1
|
Ke X, Cai H, Luo F, Zheng X, Hu Q, Zhou Y, Wang Y, Zhang X, Chen Y, Chen G. TRPC4 Mediates Trigeminal Neuropathic Pain via Ca 2+-ERK/P38-ATF2 Pathway in the Trigeminal Ganglion of Mice. CNS Neurosci Ther 2025; 31:e70368. [PMID: 40202077 PMCID: PMC11979714 DOI: 10.1111/cns.70368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 02/19/2025] [Accepted: 03/18/2025] [Indexed: 04/10/2025] Open
Abstract
BACKGROUND Trigeminal neuropathic pain (TNP) is a debilitating condition characterized by chronic facial pain, yet its underlying mechanisms remain incompletely understood. Transient Receptor Potential Canonical 4 (TRPC4) has been reported to promote the development of abnormal pain or pain hypersensitivity in neuropathic pain. However, the specific contribution of TRPC4 to TNP pathogenesis remains unclear. AIM This study aimed to investigate the role of TRPC4 in a mouse model of trigeminal neuropathic pain induced by chronic constriction of the unilateral infraorbital nerve (CION). METHODS Adult male/female mice were subjected to either CION surgery or sham surgery. Behavioral assays were conducted to assess facial pain-like responses over a 28-day period. TRPC4 distribution in the trigeminal ganglion (TG) was evaluated using Immunofluorescence. TRPC4 inhibitor ML204 and agonist Englerin A were employed to evaluate the impact of TRPC4 on facial pain-like behaviors. A TRPC4-overexpressing HEK293 cell model was conducted via plasmid transfection. To assess the function of TRPC4, we employed cellular calcium imaging technology to investigate the effects of modulating TRPC4 function by analyzing dynamic changes in intracellular calcium ion concentrations in primary trigeminal ganglion neurons and HEK293 cells. Trpc4 shRNA was used to specifically knock down TRPC4 in the trigeminal ganglion. Western blot analysis was used to assess the activation of ERK, P38, and ATF2 signaling pathways. RESULTS Mice subjected to CION exhibited persistent facial pain-like behaviors and a significant increase in TRPC4 expression in TG neurons. Trpc4 shRNA or pharmacological inhibition with ML204 attenuated CION-induced pain behaviors, while activation of TRPC4 with Englerin A induced pain-like responses in naive mice. Calcium imaging revealed that both Englerin A and TRPC4 overexpression elevated intracellular Ca²2+ levels in TG neurons and HEK293 cells. This Ca²2+ influx triggered the activation of ERK and P38, leading to enhanced ATF2 activation. Downregulation of TRPC4 in the TG reduced ERK/P38 phosphorylation and ATF2 expression and activation. CONCLUSION This study provides the first evidence that TRPC4 plays a critical role in CION-induced trigeminal neuropathic pain by promoting the activation of the downstream transcription factor ATF2 via the Ca²2+-ERK/P38 pathway.
Collapse
Affiliation(s)
- Xinlong Ke
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of MedicineZhejiang UniversityZhejiangHangzhouChina
| | - Huajing Cai
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of MedicineZhejiang UniversityZhejiangHangzhouChina
| | - Fangla Luo
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of MedicineZhejiang UniversityZhejiangHangzhouChina
| | - Xing Zheng
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of MedicineZhejiang UniversityZhejiangHangzhouChina
| | - Qian Hu
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of MedicineZhejiang UniversityZhejiangHangzhouChina
| | - Youfa Zhou
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of MedicineZhejiang UniversityZhejiangHangzhouChina
| | - Yongjie Wang
- School of PharmacyHangzhou Normal UniversityZhejiangHangzhouChina
| | - Xiangnan Zhang
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Key Laboratory of Medical Neurobiology of the Ministry of Health of ChinaZhejiang UniversityZhejiangHangzhouChina
| | - Yeru Chen
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of MedicineZhejiang UniversityZhejiangHangzhouChina
- Provincial Key Laboratory of Precise Diagnosis and Treatment of Abdominal Infection, Sir Run Run Shaw Hospital, School of MedicineZhejiang UniversityZhejiangHangzhouChina
| | - Gang Chen
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of MedicineZhejiang UniversityZhejiangHangzhouChina
- Provincial Key Laboratory of Precise Diagnosis and Treatment of Abdominal Infection, Sir Run Run Shaw Hospital, School of MedicineZhejiang UniversityZhejiangHangzhouChina
| |
Collapse
|
2
|
El Assar M, García-Gómez B, La Fuente JM, Alonso-Isa M, Martínez-Salamanca JI, Fernández A, Sosa P, Romero-Otero J, Rodríguez-Mañas L, Angulo J. Targeting TRPC-5 Channel Inhibition to Improve Penile Vascular Function in Erectile Dysfunction. Int J Mol Sci 2025; 26:1431. [PMID: 40003900 PMCID: PMC11855833 DOI: 10.3390/ijms26041431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/31/2025] [Accepted: 02/05/2025] [Indexed: 02/27/2025] Open
Abstract
Canonical transient receptor potential (TRPC) channels contribute to calcium homeostasis, which is involved in penile vascular contractility and erectile dysfunction (ED) pathophysiology. We evaluated the impact of TRPC5 inhibition on endothelial function in penile vascular tissue from aging rats and ED patients and its effect on the relaxant efficacy of PDE5 inhibitors. TRPC inhibitor-induced endothelial and neurogenic relaxations were evaluated in corpus cavernosum (RCC) from a rat model of aging-related ED and in human penile resistance arteries (HPRAs) and corpus cavernosum (HCC) from ED patients and organ donors (NoED). The TRPC5 inhibitor, AC1903, was more effective than TRPC3 and TRPC4 inhibitors in relaxing aged RCC and HCC and HPRA from ED patients. In addition to enhancing endothelial and neurogenic relaxations in RCC from aged animals, AC1903 improved endothelium-dependent relaxation in both HCC and HPRA from ED patients but not in tissues from NoED. Cavernosal expression of TRPC5 was not different between ED and NoED subjects. AC1903 potentiated relaxations to the PDE5 inhibitor, tadalafil, in HCC/HPRA from ED patients. TRPC5 inhibition improved penile vascular function in aged rats and patients with ED. TRPC5 inhibition could be a potential therapeutic target for ED, particularly when combined with PDE5 inhibitors to enhance treatment outcomes.
Collapse
Affiliation(s)
- Mariam El Assar
- Fundación para la Investigación Biomédica del Hospital de Getafe, 28905 Getafe, Spain;
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain;
- Instituto de Investigación IdiPaz, 28046 Madrid, Spain
| | - Borja García-Gómez
- Department of Urology, Hospital Universitario 12 de Octubre, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain; (B.G.-G.); (M.A.-I.)
| | - José M. La Fuente
- Serviço de Urologia, Centro Hospitalar e Universitário de Santo António (CHUdSA), 4099-001 Porto, Portugal;
| | - Manuel Alonso-Isa
- Department of Urology, Hospital Universitario 12 de Octubre, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain; (B.G.-G.); (M.A.-I.)
| | | | - Argentina Fernández
- Servicio de Histología-Investigación, Unidad de Investigación Traslacional en Cardiología—IRYCIS/UFV, Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain;
| | - Patricia Sosa
- Fundación para la Investigación Biomédica del Hospital de Getafe, 28905 Getafe, Spain;
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain;
- Instituto de Investigación IdiPaz, 28046 Madrid, Spain
| | - Javier Romero-Otero
- Servicio de Urología, Hospital Universitario HM Sanchinarro, HM Hospitales, 28050 Madrid, Spain;
| | - Leocadio Rodríguez-Mañas
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain;
- Instituto de Investigación IdiPaz, 28046 Madrid, Spain
- Servicio de Geriatría, Hospital Universitario de Getafe, 28905 Getafe, Spain
| | - Javier Angulo
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain;
- Servicio de Histología-Investigación, Unidad de Investigación Traslacional en Cardiología—IRYCIS/UFV, Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain;
| |
Collapse
|
3
|
Ke X, Cai H, Chen Y, Chen G. Exploring the therapeutic potential of TRPC channels in chronic pain: An investigation into their mechanisms, functions, and prospects. Eur J Pharmacol 2025; 987:177206. [PMID: 39672226 DOI: 10.1016/j.ejphar.2024.177206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 12/10/2024] [Accepted: 12/11/2024] [Indexed: 12/15/2024]
Abstract
Transient Receptor Potential Canonical (TRPC) channels have received more attention in recent years for their role of in the pathophysiology of chronic pain. These non-selective cation channels, which are predominantly present on cell membranes, play a pivotal role in regulating both physiological and pathological processes. Research advances have shown the critical role of TRPC channels in a variety of chronic pain, including neuropathic, inflammatory, and visceral pain. Activation of TRPC channels increases neuronal excitability, amplifying and prolonging pain signals. Moreover, these channels collaborate with other ion channels and receptors to form complexes that augment the transmission and perception of pain. As research advances, our understanding of TRPC channels' regulation mechanisms and signaling pathways improves. An expanding variety of TRPC modulators has been identified as promising therapeutic agents for chronic pain, opening up novel treatment options. Nevertheless, the diversity and complexity of TRPC channels present challenges in drug development, highlighting the importance of full understanding of their unique properties and activities. This review aims to provide a thorough evaluation of recent breakthrough in TRPC channels research related to chronic pain, with a focus on their mechanisms, functions, and prospective therapeutic application. By integrating existing research findings, we seek to bring new viewpoints and approaches for chronic pain management.
Collapse
Affiliation(s)
- Xinlong Ke
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Huajing Cai
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yeru Chen
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | - Gang Chen
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
4
|
Rubaiy HN. Transient Receptor Potential Canonical Channels in Cardiovascular Pathology and Their Modulators. J Cardiovasc Pharmacol 2025; 85:21-34. [PMID: 39405561 DOI: 10.1097/fjc.0000000000001643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 10/05/2024] [Indexed: 01/18/2025]
Abstract
ABSTRACT Ion channels play a crucial role in various aspects of cardiac function, such as regulating rhythm and contractility. As a result, they serve as key targets for therapeutic interventions in cardiovascular diseases. Cell function is substantially influenced by the concentration of free cytosolic calcium (Ca 2+ ) and the voltage across the plasma membrane. These characteristics are known to be regulated by Ca 2+ -permeable nonselective cationic channels, although our knowledge of these channels is still inadequate. The transient receptor potential (TRP) superfamily comprises of many nonselective cation channels with diverse Ca 2+ permeability. Canonical or classical TRP (TRPC) channels are a subgroup of the TRP superfamily that are expressed ubiquitously in mammalian cells. TRPC channels are multidimensional signaling protein complexes that play essential roles in a variety of physiological and pathological processes in humans, including cancer, neurological disorders, cardiovascular diseases, and others. The objective of this article was to focus on the role that TRPC channels play in the cardiovascular system. The role of TRPC channels will be deeply discussed in cardiovascular pathology. Together, a critical element in developing novel treatments that target TRPC channels is comprehending the molecular mechanisms and regulatory pathways of TRPC channels in related cardiovascular diseases and conditions.
