1
|
Luo Y, Li M, You J, Jiang J, Zeng M, Luo M. Regulation of vascular smooth muscle cells phenotype by metformin up-regulated miR-1/ CCND1 axis via targeting AMPK/TGF-β signaling pathway. Mol Biol Rep 2025; 52:437. [PMID: 40299098 DOI: 10.1007/s11033-025-10532-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 04/22/2025] [Indexed: 04/30/2025]
Abstract
The phenotypic switch of vascular smooth muscle cells (VSMCs), characterized by the tissue-specific expression of certain microRNAs (miRNAs), is a critical factor in the development of diabetic vascular diseases. Metformin, a widely prescribed anti-diabetic medication for type 2 diabetes treatment, activates the adenosine monophosphate-activated protein kinase (AMPK) pathway and exerts a protective effect on vascular endothelium. Although the regulatory effects of metformin on the switch of the vascular smooth muscle cell phenotype have been identified, the specific role of miRNAs in this process remains unclear. We identified a specific miR-1 in response to metformin treatment and determined its effects on both miR-1 and its targets. Subsequently, we investigated the influence of these factors on the metformin-induced phenotype switch in vascular smooth muscle cells, specifically focusing on proliferation and migration, as well as activation of the AMPK/Transforming Growth Factor (TGF-β) axis. This was achieved using various methodologies, including bioinformatics analysis, quantitative real-time polymerase chain reaction (qRT-PCR), Western blot analysis, wound scratch assays, and Cell Counting Kit-8 assays. Our findings showed that metformin upregulated miR-1, which directly targets cyclin D1 (CCND1) in VSMCs. Metformin was observed to enhance the expression of contractile phenotype proteins, including α-smooth muscle actin (α-SMA) and smooth muscle myosin heavy chain (SMMHC), while simultaneously reducing the expression of proliferative phenotype proteins such as CCND1 and proliferating cell nuclear antigen (PCNA). The inhibition of miR-1 was found to reverse the effects of metformin on the phenotypic switch of VSMCs. This occurs partly through the AMPK/TGF-β signaling pathway and inhibits the migration and proliferation of VSMCs.
Collapse
Affiliation(s)
- Yulin Luo
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Clinical Trial Research Center, Ministry of Education, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Mengting Li
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Clinical Trial Research Center, Ministry of Education, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
- Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Municipal Key Laboratory of Thrombosis and Vascular Biology, Luzhou, Sichuan, China
| | - Jingcan You
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Clinical Trial Research Center, Ministry of Education, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
- Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Municipal Key Laboratory of Thrombosis and Vascular Biology, Luzhou, Sichuan, China
| | - Jun Jiang
- Department of General Surgery (Thyroid Surgery), The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
- Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Luzhou, Sichuan, China
| | - Min Zeng
- Department of Pharmacy, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Mao Luo
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Clinical Trial Research Center, Ministry of Education, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China.
- Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.
- Municipal Key Laboratory of Thrombosis and Vascular Biology, Luzhou, Sichuan, China.
| |
Collapse
|
2
|
Tian Y, Tang X, Liu Y, Liu SY. Mendelian randomization studies of lifestyle-related risk factors for stroke: a systematic review and meta-analysis. Front Endocrinol (Lausanne) 2024; 15:1379516. [PMID: 39558973 PMCID: PMC11570884 DOI: 10.3389/fendo.2024.1379516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 10/14/2024] [Indexed: 11/20/2024] Open
Abstract
Objective Stroke risk factors often exert long-term effects, and Mendelian randomization (MR) offers significant advantages over traditional observational studies in evaluating the causal impact of these factors on stroke. This study aims to consolidate and evaluate the relationships between potential causal factors and stroke risk, drawing upon existing MR research. Methods A comprehensive search for MR studies related to stroke was conducted up to August 2023 using databases such as PubMed, Web of Science, Embase, and Scopus. This meta-analysis examines the relationships between potential causative factors and stroke risk. Both random-effects and fixed-effects models were utilized to compile the dominance ratios of various causative elements linked to stroke. The reliability of the included studies was assessed according to the Strengthening the Reporting of Observational Studies in Epidemiology incorporating Mendelian Randomization (STROBE-MR) guidelines. Results The analysis identified several risk factors for stroke, including obesity, hypertension, low-density lipoprotein cholesterol (LDL-C), chronic kidney disease (CKD), and smoking. Protective factors included high-density lipoprotein cholesterol (HDL-C), estimated glomerular filtration rate (eGFR), and educational attainment. Subgroup analysis revealed that type 2 diabetes mellitus (T2DM), diastolic blood pressure (DBP) are risk factors for ischemic stroke (IS). Conclusion This study confirms that variables such as obesity, hypertension, elevated LDL-C levels, CKD, and smoking are significantly linked to the development of stroke. Our findings provide new insights into genetic susceptibility and potential biological pathways involved in stroke development. Systematic review registration https://www.crd.york.ac.uk/PROSPERO, identifier CRD42024503049.
