1
|
Fang QQ, Gu YJ, Wang Y, Wang ZC, Lin XY, Guo K, Zhuang ZM, Zhong XC, Zhang LY, Chen J, Tan WQ. The therapeutic potential of Rosiglitazone in modulating scar formation through PPAR-γ pathway. Eur J Pharmacol 2025; 996:177445. [PMID: 40054722 DOI: 10.1016/j.ejphar.2025.177445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 02/18/2025] [Accepted: 02/27/2025] [Indexed: 03/12/2025]
Abstract
The prevention and treatment of scars has always posed a challenge in the medical field. Researchers have reached the consensus that safe, effective and affordable treatments are needed. Here, by conducting non-targeted metabolomics and RNA sequencing experiments, we revealed that a significant number of metabolites and genes related to glucose and lipid metabolism underwent changes during scar formation, with peroxisome proliferator-activated receptor-γ (PPAR-γ) exerting a profound influence. Considering that rosiglitazone is a selective orally active PPAR-γ receptor agonist, scar models were induced in rats, and rosiglitazone was administered at different dosages. We characterized rosiglitazone as a crucial mediator in a rat scar model in vivo and in vitro in two models of transforming growth factor β1(TGF-β1) stimulated fibroblasts (NIH 3T3 and 3T3 L1). Functionally, activation of PPAR-γ with rosiglitazone effectively impedes fibrosis and mitigates scar formation. Rosiglitazone also inhibits some inflammatory factors, and downregulates triglyceride, lactic acid, glycogen and lactic dehydrogenase levels in rat scars. Conversely, rosiglitazone increases adenosine triphosphate (ATP) production and increases free fatty acid levels and the activity of acetyl-CoA carboxylase, fatty acid synthetase, succinate dehydrogenase. Collectively, these findings shed light on the underlying mechanisms and suggest that the use of rosiglitazone could be a promising therapeutic approach to alleviate fibrosis and reduce scar formation.
Collapse
Affiliation(s)
- Qing-Qing Fang
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, PR China
| | - Yang-Jun Gu
- Department of Hepatobiliary and Pancreatic Surgery, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, Zhejiang Province, PR China
| | - Yong Wang
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, PR China
| | - Zheng-Cai Wang
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, PR China
| | - Xiao-Ying Lin
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, PR China
| | - Kai Guo
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, PR China
| | - Ze-Ming Zhuang
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, PR China
| | - Xin-Cao Zhong
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, PR China
| | - Li-Yun Zhang
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, PR China.
| | - Jian Chen
- Department of Ultrasound Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, Zhejiang Province, PR China.
| | - Wei-Qiang Tan
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, PR China.
| |
Collapse
|
2
|
Mo GP, Zhu Y, You Y, Chen H, Zhang J, Ku B, Yu H, Peng Z. Diabetic Kidney Disease: Disease Progression Driven by Positive Feedback Loops and Therapeutic Strategies Targeting Pathogenic Pathways. Diabetes Metab Syndr Obes 2025; 18:1073-1085. [PMID: 40226441 PMCID: PMC11994106 DOI: 10.2147/dmso.s513080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 04/02/2025] [Indexed: 04/15/2025] Open
Abstract
Diabetic kidney disease (DKD) is a major complication of diabetes mellitus, with its pathogenesis intricately regulated by dynamic feedback mechanisms. This comprehensive review systematically analyzes the hierarchical feedback networks driving DKD progression, spanning from systemic interactions to molecular cross-talks. We reveal that self-amplifying positive feedback loops dominate the disease process, manifested through three key dimensions: (1) The systemic triad of hyperglycemia-hypertension-proteinuria establishes a vicious cycle accelerating renal dysfunction; (2) Cellular homeostasis collapse through cross-amplified cell death modalities (apoptosis, pyroptosis, ferroptosis) and cell cycle dysregulation; (3) Molecular cascades centered on AGE/RAGE signaling that fuel chronic inflammation and fibrotic transformation. Collectively, these form a major positive feedback loop where PKC activation, oxidative stress propagation, and TGF-β-mediated fibrosis induced by hyperglycemia lead to progressive renal deterioration and fibrosis. Therapeutically, we propose a dual intervention strategy targeting both the acute phase through AGE/RAGE axis inhibition, coupled with chronic phase via precision modulation of fibrotic pathways. These findings redefine DKD progression as a self-reinforcing network disorder, providing a roadmap for developing multi-target therapies that disrupt pathological feedback loops while preserving renal repair mechanisms.
Collapse
Affiliation(s)
- Gaozhi P Mo
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
| | - Yao Zhu
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
| | - Yue You
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
| | - Hui Chen
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
| | - Jiahao Zhang
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
| | - Bunhav Ku
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
| | - Haichuan Yu
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
| | - Zhiyong Peng
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People’s Republic of China
- Hubei Clinical Research Center for Critical Care Medicine, Wuhan, Hubei, People’s Republic of China
| |
Collapse
|
3
|
Wen J, Li Z, Tan Y, Tey HL, Yu N, Wang X. Endothelial Dysfunction in Keloid Formation and Therapeutic Insights. J Invest Dermatol 2025:S0022-202X(25)00295-7. [PMID: 40100176 DOI: 10.1016/j.jid.2025.02.134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 02/04/2025] [Accepted: 02/14/2025] [Indexed: 03/20/2025]
Abstract
Keloids are benign fibroproliferative tumors that cause significant physical and mental morbidity owing to their disfiguring appearance, chronic symptoms, and resistance to treatment. Although fibroblast hyperproliferation and excessive extracellular matrix deposition have been extensively studied, less attention has been paid to the role of vascular dysregulation and endothelial dysfunction (ED) in keloid pathogenesis. Emerging evidence highlights abnormal angiogenesis, vascular irregularities, and endothelial injury as critical drivers of fibrosis in keloids. This review explores the direct and indirect mechanisms of ED in keloid progression, including endothelial-to-mesenchymal transition, inflammation, immune cell crosstalk, and hypoxia. In addition, various treatment strategies targeting angiogenesis and ED, such as drugs, radiotherapy, hyperbaric oxygen therapy, compression, and laser treatments, are comprehensively reviewed. This review explores keloids through the lens of vasculature and endothelium, emphasizing the critical roles of vascular dysregulation and ED. It aims to provide insights into the mechanisms of keloid formation and serve as a reference for developing future therapeutic strategies.
Collapse
Affiliation(s)
- Junxian Wen
- Department of Plastic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, Republic of China; National Skin Centre, Singapore, Singapore
| | - Zhijin Li
- Department of Plastic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, Republic of China
| | - Yingrou Tan
- National Skin Centre, Singapore, Singapore; Skin Research Institute of Singapore, Singapore, Singapore
| | - Hong Liang Tey
- National Skin Centre, Singapore, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Nanze Yu
- Department of Plastic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, Republic of China; Department of International Medical Service, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, Republic of China.
| | - Xiaojun Wang
- Department of Plastic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, Republic of China.
| |
Collapse
|
4
|
Zhang T, Zhong XC, Feng ZX, Lin XY, Chen CY, Wang XW, Guo K, Wang Y, Chen J, Du YZ, Zhuang ZM, Wang Y, Tan WQ. An active shrinkage and antioxidative hydrogel with biomimetic mechanics functions modulates inflammation and fibrosis to promote skin regeneration. Bioact Mater 2025; 45:322-344. [PMID: 39669127 PMCID: PMC11635612 DOI: 10.1016/j.bioactmat.2024.11.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/04/2024] [Accepted: 11/20/2024] [Indexed: 12/14/2024] Open
Abstract
Achieving scar-free skin regeneration in clinical settings presents significant challenges. Key issues such as the imbalance in macrophage phenotype transition, delayed re-epithelialization, and excessive proliferation and differentiation of fibroblasts hinder wound healing and lead to fibrotic repair. To these, we developed an active shrinkage and antioxidative hydrogel with biomimetic mechanical functions (P&G@LMs) to reshape the healing microenvironment and effectively promote skin regeneration. The hydrogel's immediate hemostatic effect initiated sequential remodeling, the active shrinkage property sealed and contracted the wound at body temperature, and the antioxidative function eliminated ROS, promoting re-epithelialization. The spatiotemporal release of LMs (ACEI) during the inflammation phase regulated macrophage polarization towards the anti-inflammatory M2 phenotype, promoting progression to the proliferation phase. However, the profibrotic niche of macrophages induced a highly contractile α-SMA positive state in myofibroblasts, whereas the sustained LMs release could regulate this niche to control fibrosis and promote the correct biomechanical orientation of collagen. Notably, the biomimetic mechanics of the hydrogel mimicked the contraction characteristics of myofibroblasts, and the skin-like elastic modulus could accommodate the skin dynamic changes and restore the mechanical integrity of wound defect, partially substituting myofibroblasts' mechanical role in tissue repair. This study presents an innovative strategy for skin regeneration.
Collapse
Affiliation(s)
- Tao Zhang
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, China
| | - Xin-Cao Zhong
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, China
| | - Zi-Xuan Feng
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, China
| | - Xiao-Ying Lin
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, China
| | - Chun-Ye Chen
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, China
| | - Xiao-Wei Wang
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, China
| | - Kai Guo
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, China
| | - Yi Wang
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, China
| | - Jun Chen
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, China
- MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yong-Zhong Du
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, China
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yu-Hang-Tang Road, Hangzhou, 310058, China
| | - Ze-Ming Zhuang
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, China
| | - Yong Wang
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, China
| | - Wei-Qiang Tan
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, China
| |
Collapse
|
5
|
Farokh Forghani S, Ahmadi F, Moghimi HR, Naderi Gharahgheshlagh S, Hedayatyanfard K, Montazer F, Barati M, Esfandyari-Manesh M, Varshochian R, Irilouzadian R. Losartan in Situ Forming Gel as a New Treatment for Hypertrophic Scars. Aesthetic Plast Surg 2025; 49:356-366. [PMID: 39317863 DOI: 10.1007/s00266-024-04385-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 09/03/2024] [Indexed: 09/26/2024]
Abstract
Hypertrophic scars are defined as visible lesions formed by excessive wound healing that cause cosmetic and, in some cases, functional challenges in patients. This study aimed to assess the efficacy of intralesional injections of losartan-loaded in situ forming gel and compare it with the common treatment (triamcinolone) in preventing scar formation. The formulation was prepared using a thermosensitive PLGA-PEG-PLGA triblock copolymer. Ear scar tissue in rabbits represented the hypertrophic scar, and the animals were treated with three treatments in three groups. Nine weeks following the single treatment, images of the scars were obtained and quantitatively analyzed using ImageJ and light microscopy was used to evaluate the fibroblast cell number, vascularization, inflammation and collagen deposition and fibrosis in H&E-stained sample tissue. According to the results based on the ImageJ and the Vancouver criteria, the losartan in situ forming gel (F-LG) indicated significantly higher improving effects on decreased vascularity and pigmentation in comparison with triamcinolone (F-TA) and placebo as a control (F-Ctl), although the effect F-LG was almost similar to F-TA on pliability and scar height, and they were better than the control. Histological findings showed F-LG and F-TA have less inflammatory and fibroblast cells compared to F-Ctl. Also, results indicated the dermal layers of the F-TA and F-LG groups' scar were thinner, and the deposition of collagens was reduced compared to the control. Consequently, F-LG was found to be an effective treatment in reducing scarring and promoting wound healing.No Level Assigned This journal requires that authors assign a level of evidence to each submission to which Evidence-Based Medicine rankings are applicable. This excludes Review Articles, Book Reviews, and manuscripts that concern Basic Science, Animal Studies, Cadaver Studies, and Experimental Studies. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Collapse
Affiliation(s)
- Siamak Farokh Forghani
- Burn Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Plastic and Reconstructive Surgery, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Farham Ahmadi
- Department of Plastic and Reconstructive Surgery, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Hamid Reza Moghimi
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soheila Naderi Gharahgheshlagh
- Burn Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Plastic and Reconstructive Surgery, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Keshvad Hedayatyanfard
- Department of Physiology-Pharmacology-Medical Physic, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Fatemeh Montazer
- Firoozabadi Clinical Research Development Unit (FACRDU), Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Maedeh Barati
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Reyhaneh Varshochian
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Rana Irilouzadian
- Burn Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Jie H, Wang B, Zhang J, Wang X, Song X, Yang F, Fu C, Dong B, Yan F. Uncovering SPP1 + Macrophage, Neutrophils and Their Related Diagnostic Biomarkers in Intracranial Aneurysm and Subarachnoid Hemorrhage. J Inflamm Res 2024; 17:8569-8587. [PMID: 39539729 PMCID: PMC11559423 DOI: 10.2147/jir.s493828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024] Open
Abstract
Background Intracranial aneurysms (IA) frequently cause subarachnoid hemorrhage (SAH) and have poor prognosis. However, the molecular mechanisms and diagnostic biomarkers associated with IA and ruptured IA (rIA) remain poorly understood. Methods In this study, single-cell and transcriptome datasets were obtained from the GEO database. The cell populations were annotated to identify potential pathogenic subpopulations, followed by intercellular communication, pseudotime, and SCENIC analyses. Proteome-wide and transcriptome-wide Mendelian randomization (MR) analyses were conducted to identify risk factors for IA and SAH. The major pathological changes and diagnostic biomarkers of IA and SAH were identified based on the transcriptome datasets. A clinical cohort was established to identify the diagnostic biomarkers and validate the results. Results Macrophages and neutrophils were predominantly increased in IA and rIA tissues, and neutrophils were markedly upregulated in the blood of SAH patients. SPP1+ Macrophage was progressively elevated in aneurysms, promoting vascular smooth muscle cell (VSMC) phenotypic transformation and collagen matrix remodeling through the SPP1 and TGF-β pathways. Furthermore, HIF1α regulon was enriched in SPP1+ Macrophage, mediating inflammation and metabolic reprogramming, which contributed to IA progression. Integrated MR analysis identified CD36 as a risk factor for both IA and SAH, and it has been recognized as an effective blood biomarker for SAH. Neutrophils and their related indicators have emerged as excellent biomarkers of SAH in clinical cohorts. Conclusion This study highlighted the detrimental role of SPP1+ Macrophage in IA and SAH using single-cell sequencing and MR analyses. CD36 was identified as a risk factor for IA and SAH and was also an efficient blood biomarker for SAH. In a clinical cohort, neutrophils and related indicators were valuable for the early diagnosis of SAH.