Collapse
Affiliation(s)
- Hussein N Rubaiy
- Division of Clinical Pharmacology, Department of Laboratory Medicine, Karolinska Institute and Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
5
|
Demaree IS, Kumar S, Tennessen K, Hoang QQ, White FA, Obukhov AG. Effects of TRPC1's Lysines on Heteromeric TRPC5-TRPC1 Channel Function. Cells 2024; 13:2019. [PMID: 39682767 PMCID: PMC11640535 DOI: 10.3390/cells13232019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 11/22/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND TRPC5 proteins form plasma membrane cation channels and are expressed in the nervous and cardiovascular systems. TRPC5 activation leads to cell depolarization and increases neuronal excitability, whereas a homologous TRPC1 inhibits TRPC5 function via heteromerization. The mechanism underlying the inhibitory effect of TRPC1 in TRPC5/TRPC1 heteromers remains unknown. METHODS We used electrophysiological techniques to examine the roles of subunit stoichiometry and positively charged luminal residues of TRPC1 on TRPC5/TRPC1 function. We also performed molecular dynamics simulations. RESULTS We found that increasing the relative amount of TRPC1 in TRPC5/TRPC1 heteromers reduced histamine-induced cation influx through the heteromeric channels. Consistently, histamine-induced cation influx was small in cells co-expressing TRPC5-TRPC1 concatemers and TRPC1, and large in cells co-expressing TRPC5-TRPC1 concatemers and TRPC5. Molecular dynamics simulations revealed that the TRPC1 protein has two positively charged lysine residues that are facing the heteromeric channel pore lumen. Substitution of these lysines with asparagines decreased TRPC1's inhibitory effect on TRPC5/TRPC1 function, indicating that these lysines may regulate cation influx through TRPC5/TRPC1 heteromers. Additionally, we established that extracellular Mg2+ inhibits cation influx through TRPC5/TRPC1, contributing to channel regulation. CONCLUSIONS We revealed that the inhibitory effect of TRPC1 on heteromeric TRPC5/TRPC1 function likely involves luminal lysines of TRPC1.
Collapse
Affiliation(s)
- Isaac S. Demaree
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (I.S.D.); (S.K.)
| | - Sanjay Kumar
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (I.S.D.); (S.K.)
- Department of Life Science, School of Earth, Biological, and Environmental Sciences, Central University of South Bihar, Gaya 824236, India
| | - Kayla Tennessen
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (K.T.); (Q.Q.H.)
| | - Quyen Q. Hoang
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (K.T.); (Q.Q.H.)
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| | - Fletcher A. White
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
- Department of Anesthesia, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Alexander G. Obukhov
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (I.S.D.); (S.K.)
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| |
Collapse
|
6
|
Ptakova A, Vlachova V. Thermosensing ability of TRPC5: current knowledge and unsettled questions. J Physiol Sci 2024; 74:50. [PMID: 39363236 PMCID: PMC11447943 DOI: 10.1186/s12576-024-00942-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/17/2024] [Indexed: 10/05/2024]
Abstract
Our understanding of how the mammalian somatosensory system detects noxious cold is still limited. While the role of TRPM8 in signaling mild non-noxious coolness is reasonably understood, the molecular identity of channels transducing painful cold stimuli remains unresolved. TRPC5 was originally described to contribute to moderate cold responses of dorsal root ganglia neurons in vitro, but mice lacking TRPC5 exhibited no change in behavioral responses to cold temperature. The question of why a channel endowed with the ability to be activated by cooling contributes to the cold response only under certain conditions is currently being intensively studied. It seems increasingly likely that the physiological detection of cold temperatures involves multiple different channels and mechanisms that modulate the threshold and intensity of perception. In this review, we aim to outline how TRPC5 may contribute to these mechanisms and what molecular features are important for its role as a cold sensor.
Collapse
Affiliation(s)
- Alexandra Ptakova
- Department of Cellular Neurophysiology, Institute of Physiology, Czech Academy of Sciences, Videnska 1083, 142 20, Prague 4, Czech Republic.
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic.
| | - Viktorie Vlachova
- Department of Cellular Neurophysiology, Institute of Physiology, Czech Academy of Sciences, Videnska 1083, 142 20, Prague 4, Czech Republic.
| |
Collapse
|
7
|
Abrams KB, Folger IT, Cullen NA, Wichlinski LJ. Biochemical challenges for testing novel anti-panic drugs in humans. Pharmacol Biochem Behav 2024; 242:173825. [PMID: 39009088 DOI: 10.1016/j.pbb.2024.173825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/08/2024] [Accepted: 07/11/2024] [Indexed: 07/17/2024]
Abstract
Current medications for panic disorder each carry significant limitations that indicate the need for novel anxiolytics. The high costs and low success rates of drug development demand that testing trials be efficient. Lab panicogenic challenges in humans allow for the rapid biochemical induction of panic symptoms and hence an efficient means of testing potential anti-panic drugs. This paper describes ideal characteristics of lab panicogens, reviews the validity and utility of various biochemical panicogenic agents, identifies key outcome measures for studies of novel anti-panic drugs, and makes broad recommendations for labs wishing to perform such studies. We conclude by presenting a four-tiered hierarchy of panicogens that matches each against ideal characteristics and reflects our recommendations for their laboratory use.
Collapse
Affiliation(s)
- Kenneth B Abrams
- Department of Psychology, Carleton College, United States of America.
| | - Isabel T Folger
- Department of Psychology, Carleton College, United States of America
| | - Nancy A Cullen
- Department of Psychology, Carleton College, United States of America
| | | |
Collapse
|
8
|
Liu H, Fu M, Zhang Y, You Q, Wang L. Small molecules targeting canonical transient receptor potential channels: an update. Drug Discov Today 2024; 29:103951. [PMID: 38514041 DOI: 10.1016/j.drudis.2024.103951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 03/06/2024] [Accepted: 03/14/2024] [Indexed: 03/23/2024]
Abstract
Transient receptor potential canonical (TRPC) channels belong to an important class of non-selective cation channels. This channel family consists of multiple members that widely participate in various physiological and pathological processes. Previous studies have uncovered the intricate regulation of these channels, as well as the spatial arrangement of TRPCs and the binding sites for various small molecule compounds. Multiple small molecules have been identified as selective agonists or inhibitors targeting different subtypes of TRPC, including potential preclinical drug candidates. This review covers recent advancements in the understanding of TRPC regulation and structure and the discovery of TRPC small molecules over the past few years, with the aim of facilitating research on TRPCs and small-molecule drug discovery.
Collapse
Affiliation(s)
- Hua Liu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Min Fu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yifan Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Qidong You
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| | - Lei Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
9
|
Xu S, Wang Y. Transient Receptor Potential Channels: Multiple Modulators of Peripheral Neuropathic Pain in Several Rodent Models. Neurochem Res 2024; 49:872-886. [PMID: 38281247 DOI: 10.1007/s11064-023-04087-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/22/2023] [Accepted: 12/16/2023] [Indexed: 01/30/2024]
Abstract
Neuropathic pain, a prevalent chronic condition in clinical settings, has attracted widespread societal attention. This condition is characterized by a persistent pain state accompanied by affective and cognitive disruptions, significantly impacting patients' quality of life. However, current clinical therapies fall short of addressing its complexity. Thus, exploring the underlying molecular mechanism of neuropathic pain and identifying potential targets for intervention is highly warranted. The transient receptor potential (TRP) receptors, a class of widely distributed channel proteins, in the nervous system, play a crucial role in sensory signaling, cellular calcium regulation, and developmental influences. TRP ion channels are also responsible for various sensory responses including heat, cold, pain, and stress. This review highlights recent advances in understanding TRPs in various rodent models of neuropathic pain, aiming to uncover potential therapeutic targets for clinical management.
Collapse
Affiliation(s)
- Songchao Xu
- Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, No. 95, Yong'an Road, Xicheng District, Beijing, 100050, China
| | - Yun Wang
- Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, No. 95, Yong'an Road, Xicheng District, Beijing, 100050, China.
| |
Collapse
|
10
|
Rendell M. Lessons learned from early-stage clinical trials for diabetic nephropathy. Expert Opin Investig Drugs 2024; 33:287-301. [PMID: 38465470 DOI: 10.1080/13543784.2024.2326025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 02/28/2024] [Indexed: 03/12/2024]
Abstract
INTRODUCTION The evolution of treatment for diabetic nephropathy illustrates how basic biochemistry and physiology have led to new agents such as SGLT2 inhibitors and mineralocorticoid blockers. Conversely, clinical studies performed with these agents have suggested new concepts for investigational drug development. We reviewed currently available treatments for diabetic nephropathy and then analyzed early clinical trials of new agents to assess the potential for future treatment modalities. AREAS COVERED We searched ClinicalTrials.gov for new agents under study for diabetic nephropathy in the past decade. Once we have identified investigation trials of new agents, we then used search engines and Pubmed.gov to find publications providing insight on these drugs. Current treatments have shown benefit in both cardiac and renal disease. In our review, we found 51 trials and 43 pharmaceuticals in a number of drug classes: mineralocorticoid blockers, anti-inflammatory, anti-fibrosis, nitric oxide stimulatory, and podocyte protection, and endothelin inhibitors. EXPERT OPINION It is difficult to predict which early phase treatments will advance to confirmatory clinical trials. Current agents are thought to improve hemodynamic function. However, the coincident benefit of both myocardial function and the glomerulus argues for primary effects at the subcellular level, and we follow the evolution of agents which modify fundamental cellular processes.
Collapse
Affiliation(s)
- Marc Rendell
- The Association of Diabetes Investigators, Newport Coast, CA, USA
- The Rose Salter Medical Research Foundation, Newport Coast, CA, USA
| |
Collapse
|
11
|
Wu F, Bu S, Wang H. Role of TRP Channels in Metabolism-Related Diseases. Int J Mol Sci 2024; 25:692. [PMID: 38255767 PMCID: PMC10815096 DOI: 10.3390/ijms25020692] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/27/2023] [Accepted: 12/29/2023] [Indexed: 01/24/2024] Open
Abstract
Metabolic syndrome (MetS), with its high prevalence and significant impact on cardiovascular disease, poses a substantial threat to human health. The early identification of pathological abnormalities related to MetS and prevention of the risk of associated diseases is of paramount importance. Transient Receptor Potential (TRP) channels, a type of nonselective cation channel, are expressed in a variety of tissues and have been implicated in the onset and progression of numerous metabolism-related diseases. This study aims to review and discuss the expression and function of TRP channels in metabolism-related tissues and blood vessels, and to elucidate the interactions and mechanisms between TRP channels and metabolism-related diseases. A comprehensive literature search was conducted using keywords such as TRP channels, metabolic syndrome, pancreas, liver, oxidative stress, diabetes, hypertension, and atherosclerosis across various academic databases including PubMed, Google Scholar, Elsevier, Web of Science, and CNKI. Our review of the current research suggests that TRP channels may be involved in the development of metabolism-related diseases by regulating insulin secretion and release, lipid metabolism, vascular functional activity, oxidative stress, and inflammatory response. TRP channels, as nonselective cation channels, play pivotal roles in sensing various intra- and extracellular stimuli and regulating ion homeostasis by osmosis. They present potential new targets for the diagnosis or treatment of metabolism-related diseases.
Collapse
Affiliation(s)
| | | | - Hongmei Wang
- School of Medicine, Southeast University, Nanjing 210009, China; (F.W.); (S.B.)
| |
Collapse
|
12
|
Khan SU, Khan SU, Suleman M, Khan MU, Alsuhaibani AM, Refat MS, Hussain T, Ud Din MA, Saeed S. The Multifunctional TRPC6 Protein: Significance in the Field of Cardiovascular Studies. Curr Probl Cardiol 2024; 49:102112. [PMID: 37774899 DOI: 10.1016/j.cpcardiol.2023.102112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 10/01/2023]
Abstract
Cardiovascular disease is the leading cause of death, medical complications, and healthcare costs. Although recent advances have been in treating cardiovascular disorders linked with a reduced ejection fraction, acutely decompensate cardiac failure remains a significant medical problem. The transient receptor potential cation channel (TRPC6) family responds to neurohormonal and mechanical stress, playing critical roles in cardiovascular diseases. Therefore, TRP C6 channels have great promise as therapeutic targets. Numerous studies have investigated the roles of TRP C6 channels in pain neurons, highlighting their significance in cardiovascular research. The TRPC6 protein exhibits a broad distribution in various organs and tissues, including the brain, nerves, heart, blood vessels, lungs, kidneys, gastrointestinal tract, and other bodily structures. Its activation can be triggered by alterations in osmotic pressure, mechanical stimulation, and diacylglycerol. Consequently, TRPC6 plays a significant role in the pathophysiological mechanisms underlying diverse diseases within living organisms. A recent study has indicated a strong correlation between the disorder known as TRPC6 and the development of cardiovascular diseases. Consequently, investigations into the association between TRPC6 and cardiovascular diseases have gained significant attention in the scientific community. This review explores the most recent developments in the recognition and characterization of TRPC6. Additionally, it considers the field's prospects while examining how TRPC6 might be altered and its clinical applications.