Collapse
Affiliation(s)
- Yi Tian
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Xin Tang
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yi Liu
- Department of Communication Sciences and Disorders, MGH Institute of Health Professions, Boston, MA, United States
| | - Shu Yi Liu
- General Practice, Chengdu Integrated Traditional Chinese Medicine (TCM) & Western Medicine Hospital, Chengdu, China
| |
Collapse
|
3
|
Wang Z, Wang S, Zhang L, Wang J, Wang R, Chen S, Shi Q, Wu H, Wang L, Li N. Two-Drug Combinations Therapy of Different Doses of Valsartan Existing Diverse Significance for Hypertensive Patients. Rev Cardiovasc Med 2023; 24:187. [PMID: 39077003 PMCID: PMC11266496 DOI: 10.31083/j.rcm2407187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 07/31/2024] Open
Abstract
Background The incidence of hypertension and clinical complications (e.g., heart, cerebrovascular and kidney injury) is increasing worldwide. It is widely known that a relatively large dose of valsartan (320 mg) could alleviate clinical complications. The current network meta-analysis assessed which drug could be combined with a relatively large dose of valsartan to control blood pressure (BP) more effectively. And which combination therapy with different dosages of valsartan did not induce excessive BP reduction with increasing dosages of valsartan. Methods The PubMed, Embase, Medline, Cochrane Library, CNKI, Wanfang, and CSTJ databases were searched from inception to October 2022 for relevant randomized controlled trials (RCTs). The search strategies included concepts related to hypertension and two-drug combination therapy of different doses of valsartan, and there were no language or data restrictions. The outcomes included adverse effects and changes in systolic BP and diastolic BP. Permanent discontinuations related to treatment were the most accurate and objective measure of adverse effects. The common adverse effects of most studies (i.e., dizziness, headache, nasopharyngitis, asthenia and urticaria) were also included. A Bayesian network meta-analysis was performed, and mean differences with 95% confidence intervals were calculated. ADDIS and STATA were used for Bayesian model network meta-calculation. Results Thirty-four RCTs were included involving 26,752 patients, and the interventions included different doses of valsartan combined with various types and doses of drugs. Among many combination therapies, the combination of valsartan 320 mg with amlodipine 10 mg (p < 0.01) had the best antihypertensive effect without significant adverse effects. Compared with valsartan 80 mg and 160 mg, valsartan 320 mg combined with hydrochlorothiazide 25 mg (p > 0.05) did not further reduce BP and was not shown to increase the incidence of adverse effects. Conclusions Combination therapy with a relatively large dose of valsartan could control BP and improve clinical complications effectively. However, for hypertensive patients with different treatment requirements, specific choices should be made regarding whether to control BP, treat clinical complications, or both.