Collapse
Affiliation(s)
- Haipeng Jie
- Department of Cardiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People’s Republic of China
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, People’s Republic of China
| | - Boyang Wang
- Department of Cardiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People’s Republic of China
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, People’s Republic of China
| | - Jingjing Zhang
- Department of Cardiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People’s Republic of China
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, People’s Republic of China
| | - Xinzhao Wang
- Breast Cancer Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, People’s Republic of China
- REMEGEN, LTD, Yantai Economic & Technological Development Area, Yantai, People’s Republic of China
| | - Xiang Song
- Breast Cancer Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, People’s Republic of China
| | - Fan Yang
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, People’s Republic of China
| | - Changning Fu
- Department of Critical Care Medicine, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People’s Republic of China
| | - Bo Dong
- Department of Cardiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People’s Republic of China
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, People’s Republic of China
| | - Feng Yan
- Department of Emergency Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People’s Republic of China
| |
Collapse
|
7
|
Qoreishi SH, Khazeei Tabari MA, Găman MA, Kazeminejad A. Exploring the Molecular Underpinnings of Skin Regeneration and Wound Healing: The Role of Renin Angiotensin. Avicenna J Med Biotechnol 2024; 16:146-155. [PMID: 39132629 PMCID: PMC11316511 DOI: 10.18502/ajmb.v16i3.15740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/27/2023] [Indexed: 08/13/2024] Open
Abstract
The aim of this study is to review the role of renin-angiotensin in skin regeneration and wound healing with a focus on molecular mechanisms. Angiotensin receptor type 1 (AT1R) are abundant in the wounded area, and thus, lead to the activation of ERK, STAT1, and STAT3 which can lead to epidermal self-renewal. The expression of Renin Angiotensin System (RAS) components was significantly lower in wounds caused by burning, rather than intact skin, noting that RAS is involved in the re-epithelialization of skin. ERK, STAT and STAT3 are the targets of Ang II, indicating that RAS active components are involved in fibroblast, stem cells and keratinocyte migration. The effect of inhibiting the RAS on wound healing is context-dependent. On one hand, it is suggested that inhibiting RAS during this phase may slow down wound healing speed. On the other hand, studies have shown that RAS inhibition in this phase can lead to α-SMA activation, ultimately accelerating the wound healing process. Most of the investigations indicate that the inhibition of RAS with Angiotensin Receptor Blockers (ARBs) and Angiotensin Converting Enzyme (ACE) plays a significant role in tissue remodeling in the last phase of wound healing. It has been shown that the inhibition of RAS can inhibit scar formation and fibrosis through the downregulation of inflammatory and fibrogenic agents, such as TGF-β, SMAD2/3, and TAK1, PDGF-BB, and HSP47. To sum up, that local administration of RAS regulators might lead to less scar formation and inflammation in the last phase of wound closure.
Collapse
Affiliation(s)
- Seyedeh Hoda Qoreishi
- Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- USERN Office, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohammad Amin Khazeei Tabari
- USERN Office, Mazandaran University of Medical Sciences, Sari, Iran
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mihnea-Alexandru Găman
- Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474, Bucharest, Romania
- Department of Hematology, Center of Hematology and Bone Marrow Transplantation, Fundeni Clinical Institute, 022328, Bucharest, Romania
| | - Armaghan Kazeminejad
- Department of Dermatology, Antimicrobial Resistance Research Center, Communicable Diseases institute, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
8
|
Wang W, Pang C, Zhang J, Peng L, Zhang X, Shi L, Zhang H. Takinib inhibits microglial M1 polarization and oxidative damage after subarachnoid hemorrhage by targeting TAK1-dependent NLRP3 inflammasome signaling pathway. Front Immunol 2023; 14:1266315. [PMID: 38035075 PMCID: PMC10682771 DOI: 10.3389/fimmu.2023.1266315] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/27/2023] [Indexed: 12/02/2023] Open
Abstract
Transforming growth factor-β-activated kinase 1 (TAK1) positively regulates oxidative stress and inflammation in different diseases. Takinib, a novel and specific TAK1 inhibitor, has beneficial effects in a variety of disorders. However, the effects of takinib on early brain injury (EBI) after subarachnoid hemorrhage (SAH) and the underlying molecular mechanisms remain unknown. Our study showed that takinib administration significantly inhibited phosphorylated TAK1 expression after SAH. In addition, takinib suppressed M1 microglial polarization and promoted M2 microglial polarization. Furthermore, blockade of TAK1 by takinib reduced neuroinflammation, oxidative damage, brain edema, and neuronal apoptosis, and improved neurological behavior after SAH. Mechanistically, we revealed that TAK1 inhibition by takinib mitigated reactive oxygen species (ROS) production and ROS-mediated nod-like receptor pyrin domain-containing protein 3 (NLRP3) inflammasome activation. In contrast, NLRP3 activation by nigericin abated the neuroprotective effects of takinib against EBI after SAH. In general, our study demonstrated that takinib could protect against EBI by targeting TAK1-ROS-NLRP3 inflammasome signaling. Inhibition of TAK1 might be a promising option in the management of SAH.
Collapse
Affiliation(s)
- Weihan Wang
- Department of Neurosurgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Cong Pang
- Department of Neurosurgery, The Affiliated Huai’an No.1 People’s Hospital of Nanjing Medical University, Huai’an, China
| | - Jiaxing Zhang
- Department of Neurosurgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Lei Peng
- Department of Neurosurgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xianghua Zhang
- Department of Neurosurgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Lin Shi
- Graduate School of Capital Medical University, Beijing, China
| | - Hao Zhang
- Department of Neurosurgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
9
|
Maranduca MA, Cosovanu MA, Clim A, Pinzariu AC, Filip N, Drochioi IC, Vlasceanu VI, Timofte DV, Nemteanu R, Plesa A, Pertea M, Serban IL. The Renin-Angiotensin System: The Challenge behind Autoimmune Dermatological Diseases. Diagnostics (Basel) 2023; 13:3398. [PMID: 37998534 PMCID: PMC10670244 DOI: 10.3390/diagnostics13223398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/02/2023] [Accepted: 11/06/2023] [Indexed: 11/25/2023] Open
Abstract
Autoimmune dermatological diseases (AIDD) encompass a diverse group of disorders characterized by aberrant immune responses targeting the skin and its associated structures. In recent years, emerging evidence suggests a potential involvement of the renin-angiotensin system (RAS) in the pathogenesis and progression of these conditions. RAS is a multicomponent cascade, primarily known for its role in regulating blood pressure and fluid balance. All of the RAS components play an important role in controlling inflammation and other immune responses. Angiotensin II, the main effector, acts on two essential receptors: Angiotensin Receptor 1 and 2 (AT1R and AT2R). A disturbance in the axis can lead to many pathological processes, including autoimmune (AI) diseases. AT1R activation triggers diverse signaling cascades involved in inflammation, fibrosis and tissue remodeling. Experimental studies have demonstrated the presence of AT1R in various cutaneous cells and immune cells, further emphasizing its potential contribution to the AI processes in the skin. Furthermore, recent investigations have highlighted the role of other RAS components, beyond angiotensin-converting enzyme (ACE) and Ang II, that may contribute to the pathophysiology of AIDD. Alternative pathways involving ACE2, Ang receptors and Ang-(1-7) have been implicated in regulating immune responses and tissue homeostasis within the skin microenvironment. Understanding the intricate involvement of the RAS in AIDD may provide novel therapeutic opportunities. Targeting specific components of the RAS, such as angiotensin receptor blockers (ARBs), ACE inhibitors (ACEIs) or alternative RAS pathway modulators, could potentially ameliorate inflammatory responses, reduce tissue damage and lessen disease manifestations. Further research is warranted to outline the exact mechanisms underlying RAS-mediated immune dysregulation in AIDD. This abstract aims to provide a concise overview of the intricate interplay between the RAS and AIDD. Therefore, we elaborate a systematic review of the potential challenge of RAS in the AIDD, including psoriasis, systemic sclerosis, vitiligo, lupus erythematosus and many more.
Collapse
Affiliation(s)
- Minela Aida Maranduca
- Discipline of Physiology, Department of Morpho-Functional Sciences II, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- Internal Medicine Clinic, “St. Spiridon” County Clinical Emergency Hospital, 700115 Iasi, Romania
| | - Mihai Andrei Cosovanu
- Discipline of Physiology, Department of Morpho-Functional Sciences II, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Andreea Clim
- Discipline of Physiology, Department of Morpho-Functional Sciences II, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Alin Constantin Pinzariu
- Discipline of Physiology, Department of Morpho-Functional Sciences II, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Nina Filip
- Discipline of Biochemistry, Department of Morpho-Functional Sciences II, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Ilie Cristian Drochioi
- Department of Oral and Maxillofacial Surgery and Reconstructive, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700020 Iasi, Romania
| | - Vlad Ionut Vlasceanu
- Discipline of Surgical Semiology, Department of Surgery I, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Daniel Vasile Timofte
- Discipline of Surgical Semiology, Department of Surgery I, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Roxana Nemteanu
- Medical I Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- Institute of Gastroenterology and Hepatology, “St. Spiridon” University Hospital, 700111 Iasi, Romania
| | - Alina Plesa
- Medical I Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- Institute of Gastroenterology and Hepatology, “St. Spiridon” University Hospital, 700111 Iasi, Romania
| | - Mihaela Pertea
- Department of Plastic Surgery and Reconstructive Microsurgery, “Sf. Spiridon” Emergency County Hospital, 700111 Iasi, Romania
| | - Ionela Lacramioara Serban
- Discipline of Physiology, Department of Morpho-Functional Sciences II, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| |
Collapse
|
10
|
Young ON, Bourke JE, Widdop RE. Catch your breath: The protective role of the angiotensin AT 2 receptor for the treatment of idiopathic pulmonary fibrosis. Biochem Pharmacol 2023; 217:115839. [PMID: 37778444 DOI: 10.1016/j.bcp.2023.115839] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/28/2023] [Accepted: 09/28/2023] [Indexed: 10/03/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive interstitial lung disease whereby excessive deposition of extracellular matrix proteins (ECM) ultimately leads to respiratory failure. While there have been advances in pharmacotherapies for pulmonary fibrosis, IPF remains an incurable and irreversible disease. There remains an unmet clinical need for treatments that reverse fibrosis, or at the very least have a more tolerable side effect profile than currently available treatments. Transforming growth factor β1(TGFβ1) is considered the main driver of fibrosis in IPF. However, as our understanding of the role of the pulmonary renin-angiotensin system (PRAS) in the pathogenesis of IPF increases, it is becoming clear that targeting angiotensin receptors represents a potential novel treatment strategy for IPF - in particular, via activation of the anti-fibrotic angiotensin type 2 receptor (AT2R). This review describes the current understanding of the pathophysiology of IPF and the mediators implicated in its pathogenesis; focusing on TGFβ1, angiotensin II and related peptides in the PRAS and their contribution to fibrotic processes in the lung. Preclinical and clinical assessment of currently available AT2R agonists and the development of novel, highly selective ligands for this receptor will also be described, with a focus on compound 21, currently in clinical trials for IPF. Collectively, this review provides evidence of the potential of AT2R as a novel therapeutic target for IPF.
Collapse
Affiliation(s)
- Olivia N Young
- Department of Pharmacology and Cardiovascular Disease Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Jane E Bourke
- Department of Pharmacology and Cardiovascular Disease Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Robert E Widdop
- Department of Pharmacology and Cardiovascular Disease Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia.
| |
Collapse
|
11
|
Greif T, Alsawas M, Reid AT, Liu V, Prokop L, Murad MH, Powers JG. Targeting the Angiotensin Pathway in the Treatment of Cutaneous Fibrosis: A Systematic Review. JID INNOVATIONS 2023; 3:100231. [PMID: 37840767 PMCID: PMC10568560 DOI: 10.1016/j.xjidi.2023.100231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 08/03/2023] [Accepted: 08/22/2023] [Indexed: 10/17/2023] Open
Abstract
Acting on the renin-angiotensin-aldosterone system, angiotensin-converting enzyme inhibitors (ACE-Is) and angiotensin receptor blockers (ARBs) are mechanisms of some of the most prescribed medications in the world. In addition to their routine use for the treatment of hypertension, such agents have gained attention for their influence on the angiotensin receptor pathway in fibrotic skin disorders, including scars and keloids. To evaluate the current level of evidence supporting the use of these agents, a systematic review related to ACE-Is/ARBs and cutaneous scarring was conducted. We searched MEDLINE, Embase, Cochrane Central Register of Controlled Trials, Cochrane Database of Systematic Reviews, and Scopus from database inception through January 26, 2022. Two independent reviewers identified eligible studies for inclusion and extracted data. Data were insufficient for meta-analysis and are presented narratively. Of 461 citations identified, seven studies were included (199 patients). The studies included two randomized clinical trials, one comparative observation study, and four case reports. All the included studies reported statistically significant improvement in cutaneous scarring in patients using ACE-Is/ARBs compared with that in those treated with placebo/control using various outcome measures such as scar size and scar scales. However, much of the literature on this subject to date is limited by study design.