Collapse
Affiliation(s)
- Safir Ullah Khan
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China.
| | - Shahid Ullah Khan
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and Biotechnology, Southwest University, Chongqing, China; Department of Biochemistry, Women Medical and Dental College, Khyber Medical University, Abbottabad, Pakistan.
| | - Muhammad Suleman
- Center for Biotechnology and Microbiology, University of Swat, Swat, Pakistan
| | - Munir Ullah Khan
- Department of Polymer Science and Engineering, MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Zhejiang University, Hangzhou, China
| | - Amnah Mohammed Alsuhaibani
- Department of Physical Sport Science, College of Education, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Moamen S Refat
- Department of Chemistry, College of Science, Taif University, Taif, Saudi Arabia
| | - Talib Hussain
- Women Dental College, Khyber Medical University, Abbottabad, Pakistan
| | - Muhammad Azhar Ud Din
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, P.R. China
| | - Sumbul Saeed
- School of Environment and Science, Griffith University, Nathan, QLD, Australia
| |
Collapse
|
13
|
Alexander SPH, Mathie AA, Peters JA, Veale EL, Striessnig J, Kelly E, Armstrong JF, Faccenda E, Harding SD, Davies JA, Aldrich RW, Attali B, Baggetta AM, Becirovic E, Biel M, Bill RM, Caceres AI, Catterall WA, Conner AC, Davies P, De Clerq K, Delling M, Di Virgilio F, Falzoni S, Fenske S, Fortuny-Gomez A, Fountain S, George C, Goldstein SAN, Grimm C, Grissmer S, Ha K, Hammelmann V, Hanukoglu I, Hu M, Ijzerman AP, Jabba SV, Jarvis M, Jensen AA, Jordt SE, Kaczmarek LK, Kellenberger S, Kennedy C, King B, Kitchen P, Liu Q, Lynch JW, Meades J, Mehlfeld V, Nicke A, Offermanns S, Perez-Reyes E, Plant LD, Rash L, Ren D, Salman MM, Sieghart W, Sivilotti LG, Smart TG, Snutch TP, Tian J, Trimmer JS, Van den Eynde C, Vriens J, Wei AD, Winn BT, Wulff H, Xu H, Yang F, Fang W, Yue L, Zhang X, Zhu M. The Concise Guide to PHARMACOLOGY 2023/24: Ion channels. Br J Pharmacol 2023; 180 Suppl 2:S145-S222. [PMID: 38123150 PMCID: PMC11339754 DOI: 10.1111/bph.16178] [Citation(s) in RCA: 90] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Abstract
The Concise Guide to PHARMACOLOGY 2023/24 is the sixth in this series of biennial publications. The Concise Guide provides concise overviews, mostly in tabular format, of the key properties of approximately 1800 drug targets, and over 6000 interactions with about 3900 ligands. There is an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (https://www.guidetopharmacology.org/), which provides more detailed views of target and ligand properties. Although the Concise Guide constitutes almost 500 pages, the material presented is substantially reduced compared to information and links presented on the website. It provides a permanent, citable, point-in-time record that will survive database updates. The full contents of this section can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.16178. Ion channels are one of the six major pharmacological targets into which the Guide is divided, with the others being: G protein-coupled receptors, nuclear hormone receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The landscape format of the Concise Guide is designed to facilitate comparison of related targets from material contemporary to mid-2023, and supersedes data presented in the 2021/22, 2019/20, 2017/18, 2015/16 and 2013/14 Concise Guides and previous Guides to Receptors and Channels. It is produced in close conjunction with the Nomenclature and Standards Committee of the International Union of Basic and Clinical Pharmacology (NC-IUPHAR), therefore, providing official IUPHAR classification and nomenclature for human drug targets, where appropriate.
Collapse
Affiliation(s)
- Stephen P H Alexander
- School of Life Sciences, University of Nottingham Medical School, Nottingham, NG7 2UH, UK
| | - Alistair A Mathie
- School of Engineering, Arts, Science and Technology, University of Suffolk, Ipswich, IP4 1QJ, UK
| | - John A Peters
- Neurosci-ence Division, Medical Education Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK
| | - Emma L Veale
- Medway School of Pharmacy, The Universities of Greenwich and Kent at Medway, Anson Building, Central Avenue, Chatham Maritime, Chatham, Kent, ME4 4TB, UK
| | - Jörg Striessnig
- Pharmacology and Toxicology, Institute of Pharmacy, University of Innsbruck, A-6020, Innsbruck, Austria
| | - Eamonn Kelly
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, BS8 1TD, UK
| | - Jane F Armstrong
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD, UK
| | - Elena Faccenda
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD, UK
| | - Simon D Harding
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD, UK
| | - Jamie A Davies
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD, UK
| | | | | | | | | | - Martin Biel
- Ludwig Maximilian University of Munich, Munich, Germany
| | | | | | | | | | - Paul Davies
- Tufts University School of Medicine, Boston, USA
| | | | - Markus Delling
- University of California San Francisco, San Francisco, USA
| | | | | | | | | | | | - Chandy George
- Nanyang Technological University, Singapore, Singapore
| | | | | | | | - Kotdaji Ha
- University of California San Francisco, San Francisco, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Annette Nicke
- Ludwig Maximilian University of Munich, Munich, Germany
| | - Stefan Offermanns
- Max Planck Institute for Heart and Lung Research/JW Goethe University, Bad Nauheim/Frankfurt, Germany
| | | | | | | | - Dejian Ren
- University of Pennsylvania, Philadelphia, USA
| | | | | | | | | | | | - Jinbin Tian
- University of Texas at Houston, Houston, USA
| | | | | | | | | | | | | | | | | | | | - Lixia Yue
- University of Connecticut, Farmington, USA
| | | | - Michael Zhu
- University of Texas at Houston, Houston, USA
| |
Collapse
|
14
|
Zheng F. Canonical Transient Receptor Potential Channel 3 Contributes to Cerebral Blood Flow Changes Associated with Cortical Spreading Depression in Mice. Int J Mol Sci 2023; 24:12611. [PMID: 37628789 PMCID: PMC10454766 DOI: 10.3390/ijms241612611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/06/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Cortical spreading depression is a pathophysiological event shared in migraines, strokes, traumatic brain injuries, and epilepsy. It is associated with complex hemodynamic responses, which, in turn, contribute to neurological problems. In this study, we investigated the role of canonical transient receptor potential channel 3 (TRPC3) in the hemodynamic responses elicited by cortical spreading depression. Cerebral blood flow was monitored using laser speckle contrast imaging, and cortical spreading depression was triggered using three well-established experimental approaches in mice. A comparison of TRPC3 knockout mice to controls revealed that the genetic ablation of TRPC3 expression significantly altered the hemodynamic responses elicited using cortical spreading depression and promoted hyperemia consistently. Our results indicate that TRPC3 contributes to hemodynamic responses associated with cortical spreading depression and could be a novel therapeutic target for a host of neurological disorders.
Collapse
Affiliation(s)
- Fang Zheng
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| |
Collapse
|
15
|
Ali DM, Mahmoud MH, Rifaai RA, Fawzy MA, Atta M, Welson NN, Batiha GE, Alexiou A, Papadakis M, Abdelzaher WY. Diacerein modulates TLR4/ NF-κB/IL-1β and TRPC1/CHOP signalling pathways in gentamicin-induced parotid toxicity in rats. J Cell Mol Med 2023; 27:1735-1744. [PMID: 37257043 PMCID: PMC10273056 DOI: 10.1111/jcmm.17791] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 04/25/2023] [Accepted: 05/19/2023] [Indexed: 06/02/2023] Open
Abstract
The present study aimed to identify the possible protective effect of diacerein (DIA) on gentamicin (GNT)-induced parotid toxicity in rats. DIA was administered in the presence and absence of GNT. Thirty-two Wistar adult male rats were randomly arranged into four groups: control, DIA (50 mg/kg/day), GNT (100 mg/kg) and GNT+DIA groups for 8 days. Parotid oxidative stress parameters, besides inflammatory and apoptotic biomarkers, were evaluated. Salivary flow rate, transient receptor potential canonical 1 (TRCP1), and C/EBP homologous protein (CHOP) in parotid tissue were measured. A parotid histopathological examination and an interleukin-1 beta (IL-1β) immunohistochemical study were also performed. GNT significantly increased parotid oxidative stress, inflammatory, apoptotic and CHOP biomarkers with decreased salivary flow rate and TRCP1 level. A histopathological picture of parotid damage and high IL-1β immunoexpression were detected. DIA significantly normalized the distributed oxidative, inflammatory and apoptotic indicators, CHOP and TRCP1, with a prompt improvement in the histopathological picture and a decrease in IL-1β immunoexpression. These results reported that DIA protects against GNT-induced parotid toxicity via modulation of TLR4/NF-κB/IL-1β and TRPC1/CHOP signalling pathways.
Collapse
Affiliation(s)
- Dalia Mohamed Ali
- Department of Forensic Medicine and Clinical Toxicology, Faculty of MedicineMinia UniversityMiniaEgypt
| | - Mohamed H. Mahmoud
- Department of Biochemistry, College of ScienceKing Saud UniversityRiyadhSaudi Arabia
| | - Rehab Ahmed Rifaai
- Department of Histology and Cell Biology, Faculty of MedicineMinia UniversityMiniaEgypt
| | - Michael Atef Fawzy
- Department of Biochemistry, Faculty of PharmacyMinia UniversityMiniaEgypt
| | - Medhat Atta
- Department of Anatomy, Faculty of MedicineMinia UniversityMiniaEgypt
| | - Nermeen N. Welson
- Department of Forensic Medicine and Clinical Toxicology, Faculty of MedicineBeni‐Suef UniversityBeni SuefEgypt
| | - Gaber El‐Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary MedicineDamanhour UniversityDamanhourEgypt
| | - Athanasios Alexiou
- Department of Science and EngineeringNovel Global Community Educational FoundationHebershamNew South WalesAustralia
- AFNP MedWienAustria
| | - Marios Papadakis
- Department of History of Medicine, School of MedicineUniversity of IoanninaIoanninaGreece
| | | |
Collapse
|
16
|
Inhibition of Canonical Transient Receptor Potential Channels 4/5 with Highly Selective and Potent Small-Molecule HC-070 Alleviates Mechanical Hypersensitivity in Rat Models of Visceral and Neuropathic Pain. Int J Mol Sci 2023; 24:ijms24043350. [PMID: 36834762 PMCID: PMC9964505 DOI: 10.3390/ijms24043350] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/01/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Transient receptor potential channels C4/C5 are widely expressed in the pain pathway. Here, we studied the putative analgesic efficacy of the highly selective and potent TRPC4/C5 antagonist HC-070 in rats. Inhibitory potency on human TRPC4 was assessed by using the whole-cell manual patch-clamp technique. Visceral pain sensitivity was assessed by the colonic distension test after intra-colonic trinitrobenzene sulfonic acid injection and partial restraint stress. Mechanical pain sensitivity was assessed by the paw pressure test in the chronic constriction injury (CCI) neuropathic pain model. We confirm that HC-070 is a low nanomolar antagonist. Following single oral doses (3-30 mg/kg in male or female rats), colonic hypersensitivity was significantly and dose-dependently attenuated, even fully reversed to baseline. HC-070 also had a significant anti-hypersensitivity effect in the established phase of the CCI model. HC-070 did not have an effect on the mechanical withdrawal threshold of the non-injured paw, whereas the reference compound morphine significantly increased it. Analgesic effects are observed at unbound brain concentrations near the 50% inhibitory concentration (IC50) recorded in vitro. This suggests that analgesic effects reported here are brought about by TRPC4/C5 blocking in vivo. The results strengthen the idea that TRPC4/C5 antagonism is a novel, safe non-opioid treatment for chronic pain.