Collapse
Affiliation(s)
- Zerong Wang
- The Second Clinical Medical College, Lanzhou University, 730000 Lanzhou, Gansu, China
| | - Shixiong Wang
- Department of Cardiac Surgery, Lanzhou University Second Hospital, 730030 Lanzhou, Gansu, China
| | - Liqiong Zhang
- The Second Clinical Medical College, Lanzhou University, 730000 Lanzhou, Gansu, China
| | - Jiaxuan Wang
- The Second Clinical Medical College, Lanzhou University, 730000 Lanzhou, Gansu, China
| | - Rong Wang
- The Second Clinical Medical College, Lanzhou University, 730000 Lanzhou, Gansu, China
| | - Shude Chen
- The Second Clinical Medical College, Lanzhou University, 730000 Lanzhou, Gansu, China
| | - Qiling Shi
- The Second Clinical Medical College, Lanzhou University, 730000 Lanzhou, Gansu, China
| | - Hongye Wu
- The Second Clinical Medical College, Lanzhou University, 730000 Lanzhou, Gansu, China
| | - Liuyang Wang
- The Second Clinical Medical College, Lanzhou University, 730000 Lanzhou, Gansu, China
| | - Ningyin Li
- Cardiovascular Department, Lanzhou University Second Hospital, 730030 Lanzhou, Gansu, China
| |
Collapse
|
4
|
Serum microRNAs in Systemic Sclerosis, Associations with Digital Vasculopathy and Lung Involvement. Int J Mol Sci 2022; 23:ijms231810731. [PMID: 36142646 PMCID: PMC9503032 DOI: 10.3390/ijms231810731] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/09/2022] [Accepted: 09/12/2022] [Indexed: 11/17/2022] Open
Abstract
Background and aims: Systemic sclerosis (SSc) is an autoimmune, rare multisystem chronic disease that is still not well-understood aetiologically and is challenging diagnostically. In the literature, there are ever-increasing assumptions regarding the epigenetic mechanisms involved in SSc development; one of them is circulating microRNAs. Many of them regulate TLR pathways and are significant in autoimmune balance. The aim of this study was to determine profile expression of selected microRNAs in SSc patients, including miR-126, -132, -143, -145, -155, -181a, -29a and -3148, in comparison to healthy controls. Methods: Serum microRNAs were isolated from 45 patients with SSc and 57 healthy donors (HC). Additionally, SSc patients were considered in the aspect of disease subtype, including diffuse systemic sclerosis (dcSSc) and limited systemic sclerosis (lcSSc). Results: miR-3148 was detected neither in the serum of HC nor in SSc patients. All of the rest of the analyzed microRNAs, excluding miR-126, miR-29a and miR-181a, were significantly upregulated in SSc patients in comparison to HC. However, miR-181a has been revealed only in the serum of patients with lcSSc but not dcSSc. Moderate positive correlations between the transfer factor of the lung for carbon monoxide (TLCO) and miR-126 and miR-145 were observed. A significant correlation has been found between serum miR-143 level and forced vital capacity (FVC). SSc patients with FVC ≤ 70% were characterized by significantly lower levels of miR-143 compared to patients with normal FVC. Additionally, the expression of miR-132 was significantly higher in dcSSc subgroup with detected active lung lesions compared to dcSSc patients with fibrotic lesions. Patients with an early scleroderma pattern of microangiopathy seen on nailfold video-capillaroscopy (NVC) revealed higher expression of miR-155 in serum than those with a late pattern. Conclusions: The expression profile of circulating cell-free miRNAs is significantly changed in the serum of SSc patients compared to healthy individuals. Downregulation of miRNA-181a and overexpression of miR-132, miR-143, miR-145 and miR-155 in serum may be significant in SSc in the context of biomarkers.
Collapse
|
5
|
Song L, Feng Y, Tian F, Liu X, Jin S, Wang C, Tang W, Duan J, Guo N, Shen X, Hu J, Zou H, Gu W, Liu K, Pang L. Integrated Microarray for Identifying the Hub mRNAs and Constructed MiRNA-mRNA Network in Coronary In-stent Restenosis. Physiol Genomics 2022; 54:371-379. [PMID: 35968900 DOI: 10.1152/physiolgenomics.00089.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
As a major complication after percutaneous coronary intervention (PCI) in patients who suffer from coronary artery disease, in-stent restenosis (ISR) poses a significant challenge for clinical management. A miRNA-mRNA regulatory network of ISR can be constructed to better reveal the occurrence of ISR. The relevant dataset from the Gene Expression Omnibus (GEO) database was downloaded, and 284 differentially expressed miRNAs (DE-miRNAs) and 849 differentially expressed mRNAs (DE-mRNAs) were identified. As predicted by online tools, 65 final functional genes (FmRNAs) were overlapping DE-mRNAs and DE-miRNAs target genes. In the biological process (BP) terms of Gene Ontology (GO) functional analysis, the FmRNAs were mainly enriched in cellular response to peptide, epithelial cell proliferation and response to peptide hormone. In the Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, the FmRNAs were mainly enriched in breast cancer, endocrine resistance and cushing syndrome. Jun Proto-Oncogene, AP-1 Transcription Factor Subunit (JUN), Insulin Like Growth Factor 1 Receptor (IGF1R), Member RAS Oncogene Family (RAB14), Specificity Protein 1 (SP1), Protein Tyrosine Phosphatase Non-Receptor Type1(PTPN1), DDB1 And CUL4 Associated Factor 10 (DCAF10), Retinoblastoma-Binding Protein 5 (RBBP5) and Eukaryotic Initiation Factor 4A-I (EIF4A1) were hub genes in the protein-protein interaction network (PPI network). The miRNA-mRNA network containing DE-miRNA and hub genes was built. Hsa-miR-139-5p-JUN, hsa-miR-324-5p-SP1 axis pairs were found in the miRNA-mRNA network, which could promote ISR development. The above results indicate that the miRNA-mRNA network constructed in ISR has a regulatory role in the development of ISR, and may provide new approaches for clinical treatment and experimental development.