Collapse
Affiliation(s)
- Trenton Greif
- Department of Dermatology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Mouaz Alsawas
- Department of Pathology, University of Iowa Hospitals & Clinics, Iowa City, Iowa, USA
- Mayo Clinic Evidence-based Practice Center, Mayo Clinic, Rochester, Minnesota, USA
| | - Alexander T. Reid
- Department of Dermatology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Vincent Liu
- Department of Dermatology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
- Department of Pathology, University of Iowa Hospitals & Clinics, Iowa City, Iowa, USA
| | - Larry Prokop
- Mayo Clinic Libraries, Mayo Clinic, Rochester, Minnesota, USA
| | - M. Hassan Murad
- Mayo Clinic Evidence-based Practice Center, Mayo Clinic, Rochester, Minnesota, USA
| | - Jennifer G. Powers
- Department of Dermatology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| |
Collapse
|
12
|
Yu Z, Xu C, Song B, Zhang S, Chen C, Li C, Zhang S. Tissue fibrosis induced by radiotherapy: current understanding of the molecular mechanisms, diagnosis and therapeutic advances. J Transl Med 2023; 21:708. [PMID: 37814303 PMCID: PMC10563272 DOI: 10.1186/s12967-023-04554-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 09/22/2023] [Indexed: 10/11/2023] Open
Abstract
Cancer remains the leading cause of death around the world. In cancer treatment, over 50% of cancer patients receive radiotherapy alone or in multimodal combinations with other therapies. One of the adverse consequences after radiation exposure is the occurrence of radiation-induced tissue fibrosis (RIF), which is characterized by the abnormal activation of myofibroblasts and the excessive accumulation of extracellular matrix. This phenotype can manifest in multiple organs, such as lung, skin, liver and kidney. In-depth studies on the mechanisms of radiation-induced fibrosis have shown that a variety of extracellular signals such as immune cells and abnormal release of cytokines, and intracellular signals such as cGAS/STING, oxidative stress response, metabolic reprogramming and proteasome pathway activation are involved in the activation of myofibroblasts. Tissue fibrosis is extremely harmful to patients' health and requires early diagnosis. In addition to traditional serum markers, histologic and imaging tests, the diagnostic potential of nuclear medicine techniques is emerging. Anti-inflammatory and antioxidant therapies are the traditional treatments for radiation-induced fibrosis. Recently, some promising therapeutic strategies have emerged, such as stem cell therapy and targeted therapies. However, incomplete knowledge of the mechanisms hinders the treatment of this disease. Here, we also highlight the potential mechanistic, diagnostic and therapeutic directions of radiation-induced fibrosis.
Collapse
Affiliation(s)
- Zuxiang Yu
- Laboratory of Radiation Medicine, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Chaoyu Xu
- Laboratory of Radiation Medicine, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Bin Song
- Laboratory of Radiation Medicine, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, China
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, 610051, China
- NHC Key Laboratory of Nuclear Technology Medical Transformation (Mianyang Central Hospital), Mianyang, 621099, China
| | - Shihao Zhang
- Laboratory of Radiation Medicine, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Chong Chen
- Department of Gastroenterology, The First People's Hospital of Xuzhou, Xuzhou Municipal Hospital Affiliated to Xuzhou Medical University, Xuzhou, 221200, China
| | - Changlong Li
- Laboratory of Radiation Medicine, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, China.
- Department of Molecular Biology and Biochemistry, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China.
| | - Shuyu Zhang
- Laboratory of Radiation Medicine, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, China.
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, 610051, China.
- NHC Key Laboratory of Nuclear Technology Medical Transformation (Mianyang Central Hospital), Mianyang, 621099, China.
| |
Collapse
|
13
|
Niculae A, Gherghina ME, Peride I, Tiglis M, Nechita AM, Checherita IA. Pathway from Acute Kidney Injury to Chronic Kidney Disease: Molecules Involved in Renal Fibrosis. Int J Mol Sci 2023; 24:14019. [PMID: 37762322 PMCID: PMC10531003 DOI: 10.3390/ijms241814019] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/30/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Acute kidney injury (AKI) is one of the main conditions responsible for chronic kidney disease (CKD), including end-stage renal disease (ESRD) as a long-term complication. Besides short-term complications, such as electrolyte and acid-base disorders, fluid overload, bleeding complications or immune dysfunctions, AKI can develop chronic injuries and subsequent CKD through renal fibrosis pathways. Kidney fibrosis is a pathological process defined by excessive extracellular matrix (ECM) deposition, evidenced in chronic kidney injuries with maladaptive architecture restoration. So far, cited maladaptive kidney processes responsible for AKI to CKD transition were epithelial, endothelial, pericyte, macrophage and fibroblast transition to myofibroblasts. These are responsible for smooth muscle actin (SMA) synthesis and abnormal renal architecture. Recently, AKI progress to CKD or ESRD gained a lot of interest, with impressive progression in discovering the mechanisms involved in renal fibrosis, including cellular and molecular pathways. Risk factors mentioned in AKI progression to CKD are frequency and severity of kidney injury, chronic diseases such as uncontrolled hypertension, diabetes mellitus, obesity and unmodifiable risk factors (i.e., genetics, older age or gender). To provide a better understanding of AKI transition to CKD, we have selected relevant and updated information regarding the risk factors responsible for AKIs unfavorable long-term evolution and mechanisms incriminated in the progression to a chronic state, along with possible therapeutic approaches in preventing or delaying CKD from AKI.
Collapse
Affiliation(s)
- Andrei Niculae
- Department of Nephrology, Clinical Department No. 3, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Mihai-Emil Gherghina
- Department of Nephrology, Ilfov County Emergency Clinical Hospital, 022104 Bucharest, Romania
| | - Ileana Peride
- Department of Nephrology, Clinical Department No. 3, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Mirela Tiglis
- Department of Anesthesia and Intensive Care, Emergency Clinical Hospital of Bucharest, 014461 Bucharest, Romania
| | - Ana-Maria Nechita
- Department of Nephrology, “St. John” Emergency Clinical Hospital, 042122 Bucharest, Romania
| | | |
Collapse
|
14
|
Bi AS, Papalia AG, Romeo PV, Schoof LH, Kwon YW, Rokito AS, Zuckerman JD, Virk MS. Effect of angiotensin converting enzyme inhibitors and angiotensin II receptor blockers on need for operative intervention for idiopathic adhesive capsulitis. JSES Int 2023; 7:793-798. [PMID: 37719830 PMCID: PMC10499842 DOI: 10.1016/j.jseint.2023.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023] Open
Abstract
Background The exact pathogenesis of idiopathic adhesive capsulitis (IAC) is not fully understood, but an inflammatory profibrotic cascade, largely mediated by transforming growth factor-beta 1 (TGF- β1) has been implicated. Angiotensin II receptor blockers (ARBs) and angiotensin-converting enzyme inhibitors (ACE-Is) both decrease the activity of TGF-β1. The aim of this study was to determine the impact of ACE-Is or ARBs use on the need for operative intervention in IAC. Methods This was a retrospective cohort study of patients from a single institutional database with IAC, divided into two cohorts, with and without ACE-I and/or ARB use as the primary exposure and a minimum 2-year follow-up. The primary outcome measured was the incidence of operative intervention including manipulation under anesthesia (MUA) and arthroscopic capsular release (ACR). Additional multivariable logistic regression analysis was performed to evaluate associations between ACE-I/ARB use and likelihood of undergoing an operative procedure. Results A total of 17,645 patients met inclusion criteria, with 5424 patients in the ACE-I/ARB cohort and 12,221 in the non-ACE-I/ARB cohort. Overall, 422 (2.4%) patients underwent surgical treatment, 378 (2.1%) ACR, and 74 (0.4%) MUA. There was no significant difference between cohorts in the frequency of surgical procedures or time to procedure since diagnosis. There were no significant differences between individual ACE-Is or ARBs, although Losartan was found to have a trend of decreased rate of intervention (31.7% vs. 36.8%, P = .209) when compared to patients not on losartan that did not reach statistical significance. Patient factors predictive of undergoing MUA/ACR were diabetes (P = .013), obesity (P < .001), and male sex (P < .001). Increasing patient age reduces the likelihood of undergoing operative intervention, with patients aged 50-70 years (P = .022) and age >70 years (P < .001) demonstrating reduced odds as compared to patients aged <30 years. Conclusion Patients with IAC have an overall low (2.4%) rate of requiring surgical intervention. While the antifibrotic mechanism of ACE inhibitors and ARBs did not significantly affect the rate of requiring surgical intervention, male gender, obesity, younger age, and diabetes, all increased the risk for operative intervention. Losartan, specifically, may have a disease modifying effect on IAC that should be investigated with larger controlled trials.
Collapse
Affiliation(s)
- Andrew S. Bi
- Division of Shoulder and Elbow Surgery, Department of Orthopedic Surgery, NYU Grossman School of Medicine, NYU Langone Orthopedic Hospital, NYU Langone Health, New York, NY, USA
| | - Aidan G. Papalia
- Division of Shoulder and Elbow Surgery, Department of Orthopedic Surgery, NYU Grossman School of Medicine, NYU Langone Orthopedic Hospital, NYU Langone Health, New York, NY, USA
| | - Paul V. Romeo
- Division of Shoulder and Elbow Surgery, Department of Orthopedic Surgery, NYU Grossman School of Medicine, NYU Langone Orthopedic Hospital, NYU Langone Health, New York, NY, USA
| | - Lauren H. Schoof
- Division of Shoulder and Elbow Surgery, Department of Orthopedic Surgery, NYU Grossman School of Medicine, NYU Langone Orthopedic Hospital, NYU Langone Health, New York, NY, USA
| | - Young W. Kwon
- Division of Shoulder and Elbow Surgery, Department of Orthopedic Surgery, NYU Grossman School of Medicine, NYU Langone Orthopedic Hospital, NYU Langone Health, New York, NY, USA
| | - Andrew S. Rokito
- Division of Shoulder and Elbow Surgery, Department of Orthopedic Surgery, NYU Grossman School of Medicine, NYU Langone Orthopedic Hospital, NYU Langone Health, New York, NY, USA
| | - Joseph D. Zuckerman
- Division of Shoulder and Elbow Surgery, Department of Orthopedic Surgery, NYU Grossman School of Medicine, NYU Langone Orthopedic Hospital, NYU Langone Health, New York, NY, USA
| | - Mandeep S. Virk
- Division of Shoulder and Elbow Surgery, Department of Orthopedic Surgery, NYU Grossman School of Medicine, NYU Langone Orthopedic Hospital, NYU Langone Health, New York, NY, USA
| |
Collapse
|
15
|
Bi AS, Li ZI, Triana J, Fisher ND, Morgan AM, Garra S, Gonzalez-Lomas G, Campbell KA, Jazrawi LM. Angiotensin Receptor Blockers and Angiotensin-Converting Enzyme Inhibitors Have No Significant Relationship With Postoperative Arthrofibrosis After Shoulder Arthroscopy. Arthrosc Sports Med Rehabil 2023; 5:100748. [PMID: 37645401 PMCID: PMC10461208 DOI: 10.1016/j.asmr.2023.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 05/23/2023] [Indexed: 08/31/2023] Open
Abstract
Purpose To determine the effect of perioperative angiotensin II receptor blocker (ARB) or angiotensin-converting enzyme inhibitors (ACEi) on postoperative arthrofibrosis, as defined by requiring manipulation under anesthesia (MUA) or new diagnosis of adhesive capsulitis (AC) following arthroscopic shoulder procedures. Methods Patients were retrospectively identified using Current Procedural Terminology surgical billing codes to identify patients who underwent any shoulder arthroscopic procedure at a single urban academic institution from 2012 to 2020 with a minimum 2-year follow-up. Patients were excluded if <30 years old at time of surgery, as these patients rarely use ARB and ACEi medications, or if they had pre-existing AC. Demographics, active medication prescriptions at the time of surgery, and medical comorbidities were recorded. Multivariable logistic regression was performed to determine the effect of ARB/ACEi on subsequent MUA or AC by 90 days, 1 year, and 2 years. Results In total, 5,559 patients were included in the final analysis. A majority of the cohort (53.4%) underwent arthroscopic surgery between the ages of 50 to 69 years. Most patients were male (61.8%) and without obesity (67.3%). In total, 18.9% and 15.0% were taking an ARB or ACEi medication perioperatively, respectively. Within 2 years' postoperatively, 51 patients (0.9%) underwent subsequent ipsilateral MUA, and 174 patients (3.1%) developed AC. Patients taking ARBs had a 17.5% rate of postoperative arthrofibrosis within 2-years compared with 19.1% in those not on ARBs, although this difference was not significant (P = .58). Likewise, no significant difference was found between those taking ACEi versus not (15.0% vs 15.0%, P = .99). Individual generic ARB/ACEi subgroup analysis did not demonstrate any significant associations with rate of postoperative arthrofibrosis (P > .05). Conclusions ARBs or ACEi did not significantly affect the rate of postoperative arthrofibrosis following shoulder arthroscopy, however female sex, diabetes mellitus, and Black/African American race were associated with an increased rate of necessitating MUA or developing AC within 2 years postoperatively. Level of Evidence Level III, retrospective cohort study.
