1
|
Lin WH, Tung YH, Wu ZS, Chang PK, Yang ST, Yang YL, Lu KT. Loop diuretics mitigate juvenile immobilization treatment-induced hippocampal dysfunction. Eur J Pharmacol 2025; 996:177447. [PMID: 40023355 DOI: 10.1016/j.ejphar.2025.177447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 02/27/2025] [Accepted: 02/27/2025] [Indexed: 03/04/2025]
Abstract
Juvenile traumatic experiences can lead to adult cognitive impairments, including learning deficits and increased anxiety risk. Dysfunction of the hippocampus is crucial in stress-induced behavioral disorders, and recent evidence suggests that disrupted chloride homeostasis through the chloride transporter NKCC1 may alter GABAergic signaling and contribute to neuropathology. This study investigates the role of NKCC1 in long-term hippocampal dysfunction induced by juvenile immobilization (J_IMO). Male C57BL/6 mice underwent J_IMO treatment at five weeks of age and were assessed at six and twelve weeks using inhibitory avoidance (IA), open field tests (OFT), extracellular recording, qPCR, and Western blot analyses. Following J_IMO treatment, mice exhibited significant learning deficits in IA, with no notable differences in total movement distance in the OFT. Electrophysiological analysis revealed a marked increase in long-term potentiation (LTP) within the hippocampal Schaffer collateral pathway, while paired-pulse facilitation remained unchanged. An altered input-output curve indicated post-synaptic dysregulation in J_IMO-treated mice. Additionally, Western blot and qPCR analyses showed significant upregulation of Slc12a2 (NKCC1) expression, primarily localized to neural cells, as confirmed by double-staining immunohistochemistry. These findings suggest that NKCC1 plays a pivotal role in J_IMO-induced hippocampal dysfunction, particularly by impairing GABAergic inhibitory neurotransmission. The GABAA agonist isoguvacine's inhibitory effect on the fEPSP was diminished in J_IMO-treated mice but restored with NKCC1 inhibitor co-treatment, indicating that altered NKCC1 function undermines GABAergic inhibitory neurotransmission in this stress model. In conclusion, our results indicate that NKCC1 contributes to J_IMO-induced hippocampal dysfunction by diminishing GABAergic inhibitory neurotransmission. NKCC1 inhibitors may significantly alleviate these dysfunctions.
Collapse
Affiliation(s)
- Wei-Hsing Lin
- Department of Life Science, National Taiwan Normal University, Taipei, 11610, Taiwan
| | - Yu-Hsuen Tung
- Department of Life Science, National Taiwan Normal University, Taipei, 11610, Taiwan
| | - Zong-Syun Wu
- Department of Life Science, National Taiwan Normal University, Taipei, 11610, Taiwan
| | - Peng-Kai Chang
- Department of Life Science, National Taiwan Normal University, Taipei, 11610, Taiwan
| | - Shih-Te Yang
- Department of Life Science, National Taiwan Normal University, Taipei, 11610, Taiwan; Department of Science Education, National Museum of Marine Biology and Aquarium, Pintung, Taiwan
| | - Yi-Ling Yang
- Department of Biochemical Science and Technology, National Chia-Yi University, Chia-Yi, 60004, Taiwan.
| | - Kwok-Tung Lu
- Department of Life Science, National Taiwan Normal University, Taipei, 11610, Taiwan.
| |
Collapse
|
2
|
Guo W, Fan S, Xiao D, He C, Guan M, Xiong W. A midbrain-reticulotegmental circuit underlies exaggerated startle under fear emotions. Mol Psychiatry 2022; 27:4881-4892. [PMID: 36117214 DOI: 10.1038/s41380-022-01782-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 09/02/2022] [Accepted: 09/05/2022] [Indexed: 01/19/2023]
Abstract
Exaggerated startle has been recognized as a core hyperarousal symptom of multiple fear-related anxiety disorders, such as post-traumatic stress disorder (PTSD) and panic disorder. However, the mechanisms driving this symptom are poorly understood. Here we reveal a neural projection from dorsal raphe nucleus (DRN) to a startle-controlling center reticulotegmental nucleus (RtTg) that mediates enhanced startle response under fear condition. Within RtTg, we identify an inhibitory microcircuit comprising GABAergic neurons in pericentral RtTg (RtTgP) and glutamatergic neurons in central RtTg (RtTgC). Inhibition of this RtTgP-RtTgC microcircuit leads to elevated startle amplitudes. Furthermore, we demonstrate that the conditioned fear-activated DRN 5-HTergic neurons send inhibitory projections to RtTgP GABAergic neurons, which in turn upregulate neuronal activities of RtTgC glutamatergic neurons. Chemogenetic activation of the DRN-RtTgP projections mimics the increased startle response under fear emotions. Moreover, conditional deletion of 5-HT1B receptor from RtTgP GABAergic neurons largely reverses the exaggeration of startle during conditioned fear. Thus, our study establishes the disinhibitory DRN-RtTgP-RtTgC circuit as a critical mechanism underlying exaggerated startle under fear emotions, and provides 5-HT1B receptor as a potential therapeutic target for treating hyperarousal symptom in fear-associated psychiatric disorders.