Collapse
|
17
|
Rubaiy HN. ORAI Calcium Channels: Regulation, Function, Pharmacology, and Therapeutic Targets. Pharmaceuticals (Basel) 2023; 16:162. [PMID: 37259313 PMCID: PMC9967976 DOI: 10.3390/ph16020162] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/15/2023] [Accepted: 01/18/2023] [Indexed: 11/25/2023] Open
Abstract
The changes in intracellular free calcium (Ca2+) levels are one of the most widely regulators of cell function; therefore, calcium as a universal intracellular mediator is involved in very important human diseases and disorders. In many cells, Ca2+ inflow is mediated by store-operated calcium channels, and it is recognized that the store-operated calcium entry (SOCE) is mediated by the two partners: the pore-forming proteins Orai (Orai1-3) and the calcium store sensor, stromal interaction molecule (STIM1-2). Importantly, the Orai/STIM channels are involved in crucial cell signalling processes such as growth factors, neurotransmitters, and cytokines via interaction with protein tyrosine kinase coupled receptors and G protein-coupled receptors. Therefore, in recent years, the issue of Orai/STIM channels as a drug target in human diseases has received considerable attention. This review summarizes and highlights our current knowledge of the Orai/STIM channels in human diseases and disorders, including immunodeficiency, myopathy, tubular aggregate, Stormorken syndrome, York platelet syndrome, cardiovascular and metabolic disorders, and cancers, as well as suggesting these channels as drug targets for pharmacological therapeutic intervention. Moreover, this work will also focus on the pharmacological modulators of Orai/STIM channel complexes. Together, our thoughtful of the biology and physiology of the Orai/STIM channels have grown remarkably during the past three decades, and the next important milestone in the field of store-operated calcium entry will be to identify potent and selective small molecules as a therapeutic agent with the purpose to target human diseases and disorders for patient benefit.
Collapse
Affiliation(s)
- Hussein N Rubaiy
- Department of Laboratory Medicine, Division of Clinical Pharmacology, Karolinska Institute and Karolinska University Hospital, C1:68, 141 86 Stockholm, Sweden
| |
Collapse
|
18
|
Tang N, Tian W, Ma GY, Xiao X, Zhou L, Li ZZ, Liu XX, Li CY, Wu KH, Liu W, Wang XY, Gao YY, Yang X, Qi J, Li D, Liu Y, Chen WS, Gao J, Li XQ, Cao W. TRPC channels blockade abolishes endotoxemic cardiac dysfunction by hampering intracellular inflammation and Ca 2+ leakage. Nat Commun 2022; 13:7455. [PMID: 36460692 PMCID: PMC9718841 DOI: 10.1038/s41467-022-35242-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 11/23/2022] [Indexed: 12/04/2022] Open
Abstract
Intracellular Ca2+ dysregulation is a key marker in septic cardiac dysfunction; however, regulation of the classic Ca2+ regulatory modules cannot successfully abolish this symptom. Here we show that the knockout of transient receptor potential canonical (TRPC) channel isoforms TRPC1 and TRPC6 can ameliorate LPS-challenged heart failure and prolong survival in mice. The LPS-triggered Ca2+ release from the endoplasmic reticulum both in cardiomyocytes and macrophages is significantly inhibited by Trpc1 or Trpc6 knockout. Meanwhile, TRPC's molecular partner - calmodulin - is uncoupled during Trpc1 or Trpc6 deficiency and binds to TLR4's Pococurante site and atypical isoleucine-glutamine-like motif to block the inflammation cascade. Blocking the C-terminal CaM/IP3R binding domain in TRPC with chemical inhibitor could obstruct the Ca2+ leak and TLR4-mediated inflammation burst, demonstrating a cardioprotective effect in endotoxemia and polymicrobial sepsis. Our findings provide insight into the pathogenesis of endotoxemic cardiac dysfunction and suggest a novel approach for its treatment.
Collapse
Affiliation(s)
- Na Tang
- grid.144022.10000 0004 1760 4150Department of Pharmacy, School of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi China ,grid.144022.10000 0004 1760 4150Shaanxi Key Laboratory of Natural Products & Chemical Biology, Northwest A&F University, Yangling, Shaanxi China
| | - Wen Tian
- grid.233520.50000 0004 1761 4404Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi’an, Shaanxi China ,grid.233520.50000 0004 1761 4404Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Fourth Military Medical University, Xi’an, Shaanxi China
| | - Guang-Yuan Ma
- grid.144022.10000 0004 1760 4150Department of Pharmacy, School of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi China ,grid.144022.10000 0004 1760 4150Shaanxi Key Laboratory of Natural Products & Chemical Biology, Northwest A&F University, Yangling, Shaanxi China
| | - Xiong Xiao
- grid.233520.50000 0004 1761 4404Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi’an, Shaanxi China ,grid.233520.50000 0004 1761 4404Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Fourth Military Medical University, Xi’an, Shaanxi China
| | - Lei Zhou
- grid.144022.10000 0004 1760 4150Department of Pharmacy, School of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi China ,grid.144022.10000 0004 1760 4150Shaanxi Key Laboratory of Natural Products & Chemical Biology, Northwest A&F University, Yangling, Shaanxi China
| | - Ze-Zhi Li
- grid.144022.10000 0004 1760 4150Department of Pharmacy, School of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi China ,grid.144022.10000 0004 1760 4150Shaanxi Key Laboratory of Natural Products & Chemical Biology, Northwest A&F University, Yangling, Shaanxi China
| | - Xiao-Xiao Liu
- grid.233520.50000 0004 1761 4404Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi’an, Shaanxi China ,grid.233520.50000 0004 1761 4404Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Fourth Military Medical University, Xi’an, Shaanxi China
| | - Chong-Yao Li
- grid.412262.10000 0004 1761 5538Department of Pharmacy, Xi’an No.3 Hospital, the Affiliated Hospital of Northwest University, Xi’an, Shaanxi China
| | - Ke-Han Wu
- grid.144022.10000 0004 1760 4150Department of Pharmacy, School of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi China ,grid.144022.10000 0004 1760 4150Shaanxi Key Laboratory of Natural Products & Chemical Biology, Northwest A&F University, Yangling, Shaanxi China
| | - Wenjuan Liu
- grid.144022.10000 0004 1760 4150Department of Pharmacy, School of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi China
| | - Xue-Ying Wang
- grid.233520.50000 0004 1761 4404Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi’an, Shaanxi China ,grid.233520.50000 0004 1761 4404Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Fourth Military Medical University, Xi’an, Shaanxi China
| | - Yuan-Yuan Gao
- grid.233520.50000 0004 1761 4404Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi’an, Shaanxi China ,grid.233520.50000 0004 1761 4404Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Fourth Military Medical University, Xi’an, Shaanxi China
| | - Xin Yang
- grid.144022.10000 0004 1760 4150Department of Pharmacy, School of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi China ,grid.144022.10000 0004 1760 4150Shaanxi Key Laboratory of Natural Products & Chemical Biology, Northwest A&F University, Yangling, Shaanxi China
| | - Jianzhao Qi
- grid.144022.10000 0004 1760 4150Shaanxi Key Laboratory of Natural Products & Chemical Biology, Northwest A&F University, Yangling, Shaanxi China
| | - Ding Li
- grid.144022.10000 0004 1760 4150Shaanxi Key Laboratory of Natural Products & Chemical Biology, Northwest A&F University, Yangling, Shaanxi China
| | - Yang Liu
- grid.233520.50000 0004 1761 4404Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi China
| | - Wen-Sheng Chen
- grid.233520.50000 0004 1761 4404Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi China ,Department of Cardiovascular Surgery, Xi’an Gaoxin Hospital, Xi’an, Shaanxi China
| | - Jinming Gao
- grid.144022.10000 0004 1760 4150Department of Pharmacy, School of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi China ,grid.144022.10000 0004 1760 4150Shaanxi Key Laboratory of Natural Products & Chemical Biology, Northwest A&F University, Yangling, Shaanxi China
| | - Xiao-Qiang Li
- grid.233520.50000 0004 1761 4404Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi’an, Shaanxi China ,grid.233520.50000 0004 1761 4404Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Fourth Military Medical University, Xi’an, Shaanxi China
| | - Wei Cao
- grid.144022.10000 0004 1760 4150Department of Pharmacy, School of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi China ,grid.144022.10000 0004 1760 4150Shaanxi Key Laboratory of Natural Products & Chemical Biology, Northwest A&F University, Yangling, Shaanxi China
| |
Collapse
|
19
|
Müller M, Niemeyer K, Urban N, Ojha NK, Zufall F, Leinders‐Zufall T, Schaefer M, Thorn‐Seshold O. BTDAzo: A Photoswitchable TRPC5 Channel Activator. Angew Chem Int Ed Engl 2022; 61:e202201565. [PMID: 35713469 PMCID: PMC9542918 DOI: 10.1002/anie.202201565] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Indexed: 11/13/2022]
Abstract
Photoswitchable reagents can be powerful tools for high-precision biological control. TRPC5 is a Ca2+ -permeable cation channel with distinct tissue-specific roles, from synaptic function to hormone regulation. Reagents giving spatiotemporally-resolved control over TRPC5 activity may be key to understanding and harnessing its biology. Here we develop the first photoswitchable TRPC5-modulator, BTDAzo, to address this goal. BTDAzo can photocontrol TRPC5 currents in cell culture, as well as controlling endogenous TRPC5-based neuronal Ca2+ responses in mouse brain slices. BTDAzos are also the first reported azo-benzothiadiazines, an accessible and conveniently derivatised azoheteroarene with strong two-colour photoswitching. BTDAzo's ability to control TRPC5 across relevant channel biology settings makes it suitable for a range of dynamically reversible photoswitching studies in TRP channel biology, with the aim to decipher the various biological roles of this centrally important ion channel.
Collapse
Affiliation(s)
- Markus Müller
- Department of PharmacyLMU MunichButenandtstrasse 781377MunichGermany
| | - Konstantin Niemeyer
- Rudolf-Boehm-Institute of Pharmacology and ToxicologyLeipzig UniversityHärtelstraße 16–1804107LeipzigGermany
| | - Nicole Urban
- Rudolf-Boehm-Institute of Pharmacology and ToxicologyLeipzig UniversityHärtelstraße 16–1804107LeipzigGermany
| | - Navin K. Ojha
- Center for Integrative Physiology and Molecular MedicineSaarland UniversityKirrbergerstraße 10066421HomburgGermany
| | - Frank Zufall
- Center for Integrative Physiology and Molecular MedicineSaarland UniversityKirrbergerstraße 10066421HomburgGermany
| | - Trese Leinders‐Zufall
- Center for Integrative Physiology and Molecular MedicineSaarland UniversityKirrbergerstraße 10066421HomburgGermany
| | - Michael Schaefer
- Rudolf-Boehm-Institute of Pharmacology and ToxicologyLeipzig UniversityHärtelstraße 16–1804107LeipzigGermany
| | | |
Collapse
|
20
|
Chen L, Zhang Z, Tian H, Jiang S, Ji Y, Liu M, Shen J, Cao Z, Wang K. Synthesis of AC1903 analogs as potent transient receptor potential canonical channel 4/5 inhibitors and biological evaluation. Bioorg Med Chem 2022; 68:116853. [PMID: 35653869 DOI: 10.1016/j.bmc.2022.116853] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 05/19/2022] [Accepted: 05/21/2022] [Indexed: 11/02/2022]
Abstract
Transient receptor potential canonical (TRPC) channels are a class of non-selective cation channels expressed in a variety of tissues and organ systems where they functionally regulate physiological and pathological processes. TRPC5 has been shown to be a promising target for focal segmental glomerulosclerosis treatment. In this study, we report the synthesis and biological evaluation of a novel series of benzimidazole-based TRPC5 inhibitors. One compound, 8b, is 100-fold more potent than the parent compound, AC1903, in the suppression of TRPC5 channel activity. Interestingly, both AC1903 and 8b also suppressed TRPC4 channel activity with similar potency. Compound 8b also significantly blunts protamine sulfate-induced reorganization of podocyte cytoskeleton, interleukin (IL)-17-induced cell proliferation, and the expression of proinflammatory mediators in human keratinocyte HaCaT cells.