Collapse
Affiliation(s)
- Andrew S. Bi
- Department of Orthopedic Surgery, New York University Langone Health, New York, New York, U.S.A
| | - Zachary I. Li
- Department of Orthopedic Surgery, New York University Langone Health, New York, New York, U.S.A
| | - Jairo Triana
- Department of Orthopedic Surgery, New York University Langone Health, New York, New York, U.S.A
| | - Nina D. Fisher
- Department of Orthopedic Surgery, New York University Langone Health, New York, New York, U.S.A
| | - Allison M. Morgan
- Department of Orthopedic Surgery, New York University Langone Health, New York, New York, U.S.A
| | - Sharif Garra
- Department of Orthopedic Surgery, New York University Langone Health, New York, New York, U.S.A
| | - Guillem Gonzalez-Lomas
- Department of Orthopedic Surgery, New York University Langone Health, New York, New York, U.S.A
| | - Kirk A. Campbell
- Department of Orthopedic Surgery, New York University Langone Health, New York, New York, U.S.A
| | - Laith M. Jazrawi
- Department of Orthopedic Surgery, New York University Langone Health, New York, New York, U.S.A
| |
Collapse
|
16
|
Kim EY, Hussain A, Khachemoune A. Evidence-based management of keloids and hypertrophic scars in dermatology. Arch Dermatol Res 2023; 315:1487-1495. [PMID: 36504113 DOI: 10.1007/s00403-022-02509-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/27/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022]
Abstract
While normal, controlled wound-healing results in scars that are nearly imperceptible, hypertrophic scars (HTS) and keloids are the result of an abnormal wound-healing process that can leave unsightly, difficult-to-treat lesions. While such scars are classically associated with surgical incisions, they may also result from burns or accidental trauma to the skin. Several different measures can be taken to prevent the formation of scars or treat those that have already formed. Prevention focuses on reducing inflammation during the wound-healing process, and minimizing tension in the lesion when appropriate. Treatments range from non-invasive modalities such as pressure therapy, topicals, and symptom management, to invasive methods such as injections, lasers, and even surgery. While some treatments, such as corticosteroid injections, have been used in the treatment of HTS and keloids for decades, other newer therapies have only been described in case reports or are still in early phases of clinical trials. Because optimal scar management will not be the same for every patient, further investigation of newer agents and methods is warranted and may benefit a great number of patients. This paper will review the evidence-based management of scars, including current widely used treatment options and promising newly emerging therapies.
Collapse
Affiliation(s)
- Emily Y Kim
- Georgetown University School of Medicine, Washington, DC, USA
| | - Aamir Hussain
- MedStar Washington Hospital Center/Georgetown University Dermatology Residency Program, Washington, DC, USA
| | - Amor Khachemoune
- Department of Dermatology, Veterans Affairs Medical Center, SUNY Downstate, 800 Poly Place, Brooklyn, NY, 11209, USA.
- Department of Dermatology, Veterans Affairs New York Harbor Healthcare System, Brooklyn, NY, USA.
| |
Collapse
|
17
|
Zhu L, Liu L, Wang A, Liu J, Huang X, Zan T. Positive feedback loops between fibroblasts and the mechanical environment contribute to dermal fibrosis. Matrix Biol 2023; 121:1-21. [PMID: 37164179 DOI: 10.1016/j.matbio.2023.05.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 05/06/2023] [Accepted: 05/07/2023] [Indexed: 05/12/2023]
Abstract
Dermal fibrosis is characterized by excessive deposition of extracellular matrix in the dermis and affects millions of people worldwide and causes limited movement, disfigurement and psychological distress in patients. Fibroblast dysfunction of plays a central role in the pathogenesis of dermal fibrosis and is controlled by distinct factors. Recent studies support the hypothesis that fibroblasts can drive matrix deposition and stiffening, which in turn can exacerbate the functional dysregulation of fibroblasts. Ultimately, through a positive feedback loop, uncontrolled pathological fibrosis develops. This review aims to summarize the phenomenon and mechanism of the positive feedback loop in dermal fibrosis, and discuss potential therapeutic targets to help further elucidate the pathogenesis of dermal fibrosis and develop therapeutic strategies. In this review, fibroblast-derived compositional and structural changes in the ECM that lead to altered mechanical properties are briefly discussed. We focus on the mechanisms by which mechanical cues participate in dermal fibrosis progression. The mechanosensors discussed in the review include integrins, DDRs, proteoglycans, and mechanosensitive ion channels. The FAK, ERK, Akt, and Rho pathways, as well as transcription factors, including MRTF and YAP/TAZ, are also discussed. In addition, we describe stiffness-induced biological changes in the ECM on fibroblasts that contribute to the formation of a positive feedback loop. Finally, we discuss therapeutic strategies to treat the vicious cycle and present important suggestions for researchers conducting in-depth research.
Collapse
Affiliation(s)
- Liang Zhu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Lechen Liu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Aoli Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Jinwen Liu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Xin Huang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China.
| | - Tao Zan
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China.
| |
Collapse
|
18
|
Confalonieri F, Lumi X, Petrovski G. Spontaneous Epiretinal Membrane Resolution and Angiotensin Receptor Blockers: Case Observation, Literature Review and Perspectives. Biomedicines 2023; 11:1976. [PMID: 37509613 PMCID: PMC10377102 DOI: 10.3390/biomedicines11071976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/05/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
INTRODUCTION Epiretinal membrane (ERM) is a relatively common condition affecting the macula. When symptoms become apparent and compromise a patient's quality of vision, the only therapeutic approach available today is surgery with a vitrectomy and peeling of the ERM. Angiotensin receptor blockers (ARBs) and angiotensin-converting enzyme inhibitors (ACE-Is) reduce the effect of angiotensin II, limit the amount of fibrosis, and demonstrate consequences on fibrinogenesis in the human body. Case Description and Materials and Methods: A rare case of spontaneous ERM resolution with concomitant administration of ARB is reported. The patient was set on ARB treatment for migraines and arterial hypertension, and a posterior vitreous detachment was already present at the first diagnosis of ERM. The scientific literature addressing the systemic relationship between ARB, ACE-Is, and fibrosis in the past 25 years was searched in the PubMed, Medline, and EMBASE databases. RESULTS In total, 38 and 16 original articles have been selected for ARBs and ACE-Is, respectively, in regard to fibrosis modulation. CONCLUSION ARBs and ACE-Is might have antifibrotic activity on ERM formation and resolution. Further clinical studies are necessary to explore this phenomenon.
Collapse
Affiliation(s)
- Filippo Confalonieri
- Department of Ophthalmology, Oslo University Hospital, Kirkeveien 166, 0450 Oslo, Norway
- Center for Eye Research and Innovative Diagnostics, Department of Ophthalmology, Institute for Clinical Medicine, University of Oslo, Kirkeveien 166, 0450 Oslo, Norway
| | - Xhevat Lumi
- Department of Ophthalmology, Oslo University Hospital, Kirkeveien 166, 0450 Oslo, Norway
- Eye Hospital, University Medical Centre Ljubljana, Zaloška Cesta 2, 1000 Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Goran Petrovski
- Department of Ophthalmology, Oslo University Hospital, Kirkeveien 166, 0450 Oslo, Norway
- Center for Eye Research and Innovative Diagnostics, Department of Ophthalmology, Institute for Clinical Medicine, University of Oslo, Kirkeveien 166, 0450 Oslo, Norway
- Department of Ophthalmology, University of Split School of Medicine and University Hospital Centre, 21000 Split, Croatia
| |
Collapse
|
19
|
Kleinman HK, Kulik V, Goldstein AL. Thymosin β4 and the anti-fibrotic switch. Int Immunopharmacol 2023; 115:109628. [PMID: 36580759 DOI: 10.1016/j.intimp.2022.109628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/19/2022] [Accepted: 12/19/2022] [Indexed: 12/28/2022]
Abstract
Wound healing involves a rapid response to the injury by circulating cells, followed by inflammation with an influx of inflammatory cells that release various factors. Soon after, cellular proliferation begins to replace the damaged cells and extracellular matrix, and then tissue remodeling restores normal tissue function. Various factors can lead to pathological wound healing when excessive and irreversible connective tissue/extracellular matrix deposition occurs, resulting in fibrosis. The process is initiated when immune cells, such as macrophages, release soluble factors that stimulate fibroblasts. TGFβ is the most well-characterized macrophage derived pro-fibrotic mediator. Other soluble mediators of fibrosis include connective tissue growth factor (CTGF), platelet-derived growth factor (PDGF), and interleukin 10 (IL-10). Thymosin β4 (Tβ4) has shown therapeutic benefit in preventing fibrosis/scarring in various animal models of fibrosis/scarring. The mechanism of action of Tβ4 appears related, in part, to a reduction in the inflammatory response, including a reduction in macrophage infiltration, decreased levels of TGFβ and IL-10, and reduced CTGF activation, resulting in both prevention of fibroblast conversion to myofibroblasts and production of normally aligned collagen fibers. The amino N-terminal end of Tβ4, SDKP (serine-aspartate-lysine-proline), appears to contain the majority of anti-fibrotic activity and has shown excellent efficacy in many animal models of fibrosis, including liver, lung, heart, and kidney fibrosis. Ac-SDKP not only prevents fibrosis but can reverse fibrosis. Unanswered questions and future directions will be presented with regard to therapeutic uses alone and in combination with already approved drugs for fibrosis.
Collapse
Affiliation(s)
- Hynda K Kleinman
- NIDCR, NIH, Bethesda, The George Washington University, Washington, DC, United States.
| | - Veronika Kulik
- Department of Biochemistry & Molecular Medicine, The George Washington University, Washington, DC, United States
| | - Allan L Goldstein
- Department of Biochemistry & Molecular Medicine, The George Washington University, Washington, DC, United States
| |
Collapse
|
20
|
Huang Y, Li J, Wang Y, Chen D, Huang J, Dai W, Peng P, Guo L, Lei Y. Intradermal delivery of an angiotensin II receptor blocker using a personalized microneedle patch for treatment of hypertrophic scars. Biomater Sci 2023; 11:583-595. [PMID: 36475528 DOI: 10.1039/d2bm01631a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
High-quality postoperative rehabilitation is the focus of most patients currently, and hypertrophic scar (HS) greatly reduces the patient's quality of life due to the symptom of severe itching. Traditional HS therapies are associated with limitations, such as poor drug delivery efficiency for topical administration and severe pain for intralesional injection. In this study, we developed a personalized microneedle patch system for minimally invasive and effective treatment of HSs. The microneedle patches were personalized designed and fabricated with 3D printing in order to adapt to individual HS. The optimized microneedle patches were composed of dissolving gelatin and starch and loaded with losartan. Losartan, as a drug class of angiotensin II receptor blockers (ARBs), can effectively inhibit the proliferation and migration of hypertrophic scar fibroblasts (HSFs) and downregulate the gene expression related to scar formation in HSFs. The dissolving microneedle patches exhibited strong mechanical strength, effectively penetrated the stratum corneum of HSs and increased the losartan delivery into HSs upon dissolution of gelatin and starch. Together, the losartan-loaded microneedle patches effectively inhibited the formation of HSs in rabbit ears with reduced scar elevation index (SEI), and decreased fibrosis and collagen deposition in HSs. This personalized microneedle patch system increases the drug delivery efficiency into HSs with minimal invasion, and opens a new window for personalized management and treatment of skin diseases.
Collapse
Affiliation(s)
- Yihui Huang
- Department of Plastic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| | - Jingwen Li
- The Institute of Technological Science & School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China.
| | - Yan Wang
- The Institute of Technological Science & School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China.
| | - Danyang Chen
- Department of Plastic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| | - Jianglong Huang
- Department of Dermatology and Cosmetic Medicine, Hubei Aerospace Hospital, Xiaogan 432000, China
| | - Wubin Dai
- School of Material Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Pan Peng
- Department of Plastic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| | - Liang Guo
- Department of Plastic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| | - Yifeng Lei
- The Institute of Technological Science & School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
21
|
Schuster R, Younesi F, Ezzo M, Hinz B. The Role of Myofibroblasts in Physiological and Pathological Tissue Repair. Cold Spring Harb Perspect Biol 2023; 15:a041231. [PMID: 36123034 PMCID: PMC9808581 DOI: 10.1101/cshperspect.a041231] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Myofibroblasts are the construction workers of wound healing and repair damaged tissues by producing and organizing collagen/extracellular matrix (ECM) into scar tissue. Scar tissue effectively and quickly restores the mechanical integrity of lost tissue architecture but comes at the price of lost tissue functionality. Fibrotic diseases caused by excessive or persistent myofibroblast activity can lead to organ failure. This review defines myofibroblast terminology, phenotypic characteristics, and functions. We will focus on the central role of the cell, ECM, and tissue mechanics in regulating tissue repair by controlling myofibroblast action. Additionally, we will discuss how therapies based on mechanical intervention potentially ameliorate wound healing outcomes. Although myofibroblast physiology and pathology affect all organs, we will emphasize cutaneous wound healing and hypertrophic scarring as paradigms for normal tissue repair versus fibrosis. A central message of this review is that myofibroblasts can be activated from multiple cell sources, varying with local environment and type of injury, to either restore tissue integrity and organ function or create an inappropriate mechanical environment.
Collapse
Affiliation(s)
- Ronen Schuster
- Faculty of Dentistry, University of Toronto, Toronto, M5S 3E2 Ontario, Canada
| | - Fereshteh Younesi
- Faculty of Dentistry, University of Toronto, Toronto, M5S 3E2 Ontario, Canada
- Laboratory of Tissue Repair and Regeneration, Keenan Research Centre for Biomedical Science of the St. Michael's Hospital, Toronto, Ontario M5B 1T8, Canada
| | - Maya Ezzo
- Faculty of Dentistry, University of Toronto, Toronto, M5S 3E2 Ontario, Canada
- Laboratory of Tissue Repair and Regeneration, Keenan Research Centre for Biomedical Science of the St. Michael's Hospital, Toronto, Ontario M5B 1T8, Canada
| | - Boris Hinz
- Faculty of Dentistry, University of Toronto, Toronto, M5S 3E2 Ontario, Canada
- Laboratory of Tissue Repair and Regeneration, Keenan Research Centre for Biomedical Science of the St. Michael's Hospital, Toronto, Ontario M5B 1T8, Canada
| |
Collapse
|
22
|
Hu YY, Xu FW, Wang Y, Feng ZX, Zhang LY, Zhao W, Chen CY, Zhang MX, He GJ, Wang SJ, Tan WQ. Comparisons of the effects of topical anti-scar drugs on post-surgical facial scar formation: a clinical investigation. Am J Transl Res 2023; 15:1204-1214. [PMID: 36915740 PMCID: PMC10006765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 01/03/2023] [Indexed: 03/16/2023]
Abstract
OBJECTIVES Scarring is a common but intricate problem, and topical anti-scarring drugs are the most widely used treatment. However, the wide range of drugs available makes it difficult for doctors and patients to choose from because of the lack of clinical comparisons. Therefore, we conducted an observational study to compare the clinical efficacy of different topical anti-scarring drugs. METHODS Patients with post-suturing facial scars were enrolled in this study. The questionnaire was designed to record the basic characteristics of the patients. The Vancouver Scar Scale, SCAR scale, and measurements of scar width and thickness were used to evaluate scar quality. Patients who met the inclusion criteria were divided into four groups for comparison: the silicone preparation (SP), onion extract (OE), asiaticoside (AC) groups, and the untreated blank control (BC) group. The overall data were analyzed before they were confined to the zygomatic region. RESULTS A total of 127 eligible patients were enrolled in this study. The results of the total and zygomatic scars demonstrated that SP, OE, and AC groups resulted in narrower scars and lower scar scale scores. The SP group depicted higher melanin efficacy than the other two groups. The OE group had the best pliability, whereas the AC group had the thinnest scar. CONCLUSIONS In this study, we acquired expertise with different topical anti-scar agents: SP significantly reduced melanin levels, OE mainly benefited scar pliability, and AC was better at reducing scar thickness. These differences may be more instructive for clinical applications.