Collapse
Affiliation(s)
- Weiwei Guo
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
| | - Sijia Fan
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
| | - Dan Xiao
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
| | - Chen He
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
| | - Mengyuan Guan
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
| | - Wei Xiong
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China. .,Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, 230088, China. .,Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
3
|
Löscher W, Kaila K. CNS pharmacology of NKCC1 inhibitors. Neuropharmacology 2021; 205:108910. [PMID: 34883135 DOI: 10.1016/j.neuropharm.2021.108910] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 11/25/2021] [Accepted: 11/26/2021] [Indexed: 12/21/2022]
Abstract
The Na-K-2Cl cotransporter NKCC1 and the neuron-specific K-Cl cotransporter KCC2 are considered attractive CNS drug targets because altered neuronal chloride regulation and consequent effects on GABAergic signaling have been implicated in numerous CNS disorders. While KCC2 modulators are not yet clinically available, the loop diuretic bumetanide has been used off-label in attempts to treat brain disorders and as a tool for NKCC1 inhibition in preclinical models. Bumetanide is known to have anticonvulsant and neuroprotective effects under some pathophysiological conditions. However, as shown in several species from neonates to adults (mice, rats, dogs, and by extrapolation in humans), at the low clinical doses of bumetanide approved for diuresis, this drug has negligible access into the CNS, reaching levels that are much lower than what is needed to inhibit NKCC1 in cells within the brain parenchyma. Several drug discovery strategies have been initiated over the last ∼15 years to develop brain-permeant compounds that, ideally, should be selective for NKCC1 to eliminate the diuresis mediated by inhibition of renal NKCC2. The strategies employed to improve the pharmacokinetic and pharmacodynamic properties of NKCC1 blockers include evaluation of other clinically approved loop diuretics; development of lipophilic prodrugs of bumetanide; development of side-chain derivatives of bumetanide; and unbiased high-throughput screening approaches of drug discovery based on large chemical compound libraries. The main outcomes are that (1), non-acidic loop diuretics such as azosemide and torasemide may have advantages as NKCC1 inhibitors vs. bumetanide; (2), bumetanide prodrugs lead to significantly higher brain levels than the parent drug and have lower diuretic activity; (3), the novel bumetanide side-chain derivatives do not exhibit any functionally relevant improvement of CNS accessibility or NKCC1 selectivity vs. bumetanide; (4) novel compounds discovered by high-throughput screening may resolve some of the inherent problems of bumetanide, but as yet this has not been achieved. Thus, further research is needed to optimize the design of brain-permeant NKCC1 inhibitors. In parallel, a major challenge is to identify the mechanisms whereby various NKCC1-expressing cellular targets of these drugs within (e.g., neurons, oligodendrocytes or astrocytes) and outside the brain parenchyma (e.g., the blood-brain barrier, the choroid plexus, and the endocrine system), as well as molecular off-target effects, might contribute to their reported therapeutic and adverse effects.
Collapse
Affiliation(s)
- Wolfgang Löscher
- Dept. of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany; Center for Systems Neuroscience Hannover, Germany.