Collapse
Affiliation(s)
- Lili Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, No. 555 Zu Chong Zhi Road, Shanghai 201203, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Zhuang Zhang
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of TCM Pharmacology, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 639 Long Mian Road, Nanjing, Jiangsu 211198, China
| | - Hongtao Tian
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, No. 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Shan Jiang
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of TCM Pharmacology, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 639 Long Mian Road, Nanjing, Jiangsu 211198, China
| | - Yunyun Ji
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of TCM Pharmacology, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 639 Long Mian Road, Nanjing, Jiangsu 211198, China
| | - Mengru Liu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of TCM Pharmacology, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 639 Long Mian Road, Nanjing, Jiangsu 211198, China
| | - Jianhua Shen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, No. 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Zhengyu Cao
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of TCM Pharmacology, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 639 Long Mian Road, Nanjing, Jiangsu 211198, China.
| | - Kai Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, No. 555 Zu Chong Zhi Road, Shanghai 201203, China.
| |
Collapse
|
21
|
Müller M, Niemeyer K, Urban N, Ojha NK, Zufall F, Leinders-Zufall T, Schaefer M, Thorn-Seshold O. BTDAzo ‐ A Photoswitchable TRPC5 Channel Activator. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Markus Müller
- Ludwig Maximillians University Munich: Ludwig-Maximilians-Universitat Munchen Department of Pharmacy Butenandstr. 7 81377 Munich GERMANY
| | - Konstantin Niemeyer
- Leipzig University: Universitat Leipzig Rudolf-Boehm-Institut für Pharmakologie und Toxikologie Härtelstr. 16-18 04107 Leipzig GERMANY
| | - Nicole Urban
- Leipzig University: Universitat Leipzig Rudolf-Boehm-Institut für Pharmakologie und Toxikologie Härtelstraße 16-18 04107 Leipzig GERMANY
| | - Navin K. Ojha
- Saarland University: Universitat des Saarlandes Center for Integrative Physiology and Molecular Medicine Kirrbergerstraße 100 66421 Homburg GERMANY
| | - Frank Zufall
- Saarland University: Universitat des Saarlandes Center for Integrative Physiology and Molecular Medicine Kirrbergerstraße 100 66421 Homburg GERMANY
| | - Trese Leinders-Zufall
- Saarland University: Universitat des Saarlandes Center for Integrative Physiology and Molecular Medicine Kirrbergerstraße 100 66421 Homburg GERMANY
| | - Michael Schaefer
- Leipzig University: Universitat Leipzig Rudolf-Boehm-Institute of Pharmacology and Toxicology Härtelstraße 16-18 04107 Leipzig GERMANY
| | - Oliver Thorn-Seshold
- Ludwig-Maximilians-Universitat Munchen Dept Pharmacy Butenandtstr 5-13 81377 Munich GERMANY
| |
Collapse
|
22
|
Hirata N, Yamada S, Yanagida S, Ono A, Yasuhiko Y, Nishida M, Kanda Y. Lysophosphatidic Acid Promotes the Expansion of Cancer Stem Cells via TRPC3 Channels in Triple-Negative Breast Cancer. Int J Mol Sci 2022; 23:ijms23041967. [PMID: 35216080 PMCID: PMC8877950 DOI: 10.3390/ijms23041967] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 01/27/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is a highly aggressive cancer for which targeted therapeutic agents are limited. Growing evidence suggests that TNBC originates from breast cancer stem cells (BCSCs), and elucidation of the molecular mechanisms controlling BCSC proliferation will be crucial for new drug development. We have previously reported that the lysosphingolipid sphingosine-1-phosphate mediates the CSC phenotype, which can be identified as the ALDH-positive cell population in several types of human cancer cell lines. In this study, we have investigated additional lipid receptors upregulated in BCSCs. We found that lysophosphatidic acid (LPA) receptor 3 was highly expressed in ALDH-positive TNBC cells. The LPAR3 antagonist inhibited the increase in ALDH-positive cells after LPA treatment. Mechanistically, the LPA-induced increase in ALDH-positive cells was dependent on intracellular calcium ion (Ca2+), and the increase in Ca2+ was suppressed by a selective inhibitor of transient receptor potential cation channel subfamily C member 3 (TRPC3). Moreover, IL-8 production was involved in the LPA response via the activation of the Ca2+-dependent transcriptional factor nuclear factor of activated T cells. Taken together, our findings provide new insights into the lipid-mediated regulation of BCSCs via the LPA-TRPC3 signaling axis and suggest several potential therapeutic targets for TNBC.
Collapse
Affiliation(s)
- Naoya Hirata
- Division of Pharmacology, National Institute of Health Sciences, Kanagawa 210-9501, Japan; (N.H.); (S.Y.); (S.Y.); (Y.Y.)
- Pharmacological Evaluation Institute of Japan (PEIJ), Ibaraki 305-0031, Japan
| | - Shigeru Yamada
- Division of Pharmacology, National Institute of Health Sciences, Kanagawa 210-9501, Japan; (N.H.); (S.Y.); (S.Y.); (Y.Y.)
- Pharmacological Evaluation Institute of Japan (PEIJ), Ibaraki 305-0031, Japan
| | - Shota Yanagida
- Division of Pharmacology, National Institute of Health Sciences, Kanagawa 210-9501, Japan; (N.H.); (S.Y.); (S.Y.); (Y.Y.)
- Division of Pharmaceutical Sciences, Graduated School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan;
| | - Atsushi Ono
- Division of Pharmaceutical Sciences, Graduated School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan;
| | - Yukuto Yasuhiko
- Division of Pharmacology, National Institute of Health Sciences, Kanagawa 210-9501, Japan; (N.H.); (S.Y.); (S.Y.); (Y.Y.)
| | - Motohiro Nishida
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan;
- Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Aichi 444-8787, Japan
- National Institute for Physiological Sciences, National Institutes of Natural Sciences, Aichi 444-8787, Japan
| | - Yasunari Kanda
- Division of Pharmacology, National Institute of Health Sciences, Kanagawa 210-9501, Japan; (N.H.); (S.Y.); (S.Y.); (Y.Y.)
- Correspondence:
| |
Collapse
|
23
|
de Abrantes RA, Batista TM, Mangueira VM, de Sousa TKG, Ferreira RC, Moura APG, Abreu LS, Alves AF, Velozo ES, Batista LM, da Silva MS, Tavares JF, Sobral MV. Antitumor and antiangiogenic effects of Tonantzitlolone B, an uncommon diterpene from Stillingia loranthacea. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2022; 395:267-274. [PMID: 34854946 DOI: 10.1007/s00210-021-02185-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 11/14/2021] [Indexed: 01/04/2023]
Abstract
Natural products have played a pivotal role for the discovery of anticancer drugs. Tonantzitlolones are flexibilan-type diterpenes rare in nature; therefore, few reports have shown antiviral and cytotoxic activities. This study aimed to investigate the in vivo antitumor action of Tonantzitlolone B (TNZ-B) and its toxicity. Toxicity was evaluated in mice (acute and micronucleus assays). Antitumor activity of TNZ-B (1.5 or 3 mg/kg intraperitoneally - i.p.) was assessed in Ehrlich ascites carcinoma model. Angiogenesis and reactive oxygen species (ROS) and nitric oxide (NO) production were also investigated, in addition to toxicological effects after 7-day treatment. The LD50 (lethal dose 50%) was estimated at around 25 mg/kg (i.p.), and no genotoxicity was recorded. TNZ-B reduced the Ehrlich tumor's volume and total viable cancer cell count (p < 0.001 for both). Additionally, TNZ-B reduced peritumoral microvessel density (p < 0.01), suggesting antiangiogenic action. Moreover, a decrease was observed on ROS (p < 0.05) and nitric oxide (p < 0.001) levels. No significant clinical findings were observed in the analysis of biochemical, hematological, and histological (liver and kidney) parameters. In conclusion, TNZ-B exerts antitumor and antiangiogenic effects by reducing ROS and NO levels and has weak in vivo dose-repeated toxicity. These data contribute to elucidate the antitumor action of TNZ-B and point the way for further studies with this natural compound as an anticancer drug.
Collapse
Affiliation(s)
- Renata A de Abrantes
- Post Graduation Program in Bioactive Natural and Synthetic Products, Federal University of Paraíba, João Pessoa, Brazil
| | - Tatianne M Batista
- Post Graduation Program in Bioactive Natural and Synthetic Products, Federal University of Paraíba, João Pessoa, Brazil
| | - Vivianne M Mangueira
- Post Graduation Program in Bioactive Natural and Synthetic Products, Federal University of Paraíba, João Pessoa, Brazil
| | - Tatyanna K G de Sousa
- Post Graduation Program in Bioactive Natural and Synthetic Products, Federal University of Paraíba, João Pessoa, Brazil
| | - Rafael C Ferreira
- Post Graduation Program in Bioactive Natural and Synthetic Products, Federal University of Paraíba, João Pessoa, Brazil
| | - Ana Paula G Moura
- Post Graduation Program in Bioactive Natural and Synthetic Products, Federal University of Paraíba, João Pessoa, Brazil
| | - Lucas S Abreu
- Post Graduation Program in Bioactive Natural and Synthetic Products, Federal University of Paraíba, João Pessoa, Brazil
| | - Adriano F Alves
- Department of Physiology and Pathology, Federal University of Paraíba, João Pessoa, PB, Brazil
| | - Eudes S Velozo
- Research Laboratory in Materia Medica, School of Pharmacy, Federal University of Bahia, Salvador, Brazil
| | - Leônia M Batista
- Post Graduation Program in Bioactive Natural and Synthetic Products, Federal University of Paraíba, João Pessoa, Brazil
- Department of Pharmaceutical Sciences, Federal University of Paraíba, João Pessoa, Brazil
| | - Marcelo S da Silva
- Post Graduation Program in Bioactive Natural and Synthetic Products, Federal University of Paraíba, João Pessoa, Brazil
- Department of Pharmaceutical Sciences, Federal University of Paraíba, João Pessoa, Brazil
| | - Josean F Tavares
- Post Graduation Program in Bioactive Natural and Synthetic Products, Federal University of Paraíba, João Pessoa, Brazil
- Department of Pharmaceutical Sciences, Federal University of Paraíba, João Pessoa, Brazil
| | - Marianna V Sobral
- Post Graduation Program in Bioactive Natural and Synthetic Products, Federal University of Paraíba, João Pessoa, Brazil.