Collapse
Affiliation(s)
- Yan-Yan Hu
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine Hangzhou, Zhejiang, P. R. China
| | - Fa-Wei Xu
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine Hangzhou, Zhejiang, P. R. China
| | - Yong Wang
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine Hangzhou, Zhejiang, P. R. China
| | - Zi-Xuan Feng
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine Hangzhou, Zhejiang, P. R. China
| | - Li-Yun Zhang
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine Hangzhou, Zhejiang, P. R. China
| | - Wei Zhao
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine Hangzhou, Zhejiang, P. R. China
| | - Chun-Ye Chen
- Department of Plastic Surgery, The Fourth Affiliated Hospital, Zhejiang University School of Medicine Yiwu, Zhejiang, P. R. China
| | - Min-Xia Zhang
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine Hangzhou, Zhejiang, P. R. China
| | - Gui-Juan He
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine Hangzhou, Zhejiang, P. R. China
| | - Shou-Jie Wang
- Department of Plastic Surgery, The Fourth Affiliated Hospital, Zhejiang University School of Medicine Yiwu, Zhejiang, P. R. China
| | - Wei-Qiang Tan
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine Hangzhou, Zhejiang, P. R. China
| |
Collapse
|
23
|
Hedayatyanfard K, Khalili A, Karim H, Nooraei S, Khosravi E, Haddadi NS, Dehpour AR, Bayat G. Potential use of angiotensin receptor blockers in skin pathologies. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2023; 26:732-737. [PMID: 37396936 PMCID: PMC10311969 DOI: 10.22038/ijbms.2023.66563.14606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 02/20/2023] [Indexed: 07/04/2023]
Abstract
Renin-angiotensin system (RAS) components such as angiotensin II, angiotensin receptors (AT1R and AT2R), and angiotensin-converting enzyme (ACE) are expressed in different cell types of the skin. Through AT1R, angiotensin II increases proinflammatory cytokines contributing to fibrosis, angiogenesis, proliferation, and migration of immune cells to the skin. In contrast, AT2R suppresses the effects mentioned above. Many studies show that angiotensin receptor blockers (ARBs) and angiotensin-converting enzymes (ACEi) reduce the proinflammatory cytokines and fibrogenic factors including transforming growth factor β (TGF-β), Connective tissue growth factor (CTGF), and IL-6. This review article provides a detailed research study on the implications of ARBs in wound healing, hypertrophic scar, and keloids. We further discuss the therapeutic potentials of ARBs in autoimmune and autoinflammatory skin diseases and cancer, given their anti-fibrotic and anti-inflammatory effects.
Collapse
Affiliation(s)
- Keshvad Hedayatyanfard
- Department of Physiology, Pharmacology and Medical Physic, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
- Cardiovascular Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Azadeh Khalili
- Department of Physiology, Pharmacology and Medical Physic, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Hosein Karim
- Cardiovascular Research Center, Alborz University of Medical Sciences, Karaj, Iran
- Department of Cardiology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Soren Nooraei
- Student of School of Veterinary Medicine, Faculty of Veterinary Medicine, University of Shahrekord, Shahrekord, Iran
| | - Ehsan Khosravi
- Department of Veterinary Surgery, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Nazgol-Sadat Haddadi
- Department of Dermatology, University of Massachusetts School of Medicine, Worchester, MA, USA
| | - Ahmad-Reza Dehpour
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Gholamreza Bayat
- Department of Physiology, Pharmacology and Medical Physic, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| |
Collapse
|
24
|
Wang T, Zhang S, Wang L, Su K, Tang Z, He H, Shi Y, Liu Y, Zheng M, Fu W, Hu S, Zhang X, Wu T. Local application of triamcinolone acetonide-conjugated chitosan membrane to prevent benign biliary stricture. Drug Deliv Transl Res 2022; 12:2895-2906. [PMID: 35426041 DOI: 10.1007/s13346-022-01153-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2022] [Indexed: 12/16/2022]
Abstract
Benign biliary stricture (BBS) is the proliferation of fibrous tissue of the biliary tract caused by the biliary operation, bile duct stones, cholangitis, trauma, and other etiologies due to scar contracture. Recent therapeutic strategies to suppress stenosis are insufficient. Here, we developed a sustained-release membrane (SM) of triamcinolone acetonide (TA) with N-succinyl hydroxypropyl chitosan (TASM) for inhibiting fibroblast proliferation in vitro and bile duct hyperplasia in the rabbit model for benign biliary stricture formation. The TASM were successfully placed in 45 of 50 rabbits. Evaluation of subcutaneous stimulation and acute liver injury confirms the safety of TASM in vivo. Compared to the control group, the TASM can significantly inhibit the proliferation of scar muscle fibroblasts in vitro. ELISA and immunofluorescence showed TASM could increase bFGF level and inhibit expression of TGFβ1 and αSMA. Cholangiographic and histologic examinations demonstrated significantly decreased tissue hyperplasia in the TASM groups compared with the model group. The immunohistochemical staining showed that TASM could reduce the level of cytokine-induced scars and inhibit the proliferation of myofibroblasts. Taken together, the chitosan membrane chemically conjugated with TA can effectively inhibit the benign biliary stricture. Further clinical usage of this membrane may effectively reduce the occurrence of benign biliary stricture.
Collapse
Affiliation(s)
- Tao Wang
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, 650101, Yunnan, China
| | - Shibo Zhang
- Department of Hepatopancreatobiliary Surgery, The First Hospital of QuJing, QuJing, 655000, Yunnan, China
| | - Lianmin Wang
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, 650101, Yunnan, China
| | - Kun Su
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, 650101, Yunnan, China
| | - Zhiyi Tang
- Department of Gastroenterology, The Second Affiliated Hospital of Kunming Medical University, Kunming, 650101, Yunnan, China
| | - Haiyu He
- Department of Gastroenterology, The Second Affiliated Hospital of Kunming Medical University, Kunming, 650101, Yunnan, China
| | - Yanmei Shi
- Department of Gastroenterology, The Second Affiliated Hospital of Kunming Medical University, Kunming, 650101, Yunnan, China
| | - Yaqiong Liu
- Department of Gastroenterology, The Second Affiliated Hospital of Kunming Medical University, Kunming, 650101, Yunnan, China
| | - Mengyao Zheng
- Department of Gastroenterology, The Second Affiliated Hospital of Kunming Medical University, Kunming, 650101, Yunnan, China
| | - Wen Fu
- Department of Gastroenterology, The Second Affiliated Hospital of Kunming Medical University, Kunming, 650101, Yunnan, China
| | - Sheng Hu
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, 650101, Yunnan, China
| | - Xiaowen Zhang
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, 650101, Yunnan, China
| | - Tao Wu
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, 650101, Yunnan, China.
| |
Collapse
|
25
|
Zheng W, Tian E, Liu Z, Zhou C, Yang P, Tian K, Liao W, Li J, Ren C. Small molecule angiotensin converting enzyme inhibitors: A medicinal chemistry perspective. Front Pharmacol 2022; 13:968104. [PMID: 36386190 PMCID: PMC9664202 DOI: 10.3389/fphar.2022.968104] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 10/17/2022] [Indexed: 10/07/2023] Open
Abstract
Angiotensin-converting enzyme (ACE), a zinc metalloprotein, is a central component of the renin-angiotensin system (RAS). It degrades bradykinin and other vasoactive peptides. Angiotensin-converting-enzyme inhibitors (ACE inhibitors, ACEIs) decrease the formation of angiotensin II and increase the level of bradykinin, thus relaxing blood vessels as well as reducing blood volume, lowering blood pressure and reducing oxygen consumption by the heart, which can be used to prevent and treat cardiovascular diseases and kidney diseases. Nevertheless, ACEIs are associated with a range of adverse effects such as renal insufficiency, which limits their use. In recent years, researchers have attempted to reduce the adverse effects of ACEIs by improving the selectivity of ACEIs for structural domains based on conformational relationships, and have developed a series of novel ACEIs. In this review, we have summarized the research advances of ACE inhibitors, focusing on the development sources, design strategies and analysis of structure-activity relationships and the biological activities of ACE inhibitors.
Collapse
Affiliation(s)
- Wenyue Zheng
- Departments of Obstetrics & Gynecology and Pediatrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
- Health Management Center, West China Second University Hospital, Chengdu, China
| | - Erkang Tian
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhen Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Changhan Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Pei Yang
- Departments of Obstetrics & Gynecology and Pediatrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
- Health Management Center, West China Second University Hospital, Chengdu, China
| | - Keyue Tian
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wen Liao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Juan Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Changyu Ren
- Department of Pharmacy, Chengdu Fifth People’s Hospital, Chengdu, China
| |
Collapse
|
26
|
Khodaei B, Nasimi M, Nassireslami E, Seyedpour S, Rahmati J, Haddady Abianeh S, Motavalli Khiavi F. Efficacy of Topical Losartan in Management of Mammoplasty and Abdominoplasty Scars: A Randomized, Double-Blind Clinical Trial. Aesthetic Plast Surg 2022; 46:2580-2587. [PMID: 35614156 DOI: 10.1007/s00266-022-02935-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 05/02/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND Annually, millions of people suffer from skin scars' psychological and physical disadvantages. Pathologic scars prevention is challenging and requires developing feasible and effective therapeutic strategies. Regarding promising results of losartan (an angiotensin 1 receptor inhibitor) on skin scar in preclinical studies, we aimed to assess the losartan ointment's impact on surgical scars in a clinical setting. MATERIAL AND METHOD Twenty-four patients with surgical wounds were enrolled from Razi hospital's plastic and reconstructive surgery department. The patients were trained to apply ointments 14-18 days post-surgery on the determined scar side, twice a day for 6 months. Two dermatologists independently evaluated scar formation at 3 and 6-month follow-ups using the Vancouver Scar Scale (VSS) score. RESULT Twenty-four female patients with cosmetic surgeries were included. The mean VSS score of losartan-treated sides was 7.1 ± 2.06 (at month 3) and 5.21 ± 1.71 (at month 6) that significantly were different from placebo-treated sides (9.77 ± 1.55 and 8.31 ± 1.88 at 3 and 6 months, respectively) (P value < 0.001 and < 0.001, respectively, for months 3 and 6). The subset analysis demonstrated a significant improvement in height (P value < 0.001 at 3 and 6 months), pliability (P value < 0.001 at 3 and 6 months), and vascularity (P value < 0.001 at 3 and 6 months) subsets at losartan compared to placebo-treated side. Losartan ointment was well tolerated with no complication. CONCLUSION Losartan ointment successfully improved scar formation in mammoplasty and abdominoplasty patients. The losartan preventive effect should be confirmed in future large-scale studies with long-term follow-ups. LEVEL OF EVIDENCE II This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Collapse
Affiliation(s)
- Behzad Khodaei
- Medical Biotechnology Research Center, AJA University of Medical Sciences, Etemad zadeh Street, Fatemi-Gharbi Street, Tehran, Iran
| | - Maryam Nasimi
- Department of Dermatology, Razi Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Ehsan Nassireslami
- Toxicology Research Center, AJA University of Medical Sciences, Tehran, Iran
- Department of Pharmacology and Toxicology, Faculty of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Simin Seyedpour
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Nanomedicine Research Association (NRA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Javad Rahmati
- Department of Plastic and Reconstructive Surgery, Imam Khomeini Hospital, Tehran University of Medical Sciences Tehran, Tehran, Iran
- Department of Plastic and Reconstructive Surgery, Razi Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahriar Haddady Abianeh
- Department of Plastic and Reconstructive Surgery, Razi Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Farhad Motavalli Khiavi
- Medical Biotechnology Research Center, AJA University of Medical Sciences, Etemad zadeh Street, Fatemi-Gharbi Street, Tehran, Iran.
| |
Collapse
|
27
|
Genetic Disruption of Guanylyl Cyclase/Natriuretic Peptide Receptor-A Triggers Differential Cardiac Fibrosis and Disorders in Male and Female Mutant Mice: Role of TGF-β1/SMAD Signaling Pathway. Int J Mol Sci 2022; 23:ijms231911487. [PMID: 36232788 PMCID: PMC9569686 DOI: 10.3390/ijms231911487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 01/01/2023] Open
Abstract
The global targeted disruption of the natriuretic peptide receptor-A (NPRA) gene (Npr1) in mice provokes hypertension and cardiovascular dysfunction. The objective of this study was to determine the mechanisms regulating the development of cardiac fibrosis and dysfunction in Npr1 mutant mice. Npr1 knockout (Npr1-/-, 0-copy), heterozygous (Npr1+/-, 1-copy), and wild-type (Npr1+/+, 2-copy) mice were treated with the transforming growth factor (TGF)-β1 receptor (TGF-β1R) antagonist GW788388 (2 µg/g body weight/day; ip) for 28 days. Hearts were isolated and used for real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR), Western blot, and immunohistochemical analyses. The Npr1-/- (0-copy) mice showed a 6-fold induction of cardiac fibrosis and dysfunction with markedly induced expressions of collagen-1α (3.8-fold), monocyte chemoattractant protein (3.7-fold), connective tissue growth factor (CTGF, 5.3-fold), α-smooth muscle actin (α-SMA, 6.1-fold), TGF-βRI (4.3-fold), TGF-βRII (4.7-fold), and phosphorylated small mothers against decapentaplegic (pSMAD) proteins, including pSMAD-2 (3.2-fold) and pSMAD-3 (3.7-fold), compared with wild-type mice. The expressions of phosphorylated extracellular-regulated kinase ERK1/2 (pERK1/2), matrix metalloproteinases-2, -9, (MMP-2, -9), and proliferating cell nuclear antigen (PCNA) were also significantly upregulated in Npr1 0-copy mice. The treatment of mutant mice with GW788388 significantly blocked the expression of fibrotic markers, SMAD proteins, MMPs, and PCNA compared with the vehicle-treated control mice. The treatment with GW788388 significantly prevented cardiac dysfunctions in a sex-dependent manner in Npr1 0-copy and 1-copy mutant mice. The results suggest that the development of cardiac fibrosis and dysfunction in mutant mice is predominantly regulated through the TGF-β1-mediated SMAD-dependent pathway.
