - Pedro L Pinto
- Center for Research in Parasitology, Adolfo Lutz Institute, São Paulo, SP, Brazil
| | - Jefferson A Rocha
- Research Group of Natural Science and Biotechnology, Federal University of Maranhão, Grajaú, MA, Brazil
| | - Leonardo L G Ferreira
- Laboratory of Medicinal and Computational Chemistry, Center for Research and Innovation in Biodiversity and Drug Discovery, Physics Institute of Sao Carlos, University of Sao Paulo, São Carlos, SP, Brazil
| | - Adriano D Andricopulo
- Laboratory of Medicinal and Computational Chemistry, Center for Research and Innovation in Biodiversity and Drug Discovery, Physics Institute of Sao Carlos, University of Sao Paulo, São Carlos, SP, Brazil
| | - Josué de Moraes
- Research Center for Neglected Diseases, University of Guarulhos, Praça Tereza Cristina, 229, Centro, 07023-070, Guarulhos, SP, Brazil.
| |
Collapse
|
50
|
Vandenberghe P, Delvaux M, Hagué P, Erneux C, Vanderwinden JM. Potentiation of imatinib by cilostazol in sensitive and resistant gastrointestinal stromal tumor cell lines involves YAP inhibition. Oncotarget 2019; 10:1798-1811. [PMID: 30956759 PMCID: PMC6442998 DOI: 10.18632/oncotarget.26734] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 02/03/2019] [Indexed: 12/14/2022] Open
Abstract
Despite the introduction of tyrosine kinase inhibitors, gastrointestinal stromal tumors (GIST) resistance remains a major clinical challenge. We previously identified phosphodiesterase 3A (PDE3A) as a potential therapeutic target expressed in most GIST. The PDE3 inhibitor cilostazol reduced cell viability and synergized with the tyrosine kinase inhibitor imatinib (Gleevec™) in the imatinib-sensitive GIST882 cell line. Here, we found that cilostazol potentiated imatinib also in the imatinib-resistant GIST48 cell line. Cilostazol induced nuclear exclusion, hence inactivation, of the transcriptional co-activator YAP, in a cAMP-independent manner. Verteporfin, a YAP/TEAD interaction inhibitor, reduced by 90% the viability of both GIST882 and GIST48 cells. Our results highlight the potential use of compounds targeting PDE3A or YAP in combined multitherapy to tackle GIST resistance.
Collapse
Affiliation(s)
- Pierre Vandenberghe
- Laboratory of Neurophysiology, Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium
| | - Marine Delvaux
- Laboratory of Neurophysiology, Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium
| | - Perrine Hagué
- Laboratory of Neurophysiology, Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium
| | - Christophe Erneux
- IRIBHM, Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium
| | - Jean-Marie Vanderwinden
- Laboratory of Neurophysiology, Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|