- Department of Pharmaceutical Sciences, Federal University of Paraíba, João Pessoa, Brazil.
| |
Collapse
|
24
|
de Sousa Valente J, Alawi KM, Bharde S, Zarban AA, Kodji X, Thapa D, Argunhan F, Barrett B, Nagy I, Brain SD. (-)-Englerin-A Has Analgesic and Anti-Inflammatory Effects Independent of TRPC4 and 5. Int J Mol Sci 2021; 22:6380. [PMID: 34203675 PMCID: PMC8232259 DOI: 10.3390/ijms22126380] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 12/13/2022] Open
Abstract
Recently, we found that the deletion of TRPC5 leads to increased inflammation and pain-related behaviour in two animal models of arthritis. (-)-Englerin A (EA), an extract from the East African plant Phyllanthus engleri has been identified as a TRPC4/5 agonist. Here, we studied whether or not EA has any anti-inflammatory and analgesic properties via TRPC4/5 in the carrageenan model of inflammation. We found that EA treatment in CD1 mice inhibited thermal hyperalgesia and mechanical allodynia in a dose-dependent manner. Furthermore, EA significantly reduced the volume of carrageenan-induced paw oedema and the mass of the treated paws. Additionally, in dorsal root ganglion (DRG) neurons cultured from WT 129S1/SvIm mice, EA induced a dose-dependent cobalt uptake that was surprisingly preserved in cultured DRG neurons from 129S1/SvIm TRPC5 KO mice. Likewise, EA-induced anti-inflammatory and analgesic effects were preserved in the carrageenan model in animals lacking TRPC5 expression or in mice treated with TRPC4/5 antagonist ML204.This study demonstrates that while EA activates a sub-population of DRG neurons, it induces a novel TRPC4/5-independent analgesic and anti-inflammatory effect in vivo. Future studies are needed to elucidate the molecular and cellular mechanisms underlying EA's anti-inflammatory and analgesic effects.
Collapse
Affiliation(s)
- João de Sousa Valente
- Section of Vascular Biology and Inflammation, BHF Cardiovascular Centre of Research Excellence, School of Cardiovascular Medicine and Sciences, King’s College London, Franklin-Wilkins Building, London SE1 9NH, UK; (K.M.A.); (S.B.); (A.A.Z.); (X.K.); (D.T.); (F.A.); (B.B.); (S.D.B.)
| | - Khadija M Alawi
- Section of Vascular Biology and Inflammation, BHF Cardiovascular Centre of Research Excellence, School of Cardiovascular Medicine and Sciences, King’s College London, Franklin-Wilkins Building, London SE1 9NH, UK; (K.M.A.); (S.B.); (A.A.Z.); (X.K.); (D.T.); (F.A.); (B.B.); (S.D.B.)
| | - Sabah Bharde
- Section of Vascular Biology and Inflammation, BHF Cardiovascular Centre of Research Excellence, School of Cardiovascular Medicine and Sciences, King’s College London, Franklin-Wilkins Building, London SE1 9NH, UK; (K.M.A.); (S.B.); (A.A.Z.); (X.K.); (D.T.); (F.A.); (B.B.); (S.D.B.)
| | - Ali A. Zarban
- Section of Vascular Biology and Inflammation, BHF Cardiovascular Centre of Research Excellence, School of Cardiovascular Medicine and Sciences, King’s College London, Franklin-Wilkins Building, London SE1 9NH, UK; (K.M.A.); (S.B.); (A.A.Z.); (X.K.); (D.T.); (F.A.); (B.B.); (S.D.B.)
- Department of Pharmacological Sciences, Faculty of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Xenia Kodji
- Section of Vascular Biology and Inflammation, BHF Cardiovascular Centre of Research Excellence, School of Cardiovascular Medicine and Sciences, King’s College London, Franklin-Wilkins Building, London SE1 9NH, UK; (K.M.A.); (S.B.); (A.A.Z.); (X.K.); (D.T.); (F.A.); (B.B.); (S.D.B.)
| | - Dibesh Thapa
- Section of Vascular Biology and Inflammation, BHF Cardiovascular Centre of Research Excellence, School of Cardiovascular Medicine and Sciences, King’s College London, Franklin-Wilkins Building, London SE1 9NH, UK; (K.M.A.); (S.B.); (A.A.Z.); (X.K.); (D.T.); (F.A.); (B.B.); (S.D.B.)
| | - Fulye Argunhan
- Section of Vascular Biology and Inflammation, BHF Cardiovascular Centre of Research Excellence, School of Cardiovascular Medicine and Sciences, King’s College London, Franklin-Wilkins Building, London SE1 9NH, UK; (K.M.A.); (S.B.); (A.A.Z.); (X.K.); (D.T.); (F.A.); (B.B.); (S.D.B.)
| | - Brentton Barrett
- Section of Vascular Biology and Inflammation, BHF Cardiovascular Centre of Research Excellence, School of Cardiovascular Medicine and Sciences, King’s College London, Franklin-Wilkins Building, London SE1 9NH, UK; (K.M.A.); (S.B.); (A.A.Z.); (X.K.); (D.T.); (F.A.); (B.B.); (S.D.B.)
| | - Istvan Nagy
- Nociception Group, Section of Anaesthetic, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Imperial College London, London SW7 2AZ, UK;
| | - Susan D. Brain
- Section of Vascular Biology and Inflammation, BHF Cardiovascular Centre of Research Excellence, School of Cardiovascular Medicine and Sciences, King’s College London, Franklin-Wilkins Building, London SE1 9NH, UK; (K.M.A.); (S.B.); (A.A.Z.); (X.K.); (D.T.); (F.A.); (B.B.); (S.D.B.)
| |
Collapse
|
25
|
Maggi F, Morelli MB, Nabissi M, Marinelli O, Zeppa L, Aguzzi C, Santoni G, Amantini C. Transient Receptor Potential (TRP) Channels in Haematological Malignancies: An Update. Biomolecules 2021; 11:biom11050765. [PMID: 34065398 PMCID: PMC8160608 DOI: 10.3390/biom11050765] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/17/2021] [Accepted: 05/17/2021] [Indexed: 02/07/2023] Open
Abstract
Transient receptor potential (TRP) channels are improving their importance in different cancers, becoming suitable as promising candidates for precision medicine. Their important contribution in calcium trafficking inside and outside cells is coming to light from many papers published so far. Encouraging results on the correlation between TRP and overall survival (OS) and progression-free survival (PFS) in cancer patients are available, and there are as many promising data from in vitro studies. For what concerns haematological malignancy, the role of TRPs is still not elucidated, and data regarding TRP channel expression have demonstrated great variability throughout blood cancer so far. Thus, the aim of this review is to highlight the most recent findings on TRP channels in leukaemia and lymphoma, demonstrating their important contribution in the perspective of personalised therapies.
Collapse
Affiliation(s)
- Federica Maggi
- Department of Molecular Medicine, Sapienza University, 00185 Rome, Italy;
- Immunopathology Laboratory, School of Pharmacy, University of Camerino, 62032 Camerino, Italy; (M.B.M.); (M.N.); (O.M.); (L.Z.); (C.A.); (G.S.)
| | - Maria Beatrice Morelli
- Immunopathology Laboratory, School of Pharmacy, University of Camerino, 62032 Camerino, Italy; (M.B.M.); (M.N.); (O.M.); (L.Z.); (C.A.); (G.S.)
| | - Massimo Nabissi
- Immunopathology Laboratory, School of Pharmacy, University of Camerino, 62032 Camerino, Italy; (M.B.M.); (M.N.); (O.M.); (L.Z.); (C.A.); (G.S.)
| | - Oliviero Marinelli
- Immunopathology Laboratory, School of Pharmacy, University of Camerino, 62032 Camerino, Italy; (M.B.M.); (M.N.); (O.M.); (L.Z.); (C.A.); (G.S.)
| | - Laura Zeppa
- Immunopathology Laboratory, School of Pharmacy, University of Camerino, 62032 Camerino, Italy; (M.B.M.); (M.N.); (O.M.); (L.Z.); (C.A.); (G.S.)
| | - Cristina Aguzzi
- Immunopathology Laboratory, School of Pharmacy, University of Camerino, 62032 Camerino, Italy; (M.B.M.); (M.N.); (O.M.); (L.Z.); (C.A.); (G.S.)
| | - Giorgio Santoni
- Immunopathology Laboratory, School of Pharmacy, University of Camerino, 62032 Camerino, Italy; (M.B.M.); (M.N.); (O.M.); (L.Z.); (C.A.); (G.S.)
| | - Consuelo Amantini
- Immunopathology Laboratory, School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy
- Correspondence: ; Tel.: +30-0737403312
| |
Collapse
|
26
|
Canonical transient receptor potential channels and their modulators: biology, pharmacology and therapeutic potentials. Arch Pharm Res 2021; 44:354-377. [PMID: 33763843 PMCID: PMC7989688 DOI: 10.1007/s12272-021-01319-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 03/14/2021] [Indexed: 12/17/2022]
Abstract
Canonical transient receptor potential channels (TRPCs) are nonselective, high calcium permeability cationic channels. The TRPCs family includes TRPC1, TRPC2, TRPC3, TRPC4, TRPC5, TRPC6, and TRPC7. These channels are widely expressed in the cardiovascular and nervous systems and exist in many other human tissues and cell types, playing several crucial roles in the human physiological and pathological processes. Hence, the emergence of TRPCs modulators can help investigate these channels’ applications in health and disease. It is worth noting that the TRPCs subfamilies have structural and functional similarities, which presents a significant difficulty in screening and discovering of TRPCs modulators. In the past few years, only a limited number of selective modulators of TRPCs were detected; thus, additional research on more potent and more selective TRPCs modulators is needed. The present review focuses on the striking desired therapeutic effects of TRPCs modulators, which provides intel on the structural modification of TRPCs modulators and further pharmacological research. Importantly, TRPCs modulators can significantly facilitate future studies of TRPCs and TRPCs related diseases.
Collapse
|
27
|
Abstract
The transient receptor potential (TRP) channel superfamily is comprised of a large group of cation-permeable channels, which display an extraordinary diversity of roles in sensory signaling and are involved in plethora of animal behaviors. These channels are activated through a wide variety of mechanisms and participate in virtually every sensory modality. Modulating TRP channel activity provides an important way to regulate membrane excitability and intracellular calcium levels. This is reflected by the fact that small molecule compounds modulating different TRPs have all entered clinical trials for a variety of diseases. The role of TRPs will be further elucidated in complex diseases of the nervous, intestinal, renal, urogenital, respiratory, and cardiovascular systems in diverse therapeutic areas including pain and itch, headache, pulmonary function, oncology, neurology, visceral organs, and genetic diseases. This review focuses on recent developments in the TRP ion channel-related area and highlights evidence supporting TRP channels as promising targets for new analgesic drugs for therapeutic intervention. This review presents a variety of: (1) phylogeny aspects of TRP channels; (2) some structural and functional characteristics of TRPs; (3) a general view and short characteristics of main seven subfamilies of TRP channels; (4) the evidence for consider TRP channels as therapeutic and analgesic targets; and finally (5) further perspectives of TRP channels research.
Collapse
|
28
|
Examining the role of transient receptor potential canonical 5 (TRPC5) in osteoarthritis. OSTEOARTHRITIS AND CARTILAGE OPEN 2020; 2:100119. [PMID: 33381767 PMCID: PMC7762818 DOI: 10.1016/j.ocarto.2020.100119] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 11/02/2020] [Indexed: 01/09/2023] Open
Abstract
Introduction Osteo-arthritis (OA) involves joint degradation and usually pain; with mechanisms poorly understood and few treatment options. There is evidence that the transient receptor potential canonical 5 (TRPC5) mRNA expression is reduced in OA patients’ synovia. Here we examine the profile of TRPC5 in DRG and involvement in murine models of OA. Design TRPC5 KO mice were subjected to partial meniscectomy (PMNX) or injected with monoiodoacetate (MIA) and pain-related behaviours were determined. Knee joint pathological scores were analysed and gene expression changes in ipsilateral synovium and dorsal root ganglia (DRG) determined. c-Fos protein expression in the ipsilateral dorsal horn of the spinal cord was quantified. Results TRPC5 KO mice developed a discrete enhanced pain-related phenotype. In the MIA model, the pain-related phenotype correlated with c-Fos expression in the dorsal horn and increased expression of nerve injury markers ATF3, CSF1 and galanin in the ipsilateral DRG. There were negligible differences in the joint pathology between WT and TRPC5 KO mice, however detailed gene expression analysis determined increased expression of the mast cell marker CD117 as well as extracellular matrix remodelling proteinases MMP2, MMP13 and ADAMTS4 in MIA-treated TRPC5 KO mice. TRPC5 expression was defined to sensory subpopulations in DRG. Conclusions Deletion of TRPC5 receptor signalling is associated with exacerbation of pain-like behaviour in OA which correlates with increased expression of enzymes involved in extracellular remodelling, inflammatory cells in the synovium and increased neuronal activation and injury in DRG. Together, these results identify a modulating role for TRPC5 in OA-induced pain-like behaviours.