Collapse
|
28
|
The compound losartan cream inhibits scar formation via TGF-β/Smad pathway. Sci Rep 2022; 12:14327. [PMID: 35995975 PMCID: PMC9395380 DOI: 10.1038/s41598-022-17686-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 07/29/2022] [Indexed: 11/12/2022] Open
Abstract
The role of angiotensin receptor blocker in wound healing and cutaneous fibrosis has become a hotspot in recent years. We have developed a losartan cream that is comparable to triamcinolone ointment in inhibiting scarring. Considering the effects of chitosan and asiaticoside on wound healing and scarring, we added them to the losartan cream this time and improved the formula, expecting to get a better anti-scarring effect. The effects of creams were investigated on mouse scar model with triamcinolone ointment, onion extract gel, and commercial asiaticoside cream set as positive controls. A preliminary exploration of the mechanism involved in TGF-β/Smad pathway was performed in vivo and in vitro. With all results of anti-scarring, the compound losartan cream (containing chitosan, asiaticoside, and losartan) shows the best effect, followed by the chitosan asiaticoside cream. The treatment of the compound losartan cream inhibited expression of TGF-β1, collagen, and Smads, and decreased phosphorylation of Smad in vivo. These inhibitory effects were also confirmed in vitro. Our findings indicated that the compound losartan cream could inhibit scarring via TGF-β/Smad pathway. This cream might be an effective option for scar treatment.
Collapse
|
29
|
Lo Y, Tsai TF. Angiotensin converting enzyme and angiotensin converting enzyme inhibitors in dermatology: a narrative review. Expert Rev Clin Pharmacol 2022; 15:33-42. [PMID: 35196189 DOI: 10.1080/17512433.2022.2045950] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Angiotensin converting enzyme inhibitors (ACEI) are commonly used for cardiovascular diseases. The evidence supporting the use of ACEI in dermatology is limited. AREAS COVERED This review article was divided into three parts. The first part discusses ACEI in clinical use in dermatology. The second part reveals the relationship between angiotensin converting enzyme (ACE) and immune diseases, and further discusses the possible relationship between ACEI in clinical use in these diseases and ACE. The third part focuses on cutaneous adverse reactions of ACEI. EXPERT OPINION The use of ACEI in dermatology is mainly based on its properties as regulation of renin angiotensin system (RAS), but currently, with limited clinical use. The association of ACE and several diseases are well discussed, including COVID-19, psoriasis, sarcoidosis, systemic lupus erythematosus and vitiligo. The main cutaneous adverse effects of ACEI include angioedema, psoriasis and pemphigus. Plausible factors for these adverse reactions include accumulation of vasoactive mediators, preventing angiotension from binding to AT1 receptor and AT2 receptor and presence of circulating antibodies.
Collapse
Affiliation(s)
- Yang Lo
- Department of Dermatology, Cathay General Hospital, Taipei, Taiwan
| | - Tsen-Fang Tsai
- Department of Dermatology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|
30
|
Parry D, Allison K. Is the future scarless? - Fibroblasts as targets for scarless wound healing: a narrative review. Scars Burn Heal 2022; 8:20595131221095348. [PMID: 36082315 PMCID: PMC9445533 DOI: 10.1177/20595131221095348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Introduction: Scarless healing is the ideal outcome of wound healing and is exhibited in some species. This narrative review assembles the current understanding of fibroblast heterogenicity along with the latest fibroblast-related targets for scar reduction therapies. Human regenerative wound healing is deemed possible due to the wound regeneration already seen in the early gestation foetus. Methods: This literature narrative review was undertaken by searching PubMed and Web of Science databases and Google Scholar to find articles concerning the fibroblast involvement in wound healing. We evaluated and collated these articles to form a consensus of the current understanding of the field. Discussion: This article describes current understanding of fibroblast heterogenicity and involvement in wound healing, focusing on the role of fibroblasts during physiological scarring. We also present the current most promising targets involving fibroblasts in the reduction of scarring and how we can manipulate the behaviour of fibroblasts to mimic the wound regeneration models in the human foetus. These targets include the pro-fibrotic EN1 positive fibroblast lineage, TGFβ1 inhibition, and genetic therapies utilising miRNAs and siRNAs. Conclusion: No therapies are currently available to eradicate scarring; however, treatment options are available to reduce the appearance of scarring. Further research into the heterogenicity and interactions of fibroblasts in both the foetus and adult is needed, and this may lead to the development of novel treatments against scarring.
Collapse
Affiliation(s)
- Dylan Parry
- Newcastle University Medical School, Newcastle upon Tyne, UK
| | - Keith Allison
- South Tees Hospitals NHS Foundation Trust, Middlesbrough, UK
| |
Collapse
|
31
|
Abstract
Scar is a common way of healing after tissue injury. The poor scar healing will not only cause dysfunction of tissues and organs but also affect the appearance of the patients’ body surface, which causes the pressure of life and spirit to the patients. However, the formation of scar tissue is an extremely complex process and its mechanism is not fully understood. At present, there is no treatment method to eliminate scars completely. Fibroblasts are the most abundant cells in the dermis, which have the ability to synthesize and remodel extracellular matrix (ECM). Myofibroblasts actively participate in the wound healing process and influence the outcome. Therefore, both of them play important roles in wound healing and scar formation. Adipose tissue-derived stem cells (ADSCs) are pluripotent stem cells that can act on target cells by paracrine. Adipose tissue stem cell-derived exosomes (ADSC-Exos) are important secretory substances of ADSCs. They are nanomembrane vesicles that can transport a variety of cellular components and fuse with target cells. In this review, we will discuss the effects of ADSCs and ADSC-Exos on the behavior of fibroblasts and myofibroblasts during wound healing and scarring stage in combination with recent studies.
Collapse
|
32
|
Ying M, Chen Y, Yuan B. Knockdown of lysyl oxidase like 1 inhibits the proliferation and pro-fibrotic effects of Transforming growth factor-β1-induced hypertrophic scar fibroblasts. Can J Physiol Pharmacol 2021; 99:1272-1279. [PMID: 34283938 DOI: 10.1139/cjpp-2021-0242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
BACKGROUND The excessive healing response during wound repair can result in hypertrophic scars (HS). Lysyl oxidase like 1 (LOXL1) has been reported to be associated with fibrosis via targeting TGF-β1 signaling. This study aimed to investigate the effect of LOXL1 on HS formation. METHODS The expression of LOXL1 in HS tissues and TGF-β1-induced HSFs was detected via RT-qPCR and western blot. LOXL1 was silenced in HSFs using transfection with short hairpin RNA (shRNA), then wound healing process including cell proliferation, cell cycle distribution, migration and extracellular matrix deposition along with Smad expression were measured by CCK-8, EdU staining, flow cytometry, transwell, immunofluorescence and western blot assays. RESULTS LOXL1 was up-regulated in HS tissues and TGF-β1-induced HSFs. Knockdown of LOXL1 inhibited proliferation and migration, but promoted cell cycle G0/G1 phase arrest in TGF-β1-induced HSFs. The increased expression of cyclin D1, CDK4, MMP2, MMP9, COL1A1, COL1A2, fibronectin, COL3A1, α-SMA, but decreased expression of p27, and the phosphorylation of Smad2 and Smad3 caused by TGF-β1 were also blocked by LOXL1 silence. CONCLUSIONS Silence of LOXL1 could effectively inhibit TGF-β1-induced proliferation, migration and ECM deposition in HSFs via inactivating Smad pathway. Targeting LOXL1 may have future therapeutic implications for HS treatment.
Collapse
Affiliation(s)
- Mengxia Ying
- Ningbo University, 47862, Department of Dermatology, Ningbo, Zhejiang Province, China, 315211;
| | - Yan Chen
- Ningbo Medical Center Lihuili Hospital, Department of Dermatology, Ningbo City, Zhejiang Province, China;
| | - Bo Yuan
- Ningbo University, 47862, Department of Dermatology, Ningbo, Zhejiang Province, China;
| |
Collapse
|
33
|
Rha EY, Kim JW, Kim JH, Yoo G. Angiotensin-Converting Enzyme Inhibitor, Captopril, Improves Scar Healing in Hypertensive Rats. Int J Med Sci 2021; 18:975-983. [PMID: 33456355 PMCID: PMC7807183 DOI: 10.7150/ijms.50197] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 12/22/2020] [Indexed: 12/03/2022] Open
Abstract
Pathological cutaneous scars, with aberrant extracellular matrix accumulation, have multiple origins. Antihypertensive medications, such as calcium channel blockers, have been used to treat pathological scars. However, a relationship between angiotensin-converting enzyme (ACE) inhibitors, pathological scars, and blood pressure (BP) has never been reported. Here, we aimed to compare the differences in scar development and the effects of the administration of systemic ACE inhibitor on scar tissue in a normotensive rat, the Wistar Kyoto rat (WKY), a hypertensive rat, and the spontaneously hypertensive rat (SHR). Using an 8-mm punch, we created two full-thickness skin defects in a total of 32 rats (16 WKY and 16 SHR) to obtain a total of 64 wounds. We established control WKY (n = 16), captopril-treated WKY (n = 16), control SHR (n = 16), and captopril-treated SHR (n = 16) groups and started captopril (100 mg/g per day) treatment on day 21 in the appropriate groups. The BP of all groups was measured at 0, 3, and 5 weeks. The scar area was measured by histopathological examination, and scarring was expressed in terms of scar area and fibroblast and capillary counts. The expression of heat shock protein (HSP) 47, type I and III collagens, alpha-smooth muscle actin (α-SMA), Ki67, and vascular endothelial growth factor (VEGF) was investigated using immunohistochemistry. The scar area and fibroblast count were significantly higher in control SHR than in control WKY. The scar area, fibroblast count, and capillary count were significantly smaller in captopril-treated SHR than in control SHR. Immunostaining for α-SMA, Ki67, and VEGF also showed a noticeable decrease in scarring in the treated SHR compared with that in control SHR. Thus, BP affects scar development in a rat model, and an ACE inhibitor is more effective at reducing scars in hypertensive rats than in normotensive rats.
Collapse
Affiliation(s)
- Eun Young Rha
- Department of Plastic and Reconstructive Surgery, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jae Won Kim
- Department of Plastic and Reconstructive Surgery, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jun Hyeok Kim
- Department of Plastic and Reconstructive Surgery, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Gyeol Yoo
- Department of Plastic and Reconstructive Surgery, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
34
|
Silva IMS, Assersen KB, Willadsen NN, Jepsen J, Artuc M, Steckelings UM. The role of the renin‐angiotensin system in skin physiology and pathophysiology. Exp Dermatol 2020; 29:891-901. [DOI: 10.1111/exd.14159] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/08/2020] [Accepted: 07/17/2020] [Indexed: 12/18/2022]
Affiliation(s)
- Igor Maciel Souza Silva
- Institute of Molecular Medicine Department of Cardiovascular and Renal Research University of Southern Denmark Odense C Denmark
| | - Kasper Bostlund Assersen
- Institute of Molecular Medicine Department of Cardiovascular and Renal Research University of Southern Denmark Odense C Denmark
| | - Natalie Nanette Willadsen
- Institute of Molecular Medicine Department of Cardiovascular and Renal Research University of Southern Denmark Odense C Denmark
| | - Julie Jepsen
- Institute of Molecular Medicine Department of Cardiovascular and Renal Research University of Southern Denmark Odense C Denmark
| | - Metin Artuc
- Department of Dermatology Charité – Medical Faculty Berlin Berlin Germany
| | - Ulrike Muscha Steckelings
- Institute of Molecular Medicine Department of Cardiovascular and Renal Research University of Southern Denmark Odense C Denmark
| |
Collapse
|
35
|
Establishment of animal model manifested as bladder neurogenic changes generated by bilateral pelvic nerve injury in male rats. Int Urol Nephrol 2020; 53:421-429. [PMID: 33025408 DOI: 10.1007/s11255-020-02668-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 09/25/2020] [Indexed: 01/01/2023]
Abstract
PURPOSE To establish a male rat model of neurogenic bladder after bilateral pelvic nerve injury (BPNI) and investigate the factors associated with onset of neurogenic bladder. METHODS Twenty-four 8-week-old male Sprague-Dawley rats were randomly divided into three groups (n = 8 rats per group). Rats in 4-week and 8-week nerve injury group underwent BPNI, while rats in the sham group underwent a sham operation. Bladder functional analysis were performed and then bladders tissues were harvested for morphological examination and investigating the mRNA expression levels of target genes in all rats. RESULTS The bladder weight significantly increased in rats following BPNI. Functional analysis revealed non-voiding contractions and decreased detrusor contractility following BPNI, manifested as elevated post-void residual and bladder capacity while reduced maximum voiding pressure and voiding efficiency. The collagen area in bladder tissue and mRNA expression levels of target genes significantly increased at 4 or 8 weeks post-BPNI except Smad3. At 4 weeks post-BPNI, expression levels of vesicular acetylcholine transporter were reduced, then returned to baseline at 8 weeks. Expression levels of tyrosine hydroxylase were reduced at both 4 and 8 weeks post-BPNI. CONCLUSIONS A neurogenic bladder animal model was successfully established by performing BPNI in male rats, characterized by impaired voiding function, bladder detrusor fibrosis, and reduced neurotransmitter release.