| | - Kai Kaila
- Molecular and Integrative Biosciences and Neuroscience Center (HiLIFE), University of Helsinki, Finland
| |
Collapse
|
4
|
Chadman KK, Fernandes S, DiLiberto E, Feingold R. Do animal models hold value in Autism spectrum disorder (ASD) drug discovery? Expert Opin Drug Discov 2019; 14:727-734. [DOI: 10.1080/17460441.2019.1621285] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Kathryn K. Chadman
- Behavioral Pharmacology Laboratory, NYS Office for People With Developmental Disabilities, Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Stephanie Fernandes
- Behavioral Pharmacology Laboratory, NYS Office for People With Developmental Disabilities, Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
- Center for Developmental Neuroscience and Developmental Disabilities, City University of New York, College of Staten Island, Staten Island, NY, USA
| | - Elizabeth DiLiberto
- Behavioral Pharmacology Laboratory, NYS Office for People With Developmental Disabilities, Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
- Department of Psychology, Macaulay Honors College at City University of New York, College of Staten Island, Staten Island, NY, USA
| | - Robert Feingold
- Behavioral Pharmacology Laboratory, NYS Office for People With Developmental Disabilities, Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
- Center for Developmental Neuroscience and Developmental Disabilities, City University of New York, College of Staten Island, Staten Island, NY, USA
| |
Collapse
|
5
|
Ostroumov A, Dani JA. Inhibitory Plasticity of Mesocorticolimbic Circuits in Addiction and Mental Illness. Trends Neurosci 2018; 41:898-910. [PMID: 30149979 PMCID: PMC6252277 DOI: 10.1016/j.tins.2018.07.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 07/12/2018] [Accepted: 07/31/2018] [Indexed: 12/19/2022]
Abstract
Behavioral adaptations occur through remodeling of brain circuits, as arising, for instance, from experience-dependent synaptic plasticity. Drugs of abuse and aversive stimuli, such as stress, act on the mesocorticolimbic system, dysregulating adaptive mechanisms and leading to a variety of aberrant behaviors associated with neuropsychiatric disorders. Until recently, research in the field has commonly focused on experience-dependent synaptic plasticity at excitatory synapses. However, there is growing evidence that synaptic plasticity within inhibitory circuits is an important contributor to maladaptive behaviors. We speculate that restoring normal inhibitory synaptic transmission is a promising therapeutic target for correcting some of the circuit abnormalities underlying neuropsychiatric disorders.
Collapse
Affiliation(s)
- Alexey Ostroumov
- Department of Neuroscience, Mahoney Institute for Neurosciences, Perelman School for Medicine, Philadelphia, PA 19104, USA.
| | - John A Dani
- Department of Neuroscience, Mahoney Institute for Neurosciences, Perelman School for Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
6
|
Ko M, Lee M, Tang T, Amstislavskaya TG, Tikhonova MA, Yang Y, Lu K. Bumetanide blocks the acquisition of conditioned fear in adult rats. Br J Pharmacol 2018; 175:1580-1589. [PMID: 29235092 PMCID: PMC5913399 DOI: 10.1111/bph.14125] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 09/05/2017] [Accepted: 09/08/2017] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE Bumetanide has anxiolytic effects in rat models of conditioned fear. As a loop diuretic, bumetanide blocks cation-chloride co-transport and this property may allow bumetanide to act as an anxiolytic by modulating GABAergic synaptic transmission in the CNS. Its potential for the treatment of anxiety disorders deserves further investigation. In this study, we evaluated the possible involvement of the basolateral nucleus of the amygdala in the anxiolytic effect of bumetanide. EXPERIMENTAL APPROACH Brain slices were prepared from Wistar rats. extracellular recording, stereotaxic surgery, fear-potentiated startle response, locomotor activity monitoring and Western blotting were applied in this study. KEY RESULTS Systemic administration of bumetanide (15.2 mg·kg-1 , i.v.), 30 min prior to fear conditioning, significantly inhibited the acquisition of the fear-potentiated startle response. Phosphorylation of ERK in the basolateral nucleus of amygdala was reduced after bumetanide administration. In addition, suprafusion of bumetanide (5 or 10 μM) attenuated long-term potentiation in the amygdala in a dose-dependent manner. Intra-amygdala infusion of bumetanide, 15 min prior to fear conditioning, also blocked the acquisition of the fear-potentiated startle response. Finally, the possible off-target effect of bumetanide on conditioned fear was excluded by side-by-side control experiments. CONCLUSIONS AND IMPLICATIONS These results suggest the basolateral nucleus of amygdala plays a critical role in the anxiolytic effects of bumetanide.
Collapse
Affiliation(s)
- Meng‐Chang Ko
- Department of Life ScienceNational Taiwan Normal UniversityTaipeiTaiwan
| | - Ming‐Chung Lee
- Department of Life ScienceNational Taiwan Normal UniversityTaipeiTaiwan
| | - Tso‐Hao Tang
- Department of Life ScienceNational Taiwan Normal UniversityTaipeiTaiwan
| | - Tamara G Amstislavskaya
- Laboratory of Experimental Models of Neurodegenerative ProcessesFederal State Budgetary Scientific Institution “Scientific Research Institute of Physiology and Basic Medicine” (SRIPhBM)NovosibirskRussia
- Novosibirsk State UniversityNovosibirskRussia
| | - Maria A Tikhonova
- Laboratory of Experimental Models of Neurodegenerative ProcessesFederal State Budgetary Scientific Institution “Scientific Research Institute of Physiology and Basic Medicine” (SRIPhBM)NovosibirskRussia
- Novosibirsk State UniversityNovosibirskRussia
| | - Yi‐Ling Yang
- Department of Biochemical Science and TechnologyNational Chiayi UniversityChiayiTaiwan
| | - Kwok‐Tung Lu
- Department of Life ScienceNational Taiwan Normal UniversityTaipeiTaiwan
| |
Collapse
|