Collapse
|
29
|
Chen X, Sooch G, Demaree IS, White FA, Obukhov AG. Transient Receptor Potential Canonical (TRPC) Channels: Then and Now. Cells 2020; 9:E1983. [PMID: 32872338 PMCID: PMC7565274 DOI: 10.3390/cells9091983] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 12/13/2022] Open
Abstract
Twenty-five years ago, the first mammalian Transient Receptor Potential Canonical (TRPC) channel was cloned, opening the vast horizon of the TRPC field. Today, we know that there are seven TRPC channels (TRPC1-7). TRPCs exhibit the highest protein sequence similarity to the Drosophila melanogaster TRP channels. Similar to Drosophila TRPs, TRPCs are localized to the plasma membrane and are activated in a G-protein-coupled receptor-phospholipase C-dependent manner. TRPCs may also be stimulated in a store-operated manner, via receptor tyrosine kinases, or by lysophospholipids, hypoosmotic solutions, and mechanical stimuli. Activated TRPCs allow the influx of Ca2+ and monovalent alkali cations into the cytosol of cells, leading to cell depolarization and rising intracellular Ca2+ concentration. TRPCs are involved in the continually growing number of cell functions. Furthermore, mutations in the TRPC6 gene are associated with hereditary diseases, such as focal segmental glomerulosclerosis. The most important recent breakthrough in TRPC research was the solving of cryo-EM structures of TRPC3, TRPC4, TRPC5, and TRPC6. These structural data shed light on the molecular mechanisms underlying TRPCs' functional properties and propelled the development of new modulators of the channels. This review provides a historical overview of the major advances in the TRPC field focusing on the role of gene knockouts and pharmacological tools.
Collapse
Affiliation(s)
- Xingjuan Chen
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an 710072, China;
| | - Gagandeep Sooch
- The Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (G.S.); (I.S.D.)
| | - Isaac S. Demaree
- The Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (G.S.); (I.S.D.)
| | - Fletcher A. White
- The Department of Anesthesia, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Alexander G. Obukhov
- The Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (G.S.); (I.S.D.)
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
30
|
Aroke EN, Powell-Roach KL, Jaime-Lara RB, Tesfaye M, Roy A, Jackson P, Joseph PV. Taste the Pain: The Role of TRP Channels in Pain and Taste Perception. Int J Mol Sci 2020; 21:E5929. [PMID: 32824721 PMCID: PMC7460556 DOI: 10.3390/ijms21165929] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/12/2020] [Accepted: 08/16/2020] [Indexed: 12/11/2022] Open
Abstract
Transient receptor potential (TRP) channels are a superfamily of cation transmembrane proteins that are expressed in many tissues and respond to many sensory stimuli. TRP channels play a role in sensory signaling for taste, thermosensation, mechanosensation, and nociception. Activation of TRP channels (e.g., TRPM5) in taste receptors by food/chemicals (e.g., capsaicin) is essential in the acquisition of nutrients, which fuel metabolism, growth, and development. Pain signals from these nociceptors are essential for harm avoidance. Dysfunctional TRP channels have been associated with neuropathic pain, inflammation, and reduced ability to detect taste stimuli. Humans have long recognized the relationship between taste and pain. However, the mechanisms and relationship among these taste-pain sensorial experiences are not fully understood. This article provides a narrative review of literature examining the role of TRP channels on taste and pain perception. Genomic variability in the TRPV1 gene has been associated with alterations in various pain conditions. Moreover, polymorphisms of the TRPV1 gene have been associated with alterations in salty taste sensitivity and salt preference. Studies of genetic variations in TRP genes or modulation of TRP pathways may increase our understanding of the shared biological mediators of pain and taste, leading to therapeutic interventions to treat many diseases.
Collapse
Affiliation(s)
- Edwin N. Aroke
- School of Nursing, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (E.N.A.); (P.J.)
| | | | - Rosario B. Jaime-Lara
- Sensory Science and Metabolism Unit (SenSMet), National Institute of Nursing Research, National Institutes of Health, Bethesda, MD 20892, USA; (R.B.J.-L.); (M.T.); (A.R.)
| | - Markos Tesfaye
- Sensory Science and Metabolism Unit (SenSMet), National Institute of Nursing Research, National Institutes of Health, Bethesda, MD 20892, USA; (R.B.J.-L.); (M.T.); (A.R.)
| | - Abhrabrup Roy
- Sensory Science and Metabolism Unit (SenSMet), National Institute of Nursing Research, National Institutes of Health, Bethesda, MD 20892, USA; (R.B.J.-L.); (M.T.); (A.R.)
| | - Pamela Jackson
- School of Nursing, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (E.N.A.); (P.J.)
| | - Paule V. Joseph
- Sensory Science and Metabolism Unit (SenSMet), National Institute of Nursing Research, National Institutes of Health, Bethesda, MD 20892, USA; (R.B.J.-L.); (M.T.); (A.R.)
| |
Collapse
|
31
|
Chu WG, Wang FD, Sun ZC, Ma SB, Wang X, Han WJ, Wang F, Bai ZT, Wu SX, Freichel M, Xie RG, Luo C. TRPC1/4/5 channels contribute to morphine-induced analgesic tolerance and hyperalgesia by enhancing spinal synaptic potentiation and structural plasticity. FASEB J 2020; 34:8526-8543. [PMID: 32359120 DOI: 10.1096/fj.202000154rr] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 04/15/2020] [Accepted: 04/16/2020] [Indexed: 02/10/2024]
Abstract
Opioid analgesics remain the mainstay for managing intractable chronic pain, but their use is limited by detrimental side effects such as analgesic tolerance and hyperalgesia. Calcium-dependent synaptic plasticity is a key determinant in opiates tolerance and hyperalgesia. However, the exact substrates for this calcium-dependent synaptic plasticity in mediating these maladaptive processes are largely unknown. Canonical transient receptor potential 1, 4, and 5 (TRPC1, 4, 5) proteins assemble into heteromultimeric nonselective cation channels with high Ca2+ permeability and influence various neuronal functions. However, whether and how TRPC1/4/5 channels contribute to the development of opiates tolerance and hyperalgesia remains elusive. Here, we show that TRPC1/4/5 channels contribute to the generation of morphine tolerance and hyperalgesia. Chronic morphine exposure leads to upregulation of TRPC1/4/5 channels in the spinal cord. Spinally expressed TRPC1, TPRC4, and TRPC5 are required for chronic morphine-induced synaptic long-term potentiation (LTP) as well as remodeling of synaptic spines in the dorsal horn, thereby orchestrating functional and structural plasticity during the course of morphine-induced hyperalgesia and tolerance. These effects are attributed to TRPC1/4/5-mediated Ca2+ elevation in the spinal dorsal horn induced by chronic morphine treatment. This study identifies TRPC1/4/5 channels as a promising novel target to prevent the unwanted morphine tolerance and hyperalgesia.
Collapse
Affiliation(s)
- Wen-Guang Chu
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Fu-Dong Wang
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
- The Fourth Regiment, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Zhi-Chuan Sun
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Sui-Bin Ma
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Xu Wang
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
- Research Center for Resource Polypeptide Drugs & College of Life Sciences, Yanan University, Yanan, China
| | - Wen-Juan Han
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Fei Wang
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Zhan-Tao Bai
- Research Center for Resource Polypeptide Drugs & College of Life Sciences, Yanan University, Yanan, China
| | - Sheng-Xi Wu
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Marc Freichel
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
| | - Rou-Gang Xie
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Ceng Luo
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
32
|
Wen H, Gwathmey JK, Xie LH. Role of Transient Receptor Potential Canonical Channels in Heart Physiology and Pathophysiology. Front Cardiovasc Med 2020; 7:24. [PMID: 32158769 PMCID: PMC7052113 DOI: 10.3389/fcvm.2020.00024] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 02/11/2020] [Indexed: 12/13/2022] Open
Abstract
Transient receptor potential canonical (TRPC) channels are involved in the regulation of cardiac function under (patho)physiological conditions and are closely associated with the pathogenesis of cardiac hypertrophy, arrhythmias, and myocardial infarction. Understanding the molecular mechanisms and the regulatory pathway/locus of TRPC channels in related heart diseases will provide potential new concepts for designing novel drugs targeting TRPC channels. We will present the properties and regulation of TRPC channels and their roles in the development of various forms of heart disease. This article provides a brief review on the role of TRPC channels in the regulation of myocardial function as well as how TRPC channels may serve as a therapeutic target in heart failure and cardiac arrhythmias including atrial fibrillation.
Collapse
Affiliation(s)
- Hairuo Wen
- Beijing Key Laboratory, National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, Beijing, China.,Department of Cell Biology and Molecular Medicine, Rutgers University-New Jersey Medical School, Newark, NJ, United States
| | - Judith K Gwathmey
- Department of Cell Biology and Molecular Medicine, Rutgers University-New Jersey Medical School, Newark, NJ, United States
| | - Lai-Hua Xie
- Department of Cell Biology and Molecular Medicine, Rutgers University-New Jersey Medical School, Newark, NJ, United States
| |
Collapse
|
33
|
Elzamzamy OM, Penner R, Hazlehurst LA. The Role of TRPC1 in Modulating Cancer Progression. Cells 2020; 9:cells9020388. [PMID: 32046188 PMCID: PMC7072717 DOI: 10.3390/cells9020388] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/02/2020] [Accepted: 02/03/2020] [Indexed: 12/22/2022] Open
Abstract
Calcium ions (Ca2+) play an important role as second messengers in regulating a plethora of physiological and pathological processes, including the progression of cancer. Several selective and non-selective Ca2+-permeable ion channels are implicated in mediating Ca2+ signaling in cancer cells. In this review, we are focusing on TRPC1, a member of the TRP protein superfamily and a potential modulator of store-operated Ca2+ entry (SOCE) pathways. While TRPC1 is ubiquitously expressed in most tissues, its dysregulated activity may contribute to the hallmarks of various types of cancers, including breast cancer, pancreatic cancer, glioblastoma multiforme, lung cancer, hepatic cancer, multiple myeloma, and thyroid cancer. A range of pharmacological and genetic tools have been developed to address the functional role of TRPC1 in cancer. Interestingly, the unique role of TRPC1 has elevated this channel as a promising target for modulation both in terms of pharmacological inhibition leading to suppression of tumor growth and metastasis, as well as for agonistic strategies eliciting Ca2+ overload and cell death in aggressive metastatic tumor cells.