Collapse
|
36
|
Hedayatyanfard K, Haddadi N, Ziai SA, Karim H, Niazi F, Steckelings UM, Habibi B, Modarressi A, Dehpour A. The renin‐angiotensin system in cutaneous hypertrophic scar and keloid formation. Exp Dermatol 2020; 29:902-909. [DOI: 10.1111/exd.14154] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 06/21/2020] [Accepted: 07/13/2020] [Indexed: 01/13/2023]
Affiliation(s)
- Keshvad Hedayatyanfard
- Evidence‐Based Phytotherapy and Complementary Medicine Research Center Alborz University of Medical Sciences Karaj Iran
- Cardiovascular Research Center Alborz University of Medical Sciences Karaj Iran
| | - Nazgol‐Sadat Haddadi
- Cardiovascular Research Center Alborz University of Medical Sciences Karaj Iran
- Experimental Medicine Research Center Tehran University of Medical Sciences Tehran Iran
| | - Seyed Ali Ziai
- Department of Pharmacology School of Medicine Shahid Beheshti University of Medical Sciences
| | - Hossein Karim
- Cardiovascular Research Center Alborz University of Medical Sciences Karaj Iran
| | - Feizollah Niazi
- Department of Plastic and Reconstructive Surgery Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Ulrike Muscha Steckelings
- Institute for Molecular Medicine Department of Cardiovascular and Renal Research University of Southern Denmark Odense Denmark
| | - Behnam Habibi
- Department of Pharmacology School of Medicine Shahid Beheshti University of Medical Sciences
| | - Ali Modarressi
- Department of Plastic, Reconstructive and Aesthetic Surgery Geneva University Hospitals Faculty of Medicine University of Geneva Switzerland
| | - Ahmad‐Reza Dehpour
- Experimental Medicine Research Center Tehran University of Medical Sciences Tehran Iran
| |
Collapse
|
37
|
Ambari AM, Setianto B, Santoso A, Radi B, Dwiputra B, Susilowati E, Tulrahmi F, Doevendans PA, Cramer MJ. Angiotensin Converting Enzyme Inhibitors (ACEIs) Decrease the Progression of Cardiac Fibrosis in Rheumatic Heart Disease Through the Inhibition of IL-33/sST2. Front Cardiovasc Med 2020; 7:115. [PMID: 32850979 PMCID: PMC7399157 DOI: 10.3389/fcvm.2020.00115] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 06/03/2020] [Indexed: 12/12/2022] Open
Abstract
Rheumatic heart disease (RHD) is common in developing countries and poses a big medical challenge and burden. The pathogenesis of RHD is influenced by the triad of host, agent, and environment. Autoantigens generated from Group A Streptococcus (GAS) infection are captured by the resident dendritic cells (DCs) in the heart's valvular endothelium. DCs differentiate into antigen presenting cells (APC) in the valve interstices. APC induces activation of autoreactive T cells, which triggers inflammation and tissue fibrosis. Cardiac fibrosis is promoted through the activation of Mitogen activated protein kinases (MAPKs) and its downstream signaling, including its interaction with transforming growth factor-β (TGF-β) and Smad proteins. TGF-β-induced phosphorylation of Smad2 complexes with Smad3 and Smad4, and translocates into the nucleus. Angiotensin II enhances the migration, maturation, and presentation of DC. In RHD, Angiotensin II induces fibrosis via the stimulation of TGF-β, which further increases the binding of IL-33 to sST2 but not ST2L, resulting in the upregulation of Angiotensin II and progression of cardiac fibrosis. This cascade of inflammation and valvular fibrosis causes calcification and stiffening of the heart valves in RHD. Angiotensin converting enzyme inhibitors (ACEIs) inhibit Angiotensin II production, which in turn decreases TGF-β expression and the onset of overt inflammatory response. This condition leads to a reduction in the sST2 as the decoy receptor to "steal" IL-33, and IL-33 binds to ST2L and results in cardioprotection against cardiac fibrosis in the pathogenesis of RHD.
Collapse
Affiliation(s)
- Ade M. Ambari
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, National Cardiovascular Center Harapan Kita, University of Indonesia, Jakarta, Indonesia
| | - Budhi Setianto
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, National Cardiovascular Center Harapan Kita, University of Indonesia, Jakarta, Indonesia
| | - Anwar Santoso
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, National Cardiovascular Center Harapan Kita, University of Indonesia, Jakarta, Indonesia
| | - Basuni Radi
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, National Cardiovascular Center Harapan Kita, University of Indonesia, Jakarta, Indonesia
| | - Bambang Dwiputra
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, National Cardiovascular Center Harapan Kita, University of Indonesia, Jakarta, Indonesia
| | - Eliana Susilowati
- Research Assistants of Preventive Cardiology, National Cardiovascular Center Harapan Kita, Jakarta, Indonesia
| | - Fadilla Tulrahmi
- Research Assistants of Preventive Cardiology, National Cardiovascular Center Harapan Kita, Jakarta, Indonesia
| | - Pieter A. Doevendans
- Department of Cardiology, University Medical Center Utrecht, Utrecht, Netherlands
- Cardiovascular Departement, The Netherlands Heart Institute Utrecht, Utrecht, Netherlands
| | - Maarten J. Cramer
- Department of Cardiology, University Medical Center Utrecht, Utrecht, Netherlands
| |
Collapse
|
38
|
Hu YY, Fang QQ, Wang XF, Zhao WY, Zheng B, Zhang DD, Tan WQ. Angiotensin-converting enzyme inhibitor and angiotensin II type 1 receptor blocker: Potential agents to reduce post-surgical scar formation in humans. Basic Clin Pharmacol Toxicol 2020; 127:488-494. [PMID: 32564469 DOI: 10.1111/bcpt.13458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/13/2020] [Accepted: 06/15/2020] [Indexed: 12/01/2022]
Abstract
Studies on the effectiveness and mechanisms of reducing scar formation by interfering with the renin-angiotensin-aldosterone-system (RAAS) have been demonstrated in animals, but not in humans due to the lack of clinical support. Our aim was to investigate whether angiotensin-converting enzyme inhibitor (ACEI) and angiotensin II type 1 receptor blocker (ARB) could inhibit scar formation in humans. Thus, an observational and hypothesis-generating study using a designed questionnaire was carried out. A total of 347 patients with postoperative scars secondary to thyroid tumours were enrolled. They were divided into four groups: ACEI group, ARB group, other antihypertensive drugs control group and blank control group according to the administration of antihypertensive drugs. The width of scar was measured, and the Scar Cosmesis Assessment and Rating (SCAR) Scale was filled out. Results showed that patients of ACEI group (mean scar width 1.60 mm) and ARB group (mean scar width 1.57 mm) formed smaller scars than those of other antihypertensive drugs control group (mean scar width 2.09 mm) and blank control group (mean scar width 2.0 mm). Oral administration of ACEI and ARB may be associated with better post-surgical scar formation in humans. These two kinds of antihypertensive drugs may be active components of anti-scar medicine.
Collapse
Affiliation(s)
- Yan-Yan Hu
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qing-Qing Fang
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao-Feng Wang
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wan-Yi Zhao
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Bin Zheng
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ding-Ding Zhang
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wei-Qiang Tan
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
39
|
Current potential therapeutic strategies targeting the TGF-β/Smad signaling pathway to attenuate keloid and hypertrophic scar formation. Biomed Pharmacother 2020; 129:110287. [PMID: 32540643 DOI: 10.1016/j.biopha.2020.110287] [Citation(s) in RCA: 227] [Impact Index Per Article: 45.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 05/08/2020] [Accepted: 05/16/2020] [Indexed: 12/12/2022] Open
Abstract
Aberrant scar formation, which includes keloid and hypertrophic scars, is associated with a pathological disorganized wound healing process with chronic inflammation. The TGF-β/Smad signaling pathway is the most canonical pathway through which the formation of collagen in the fibroblasts and myofibroblasts is regulated. Sustained activation of the TGF-β/Smad signaling pathway results in the long-term overactivation of fibroblasts and myofibroblasts, which is necessary for the excessive collagen formation in aberrant scars. There are two categories of therapeutic strategies that aim to target the TGF-β/Smad signaling pathway in fibroblasts and myofibroblasts to interfere with their cellular functions and reduce cell proliferation. The first therapeutic strategy includes medications, and the second strategy is composed of genetic and cellular therapeutics. Therefore, the focus of this review is to critically evaluate these two main therapeutic strategies that target the TGF-β/Smad pathway to attenuate abnormal skin scar formation.
Collapse
|
40
|
Destruction of the blood-retina barrier in diabetic retinopathy depends on angiotensin-converting enzyme-mediated TGF-β1/Smad signaling pathway activation. Int Immunopharmacol 2020; 85:106686. [PMID: 32531714 DOI: 10.1016/j.intimp.2020.106686] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 05/04/2020] [Accepted: 06/05/2020] [Indexed: 12/27/2022]
Abstract
Diabetes mellitus (DM) is a systemic, chronic metabolic disease that is related to heredity and autoimmunity and is often accompanied by complications of retinopathy. However, the causative mechanism involved in the pathological process remains unclear. In this research, treatment with fosinopril or LY2109761 was found to be responsible for the improvement of the pathological processes, serum biochemical indexes and retinopathy in rats with streptozotocin-induced diabetes. In addition, the upregulation of angiotensin-converting enzyme (ACE) in the serum and the increased expression of TGF-β1 in the pathological outer nuclear layer (ONL) and inner nuclear layer (INL) of the retina were also reduced. In vitro experiments demonstrated that ACE enhanced cell damage and TGF-β1/Smad signaling pathway activation in retinal capillary endothelial cells (RCECs) under high glucose conditions. In addition, the activity of ACE was also considered to be related to the increasing levels of activated TGF-β1 in both rat retinal Müller cells (RMCs) and RCECs, but ACE activity had no effect on the high glucose-mediated upregulation of total TGF-β1 in RMCs. Coculture experiments with RCECs and RMCs showed that the barrier that was established under normal conditions was significantly impaired when exposed to high glucose combined with ACE, and damage of barrier can be prevented by adding fosinopril or LY2109761. Finally, a similar auxiliary effect of ACE was also observed in the activated TGF-β1-mediated barrier damage in blood-retinal barrier model in vitro. In summary, ACE-mediated TGF-β1/Smad signaling pathway activation was found to be involved in the destruction of the blood-retina barrier during diabetic retinopathy in a model of streptozotocin-induced diabetes, and these data may provide evidence to guide the treatment of the complications of diabetes mellitus.
Collapse
|
41
|
AlQudah M, Hale TM, Czubryt MP. Targeting the renin-angiotensin-aldosterone system in fibrosis. Matrix Biol 2020; 91-92:92-108. [PMID: 32422329 DOI: 10.1016/j.matbio.2020.04.005] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/28/2020] [Accepted: 04/29/2020] [Indexed: 02/06/2023]
Abstract
Fibrosis is characterized by excessive deposition of extracellular matrix components such as collagen in tissues or organs. Fibrosis can develop in the heart, kidneys, liver, skin or any other body organ in response to injury or maladaptive reparative processes, reducing overall function and leading eventually to organ failure. A variety of cellular and molecular signaling mechanisms are involved in the pathogenesis of fibrosis. The renin-angiotensin-aldosterone system (RAAS) interacts with the potent Transforming Growth Factor β (TGFβ) pro-fibrotic pathway to mediate fibrosis in many cell and tissue types. RAAS consists of both classical and alternative pathways, which act to potentiate or antagonize fibrotic signaling mechanisms, respectively. This review provides an overview of recent literature describing the roles of RAAS in the pathogenesis of fibrosis, particularly in the liver, heart, kidney and skin, and with a focus on RAAS interactions with TGFβ signaling. Targeting RAAS to combat fibrosis represents a promising therapeutic approach, particularly given the lack of strategies for treating fibrosis as its own entity, thus animal and clinical studies to examine the impact of natural and synthetic substances to alter RAAS signaling as a means to treat fibrosis are reviewed as well.