Collapse
Affiliation(s)
- Osama M Elzamzamy
- Clinical and Translational Sciences Institute, School of Medicine, West Virginia University, Morgantown, WV 26506, USA;
| | - Reinhold Penner
- The Queen’s Medical Center and University of Hawaii, Honolulu, HI 96813, USA;
| | - Lori A Hazlehurst
- Pharmaceutical Sciences, School of Pharmacy and WVU Cancer Institute, West Virginia University, Morganton, WV 26506, USA
- Correspondence: ; Tel.: +1-304-293-3398
| |
Collapse
|
34
|
Involvement of TRPC4 and 5 Channels in Persistent Firing in Hippocampal CA1 Pyramidal Cells. Cells 2020; 9:cells9020365. [PMID: 32033274 PMCID: PMC7072216 DOI: 10.3390/cells9020365] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 01/29/2020] [Accepted: 02/01/2020] [Indexed: 12/17/2022] Open
Abstract
Persistent neural activity has been observed in vivo during working memory tasks, and supports short-term (up to tens of seconds) retention of information. While synaptic and intrinsic cellular mechanisms of persistent firing have been proposed, underlying cellular mechanisms are not yet fully understood. In vitro experiments have shown that individual neurons in the hippocampus and other working memory related areas support persistent firing through intrinsic cellular mechanisms that involve the transient receptor potential canonical (TRPC) channels. Recent behavioral studies demonstrating the involvement of TRPC channels on working memory make the hypothesis that TRPC driven persistent firing supports working memory a very attractive one. However, this view has been challenged by recent findings that persistent firing in vitro is unchanged in TRPC knock out (KO) mice. To assess the involvement of TRPC channels further, we tested novel and highly specific TRPC channel blockers in cholinergically induced persistent firing in mice CA1 pyramidal cells for the first time. The application of the TRPC4 blocker ML204, TRPC5 blocker clemizole hydrochloride, and TRPC4 and 5 blocker Pico145, all significantly inhibited persistent firing. In addition, intracellular application of TRPC4 and TRPC5 antibodies significantly reduced persistent firing. Taken together these results indicate that TRPC4 and 5 channels support persistent firing in CA1 pyramidal neurons. Finally, we discuss possible scenarios causing these controversial observations on the role of TRPC channels in persistent firing.
Collapse
|
35
|
Yu M, Ledeboer MW, Daniels M, Malojcic G, Tibbitts TT, Coeffet-Le Gal M, Pan-Zhou XR, Westerling-Bui A, Beconi M, Reilly JF, Mundel P, Harmange JC. Discovery of a Potent and Selective TRPC5 Inhibitor, Efficacious in a Focal Segmental Glomerulosclerosis Model. ACS Med Chem Lett 2019; 10:1579-1585. [PMID: 31749913 DOI: 10.1021/acsmedchemlett.9b00430] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 10/22/2019] [Indexed: 12/18/2022] Open
Abstract
The nonselective Ca2+-permeable transient receptor potential (TRP) channels play important roles in diverse cellular processes, including actin remodeling and cell migration. TRP channel subfamily C, member 5 (TRPC5) helps regulate a tight balance of cytoskeletal dynamics in podocytes and is suggested to be involved in the pathogenesis of proteinuric kidney diseases, such as focal segmental glomerulosclerosis (FSGS). As such, protection of podocytes by inhibition of TRPC5 mediated Ca2+ signaling may provide a novel therapeutic approach for the treatment of proteinuric kidney diseases. Herein, we describe the identification of a novel TRPC5 inhibitor, GFB-8438, by systematic optimization of a high-throughput screening hit, pyridazinone 1. GFB-8438 protects mouse podocytes from injury induced by protamine sulfate (PS) in vitro. It is also efficacious in a hypertensive deoxycorticosterone acetate (DOCA)-salt rat model of FSGS, significantly reducing both total protein and albumin concentrations in urine.
Collapse
|
36
|
Angiotensin-II Drives Human Satellite Cells Toward Hypertrophy and Myofibroblast Trans-Differentiation by Two Independent Pathways. Int J Mol Sci 2019; 20:ijms20194912. [PMID: 31623362 PMCID: PMC6801484 DOI: 10.3390/ijms20194912] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/26/2019] [Accepted: 09/30/2019] [Indexed: 12/16/2022] Open
Abstract
Skeletal muscle regeneration is ensured by satellite cells (SC), which upon activation undergo self-renewal and myogenesis. The correct sequence of healing events may be offset by inflammatory and/or fibrotic factors able to promote fibrosis and consequent muscle wasting. Angiotensin-II (Ang) is an effector peptide of the renin angiotensin system (RAS), of which the direct role in human SCs (hSCs) is still controversial. Based on the hypertrophic and fibrogenic effects of Ang via transient receptor potential canonical (TRPC) channels in cardiac and renal tissues, we hypothesized a similar axis in hSCs. Toward this aim, we demonstrated that hSCs respond to acute Ang stimulation, dose-dependently enhancing p-mTOR, p-AKT, p-ERK1/2 and p-P38. Additionally, sub-acute Ang conditioning increased cell size and promoted trans-differentiation into myofibroblasts. To provide a mechanistic hypothesis on TRPC channel involvement in the processes, we proved that TRPC channels mediate a basal calcium entry into hSCs that is stimulated by acute Ang and strongly amplified by sub-chronic Ang conditioning. Altogether, these findings demonstrate that Ang induces a fate shift of hSCs into myofibroblasts and provide a basis to support a benefit of RAS and TRPC channel blockade to oppose muscle fibrosis.
Collapse
|
37
|
Yu S, Huang S, Ding Y, Wang W, Wang A, Lu Y. Transient receptor potential ion-channel subfamily V member 4: a potential target for cancer treatment. Cell Death Dis 2019; 10:497. [PMID: 31235786 PMCID: PMC6591233 DOI: 10.1038/s41419-019-1708-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 05/13/2019] [Accepted: 05/28/2019] [Indexed: 12/29/2022]
Abstract
The transient receptor potential ion-channel superfamily consists of nonselective cation channels located mostly on the plasma membranes of numerous animal cell types, which are closely related to sensory information transmission (e.g., vision, pain, and temperature perception), as well as regulation of intracellular Ca2+ balance and physiological activities of growth and development. Transient receptor potential ion channel subfamily V (TRPV) is one of the largest and most diverse subfamilies, including TRPV1-TRPV6 involved in the regulation of a variety of cellular functions. TRPV4 can be activated by various physical and chemical stimuli, such as heat, mechanical force, and phorbol ester derivatives participating in the maintenance of normal cellular functions. In recent years, the roles of TRPV4 in cell proliferation, differentiation, apoptosis, and migration have been extensively studied. Its abnormal expression has also been closely related to the onset and progression of multiple tumors, so TRPV4 may be a target for cancer diagnosis and treatment. In this review, we focused on the latest studies concerning the role of TRPV4 in tumorigenesis and the therapeutic potential. As evidenced by the effects on cancerogenesis, TRPV4 is a potential target for anticancer therapy.
Collapse
Affiliation(s)
- Suyun Yu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Shuai Huang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Yushi Ding
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Wei Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Aiyun Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P. R. China
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Yin Lu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P. R. China.
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, P. R. China.
| |
Collapse
|
38
|
Grant CV, Carver CM, Hastings SD, Ramachandran K, Muniswamy M, Risinger AL, Beutler JA, Mooberry SL. Triple-negative breast cancer cell line sensitivity to englerin A identifies a new, targetable subtype. Breast Cancer Res Treat 2019; 177:345-355. [PMID: 31230251 DOI: 10.1007/s10549-019-05324-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 06/15/2019] [Indexed: 11/28/2022]
Abstract
PURPOSE Triple-negative breast cancers (TNBCs) represent a heterogeneous group of tumors. The lack of targeted therapies combined with the inherently aggressive nature of TNBCs results in a higher relapse rate and poorer overall survival. We evaluated the heterogeneity of TNBC cell lines for TRPC channel expression and sensitivity to cation-disrupting drugs. METHODS The TRPC1/4/5 agonist englerin A was used to identify a group of TNBC cell lines sensitive to TRPC1/4/5 activation and intracellular cation disruption. Quantitative RT-PCR, the sulforhodamine B assay, pharmacological inhibition, and siRNA-mediated knockdown approaches were employed. Epifluorescence imaging was performed to measure intracellular Ca2+ and Na+ levels. Mitochondrial membrane potential changes were monitored by confocal imaging. RESULTS BT-549 and Hs578T cells express high levels of TRPC4 and TRPC1/4, respectively, and are exquisitely, 2000- and 430-fold, more sensitive to englerin A than other TNBC cell lines. While englerin A caused a slow Na+ and nominal Ca2+ accumulation in Hs578T cells, it elicited rapid increases in cytosolic Ca2+ levels that triggered mitochondrial depolarization in BT-549 cells. Interestingly, BT-549 and Hs578T cells were also more sensitive to digoxin as compared to other TNBC cell lines. Collectively, these data reveal TRPC1/4 channels as potential biomarkers of TNBC cell lines with dysfunctional mechanisms of cation homeostasis and therefore sensitivity to cardiac glycosides. CONCLUSIONS The sensitivity of BT-549 and Hs578T cells to englerin A and digoxin suggests a subset of TNBCs are highly susceptible to cation disruption and encourages investigation of TRPC1 and TRPC4 as potential new biomarkers of sensitivity to cardiac glycosides.
Collapse
Affiliation(s)
- Corena V Grant
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Dr, San Antonio, TX, USA
| | - Chase M Carver
- Department of Cell and Integrative Physiology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Dr, San Antonio, TX, USA
| | - Shayne D Hastings
- Department of Cell and Integrative Physiology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Dr, San Antonio, TX, USA
| | - Karthik Ramachandran
- Department of Medicine, Division of Nephrology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Dr, San Antonio, TX, USA
| | - Madesh Muniswamy
- Department of Medicine, Division of Nephrology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Dr, San Antonio, TX, USA
| | - April L Risinger
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Dr, San Antonio, TX, USA.,Mays Cancer Center, University of Texas Health Science Center at San Antonio, 7979 Wurzbach Rd, San Antonio, TX, USA
| | - John A Beutler
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Susan L Mooberry
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Dr, San Antonio, TX, USA. .,Mays Cancer Center, University of Texas Health Science Center at San Antonio, 7979 Wurzbach Rd, San Antonio, TX, USA.
| |
Collapse
|
39
|
Rubaiy HN. Treasure troves of pharmacological tools to study transient receptor potential canonical 1/4/5 channels. Br J Pharmacol 2019; 176:832-846. [PMID: 30656647 PMCID: PMC6433652 DOI: 10.1111/bph.14578] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/25/2018] [Accepted: 12/18/2018] [Indexed: 12/13/2022] Open
Abstract
Canonical or classical transient receptor potential 4 and 5 proteins (TRPC4 and TRPC5) assemble as homomers or heteromerize with TRPC1 protein to form functional nonselective cationic channels with high calcium permeability. These channel complexes, TRPC1/4/5, are widely expressed in nervous and cardiovascular systems, also in other human tissues and cell types. It is debatable that TRPC1 protein is able to form a functional ion channel on its own. A recent explosion of molecular information about TRPC1/4/5 has emerged including knowledge of their distribution, function, and regulation suggesting these three members of the TRPC subfamily of TRP channels play crucial roles in human physiology and pathology. Therefore, these ion channels represent potential drug targets for cancer, epilepsy, anxiety, pain, and cardiac remodelling. In recent years, a number of highly selective small-molecule modulators of TRPC1/4/5 channels have been identified as being potent with improved pharmacological properties. This review will focus on recent remarkable small-molecule agonists: (-)-englerin A and tonantzitlolone and antagonists: Pico145 and HC7090, of TPRC1/4/5 channels. In addition, this work highlights other recently identified modulators of these channels such as the benzothiadiazine derivative, riluzole, ML204, clemizole, and AC1903. Together, these treasure troves of agonists and antagonists of TRPC1/4/5 channels provide valuable hints to comprehend the functional importance of these ion channels in native cells and in vivo animal models. Importantly, human diseases and disorders mediated by these proteins can be studied using these compounds to perhaps initiate drug discovery efforts to develop novel therapeutic agents.
Collapse
Affiliation(s)
- Hussein N. Rubaiy
- Centre for Atherothrombosis and Metabolic Disease, Hull York Medical SchoolUniversity of HullHullUK
| |
Collapse
|