Collapse
Affiliation(s)
- Mohammad AlQudah
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Canada; Department of Physiology and Biochemistry, College of Medicine, Jordan University of Science and Technology, Jordan
| | - Taben M Hale
- Department of Basic Medical Sciences, University of Arizona College of Medicine Phoenix, United States
| | - Michael P Czubryt
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Canada.
| |
Collapse
|
42
|
Wang XF, Fang QQ, Jia B, Hu YY, Wang ZC, Yan KP, Yin SY, Liu Z, Tan WQ. Potential effect of non-thermal plasma for the inhibition of scar formation: a preliminary report. Sci Rep 2020; 10:1064. [PMID: 31974451 PMCID: PMC6978306 DOI: 10.1038/s41598-020-57703-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 12/18/2019] [Indexed: 12/19/2022] Open
Abstract
Non-thermal plasma (NTP) is a promising biomedical tool for application to wound healing. However, there is limited scientific evidence that confirms its efficacy to inhibit scar formation. This study aims to investigate the role of non-thermal plasma in scar formation. Two full-thickness dorsal cutaneous wounds of rats were treated with either a non-thermal helium plasma jet or helium. It was determined that the non-thermal plasma jet accelerated the wound healing process from 5 days after surgery (day 5: 41.27% ± 2.351 vs 54.7% ± 5.314, p < 0.05; day 7: 56.05% ± 1.881 vs 75.28% ± 3.914, p < 0.01; day 14: 89.85% ± 2.991 vs 98.07% ± 0.839, p < 0.05). The width of the scars for the NTP group was narrower than those of control group (4.607 ± 0.416 mm vs 3.260 ± 0.333 mm, p < 0.05). In addition, a lower level of TGF-β1, p-Smad2 and p-Smad3 were detected in the NTP treated wounds (p < 0.05, p < 0.01 and p < 0.01). As expected, α-SMA was also significantly decreased in the NTP treatment group (p < 0.01). Moreover, the expression of type I collagen and the proportion of type I to III collagen were lower in the NTP group (p < 0.05). The results of the study suggest that NTP may play a potential role in scar formation by inhibiting the TGF β1 signal pathway and reducing the levels of α-SMA and type I collagen, and may have clinical utility in the future.
Collapse
Affiliation(s)
- Xiao-Feng Wang
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, P.R. China
- Department of Plastic Surgery, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang Province, P.R. China
| | - Qing-Qing Fang
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, P.R. China
- Department of Plastic Surgery, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang Province, P.R. China
| | - Bing Jia
- Institute of Industrial Ecology and Environment, Collage of Chemical and Biological Engineering, Zhejiang University, Zhejiang Province, P.R. China
| | - Yan-Yan Hu
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, P.R. China
- Department of Plastic Surgery, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang Province, P.R. China
| | - Zheng-Cai Wang
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, P.R. China
- Department of Plastic Surgery, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang Province, P.R. China
| | - Ke-Ping Yan
- Institute of Industrial Ecology and Environment, Collage of Chemical and Biological Engineering, Zhejiang University, Zhejiang Province, P.R. China
| | - Sheng-Yong Yin
- Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, P.R. China
| | - Zhen Liu
- Institute of Industrial Ecology and Environment, Collage of Chemical and Biological Engineering, Zhejiang University, Zhejiang Province, P.R. China.
| | - Wei-Qiang Tan
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, P.R. China.
- Department of Plastic Surgery, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang Province, P.R. China.
| |
Collapse
|
43
|
Tu H, Chen D, Cai C, Du Q, Lin H, Pan T, Sheng L, Xu Y, Teng T, Tu J, Lin Z, Wang X, Wang R, Xu L, Chen Y. microRNA-143-3p attenuated development of hepatic fibrosis in autoimmune hepatitis through regulation of TAK1 phosphorylation. J Cell Mol Med 2020; 24:1256-1267. [PMID: 31808606 PMCID: PMC6991639 DOI: 10.1111/jcmm.14750] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 09/12/2019] [Accepted: 09/24/2019] [Indexed: 12/11/2022] Open
Abstract
Autoimmune hepatitis (AIH) is a chronic liver disease due to autoimmune system attacks hepatocytes and causes inflammation and fibrosis. Intracellular signalling and miRNA may play an important role in regulation of liver injury. This study aimed to investigate the potential roles of microRNA 143 in a murine AIH model and a hepatocyte injury model. Murine AIH model was induced by hepatic antigen S100, and hepatocyte injury model was induced by LPS. Mice and AML12 cells were separated into six groups with or without the treatment of miRNA-143. Inflammation and fibrosis as well as gene expression were examined by different cellular and molecular techniques. The model was successfully established with the elevation of ALT and AST as well as inflammatory and fibrotic markers. Infection or transfection of mir-143 in mice or hepatocytes significantly attenuated the development of alleviation of hepatocyte injury. Moreover, the study demonstrated phosphorylation of TAK1-mediated miRNA-143 regulation of hepatic inflammation and fibrosis as well as hepatocyte injury. Our studies demonstrated a significant role of miRNA-143 in attenuation of liver injury in AIH mice and hepatocytes. miRNA-143 regulates inflammation and fibrosis through its regulation of TAK1 phosphorylation, which warrants TAK1 as a target for the development of new therapeutic strategy of autoimmune hepatitis.
Collapse
Affiliation(s)
- Hanxiao Tu
- Department of Infectious DiseasesWenzhou Key Laboratory of HepatologyThe First Affiliated Hospital of Wenzhou Medical UniversityHepatology Institute of Wenzhou Medical UniversityWenzhouChina
| | - Dazhi Chen
- Department of GastroenterologyThe First Hospital of Peking UniversityBeiJingChina
| | - Chao Cai
- Department of Infectious DiseasesWenzhou Key Laboratory of HepatologyThe First Affiliated Hospital of Wenzhou Medical UniversityHepatology Institute of Wenzhou Medical UniversityWenzhouChina
| | - Qianjing Du
- Department of Infectious DiseasesWenzhou Key Laboratory of HepatologyThe First Affiliated Hospital of Wenzhou Medical UniversityHepatology Institute of Wenzhou Medical UniversityWenzhouChina
| | - Hongwei Lin
- Department of Infectious DiseasesWenzhou Key Laboratory of HepatologyThe First Affiliated Hospital of Wenzhou Medical UniversityHepatology Institute of Wenzhou Medical UniversityWenzhouChina
| | - Tongtong Pan
- Department of Infectious DiseasesWenzhou Key Laboratory of HepatologyThe First Affiliated Hospital of Wenzhou Medical UniversityHepatology Institute of Wenzhou Medical UniversityWenzhouChina
| | - Lina Sheng
- Department of Infectious DiseasesWenzhou Key Laboratory of HepatologyThe First Affiliated Hospital of Wenzhou Medical UniversityHepatology Institute of Wenzhou Medical UniversityWenzhouChina
- Department of Infectious DiseasesThe Affiliated Yiwu Central Hospital of Wenzhou Medical UniversityYiwuChina
| | - Yuedong Xu
- Department of Infectious DiseasesWenzhou Key Laboratory of HepatologyThe First Affiliated Hospital of Wenzhou Medical UniversityHepatology Institute of Wenzhou Medical UniversityWenzhouChina
| | - Teng Teng
- Department of Infectious DiseasesWenzhou Key Laboratory of HepatologyThe First Affiliated Hospital of Wenzhou Medical UniversityHepatology Institute of Wenzhou Medical UniversityWenzhouChina
| | - Jingjing Tu
- Department of Infectious DiseasesWenzhou Key Laboratory of HepatologyThe First Affiliated Hospital of Wenzhou Medical UniversityHepatology Institute of Wenzhou Medical UniversityWenzhouChina
| | - Zhuo Lin
- Department of Infectious DiseasesWenzhou Key Laboratory of HepatologyThe First Affiliated Hospital of Wenzhou Medical UniversityHepatology Institute of Wenzhou Medical UniversityWenzhouChina
| | - Xiaodong Wang
- Department of Infectious DiseasesWenzhou Key Laboratory of HepatologyThe First Affiliated Hospital of Wenzhou Medical UniversityHepatology Institute of Wenzhou Medical UniversityWenzhouChina
| | - Rui Wang
- Department of Infectious DiseasesWenzhou Key Laboratory of HepatologyThe First Affiliated Hospital of Wenzhou Medical UniversityHepatology Institute of Wenzhou Medical UniversityWenzhouChina
| | - Lanman Xu
- Department of Infectious DiseasesWenzhou Key Laboratory of HepatologyThe First Affiliated Hospital of Wenzhou Medical UniversityHepatology Institute of Wenzhou Medical UniversityWenzhouChina
- Department of Infectious Diseases and Liver DiseasesNingbo Medical Center Lihuili HospitalNingboChina
- Department of Infectious Diseases and Liver DiseasesThe Affiliated Lihuili Hospital of Ningbo UniversityNingboChina
| | - Yongping Chen
- Department of Infectious DiseasesWenzhou Key Laboratory of HepatologyThe First Affiliated Hospital of Wenzhou Medical UniversityHepatology Institute of Wenzhou Medical UniversityWenzhouChina
| |
Collapse
|
44
|
Song J, Li X, Li J. Emerging evidence for the roles of peptide in hypertrophic scar. Life Sci 2019; 241:117174. [PMID: 31843531 DOI: 10.1016/j.lfs.2019.117174] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/11/2019] [Accepted: 12/12/2019] [Indexed: 12/21/2022]
Abstract
Hypertrophic scar is a dermal fibroproliferative disorder characterized by excess collagen deposition. There are many existing treatment modalities, but none works perfectly in all individuals. Recently, evidence is increasing that peptides can play crucial roles in the prevention or treatment of hypertrophic scar. The peptides may be derived from growth factors, hormones, and intracellular products of proteolysis. In vitro and in vivo studies have revealed that a number of peptides, usually topically applied, have beneficial effects on fibroblasts in rat, mouse, hamster, pig and rabbit scar models. The length of such peptides typically ranges between 10 and 15 amino acids (aa). Peptides may reduce scar progenitors, prevent excessive scarring, decrease scar growth, speed re-epithelialization and promote scar maturation through multiple mechanisms. They may target TGF-β signaling, fibroblast function or collagen modulation, inflammation, renin angiotensin system, gap junction and other pathways. However, there is a paucity of evidence regarding specific binding sites for these peptides in scar models. Here, we review current research progress on the roles of peptides and underlying mechanisms in hypertrophic scar. We also discuss the clinical potential of peptides as therapeutic agents in scarring. Finally, the functions of several peptide-related compounds in hypertrophic scar are summarized.
Collapse
Affiliation(s)
- Jiajun Song
- Department of Dermatology, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), 123rd Tianfei Street, Mochou Road, Nanjing 210004, China
| | - Xue Li
- Department of Dermatology, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), 123rd Tianfei Street, Mochou Road, Nanjing 210004, China.
| | - Jingyun Li
- Nanjing Maternal and Child Health Medical Institute, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), 123rd Tianfei Street, Mochou Road, Nanjing 210004, China.
| |
Collapse
|
45
|
Angiotensin II Type I Receptor Blockade Is Associated with Decreased Cutaneous Scar Formation in a Rat Model. Plast Reconstr Surg 2019; 144:803e-813e. [DOI: 10.1097/prs.0000000000006173] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
46
|
Zheng B, Fang QQ, Wang XF, Shi BH, Zhao WY, Chen CY, Zhang MX, Zhang LY, Hu YY, Shi P, Ma L, Tan WQ. The effect of topical ramipril and losartan cream in inhibiting scar formation. Biomed Pharmacother 2019; 118:109394. [DOI: 10.1016/j.biopha.2019.109394] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 08/10/2019] [Accepted: 08/23/2019] [Indexed: 01/15/2023] Open
|
47
|
Tan WQ, Fang QQ, Shen XZ, Giani JF, Zhao TV, Shi P, Zhang LY, Khan Z, Li Y, Li L, Xu JH, Bernstein EA, Bernstein KE. Angiotensin-converting enzyme inhibitor works as a scar formation inhibitor by down-regulating Smad and TGF-β-activated kinase 1 (TAK1) pathways in mice. Br J Pharmacol 2018; 175:4239-4252. [PMID: 30153328 DOI: 10.1111/bph.14489] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 07/19/2018] [Accepted: 08/16/2018] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND AND PURPOSE Angiotensin-converting enzyme (ACE), an important part of the renin-angiotensin system, is implicated in stimulating the fibrotic processes in the heart, lung, liver and kidney, while an ACE inhibitor (ACEI) promotes physiological tissue repair in these organs. The mechanism is closely related to TGF-β1 pathways. However, the reported effects of applying ACEIs during scar formation are unclear. Hence, we explored the anti-fibrotic effects of an ACEI and the molecular mechanisms involved in a mouse scar model. EXPERIMENTAL APPROACH After a full-thickness skin wound operation, ACE wild-type mice were randomly assigned to receive either ramipril, losartan or hydralazine p.o. ACE knockout (KO) mice and negative control mice only received vehicle (water). Wound/scar widths during wound healing and histological examinations were recorded at the final day. The ability of ACEI to reduce fibrosis via TGF-β1 signalling was evaluated in vitro and in vivo. KEY RESULTS ACE KO mice and mice that received ramipril showed narrower wound/scar width, reduced fibroblast proliferation, decreased collagen and TGF-β1 expression. ACEI attenuated the phosphorylation of small mothers against decapentaplegic (Smad2/3) and TGF-β-activated kinase 1 (TAK1) both in vitro and in vivo. The expression of ACE-related peptides varied in murine models with different drug treatments. CONCLUSIONS AND IMPLICATIONS ACEI showed anti-fibrotic properties in scar formation by mediating downstream peptides to suppress TGF-β1/Smad and TGF-β1/TAK1 pathways. These findings suggest that dual inhibition of Smad and TAK1 signalling by ACEI is a useful strategy for the development of new anti-fibrotic agents.
Collapse
Affiliation(s)
- Wei-Qiang Tan
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China.,Department of Plastic Surgery, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang Province, China.,Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Qing-Qing Fang
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China.,Department of Plastic Surgery, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang Province, China
| | - Xiao Z Shen
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Department of Physiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Jorge F Giani
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Tuantuan V Zhao
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Peng Shi
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Li-Yun Zhang
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China.,Department of Plastic Surgery, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang Province, China
| | - Zakir Khan
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - You Li
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Liang Li
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Ji-Hua Xu
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China.,Department of Plastic Surgery, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang Province, China
| | - Ellen A Bernstein
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Kenneth E Bernstein
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China.,Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|