Collapse
Affiliation(s)
- Linghong Song
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases (First Affiliated Hospital, School of Medicine, Shihezi University);Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Yufei Feng
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases (First Affiliated Hospital, School of Medicine, Shihezi University); Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, China
| | - Feng Tian
- Department of neurology, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, 832002, Xinjiang, China, Department of neurology, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, 832002, Xinjiang, China, Shihezi, China
| | - Xiaoang Liu
- Shihezi University School of Pharmacy, Shihezi , China
| | - Shan Jin
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases (First Affiliated Hospital, School of Medicine,Shihezi University); Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Chengyan Wang
- Shihezi University School of Medicine, NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases (First Affiliated Hospital, School of Medicine, Shihezi University) / Department of Pathology and Key Laborator, Shihezi, China, China
| | - Wuyue Tang
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases (First Affiliated Hospital, School of Medicine, Shihezi University); Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, China
| | - Juncang Duan
- grid.452555.6Department of Cardiology, Jinhua Municipal Central Hospital, Jinhua, China
| | - Na Guo
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases (First Affiliated Hospital, School of Medicine, Shihezi University); Department of Pathology and Key Laboratory, Shihezi, China
| | - Xihua Shen
- grid.411680.aNHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases (First Affiliated Hospital, School of Medicine, Shihezi University); Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, China
| | - Jianming Hu
- grid.411680.aNHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases (First Affiliated Hospital, School of Medicine, Shihezi University); Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, China
| | - Hong Zou
- grid.411680.aNHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases (First Affiliated Hospital, School of Medicine, Shihezi University); Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, China
| | - Wenyi Gu
- Australian Institute for Bioengineering and Nanotechnology, the University of Queensland, St Lucia, Australia
| | - Kejian Liu
- grid.411680.aDepartment of Cardiology, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, China
| | - Lijuan Pang
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases (First Affiliated Hospital, School of Medicine, Shihezi University); Department of Pathology and Key Laboratory, NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases (First Affiliated Hospital, School of Medicine, Shihezi University); Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| |
Collapse
|
6
|
Chatzopoulou F, Kyritsis KA, Papagiannopoulos CI, Galatou E, Mittas N, Theodoroula NF, Papazoglou AS, Karagiannidis E, Chatzidimitriou M, Papa A, Sianos G, Angelis L, Chatzidimitriou D, Vizirianakis IS. Dissecting miRNA–Gene Networks to Map Clinical Utility Roads of Pharmacogenomics-Guided Therapeutic Decisions in Cardiovascular Precision Medicine. Cells 2022; 11:cells11040607. [PMID: 35203258 PMCID: PMC8870388 DOI: 10.3390/cells11040607] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/29/2022] [Accepted: 01/31/2022] [Indexed: 02/04/2023] Open
Abstract
MicroRNAs (miRNAs) create systems networks and gene-expression circuits through molecular signaling and cell interactions that contribute to health imbalance and the emergence of cardiovascular disorders (CVDs). Because the clinical phenotypes of CVD patients present a diversity in their pathophysiology and heterogeneity at the molecular level, it is essential to establish genomic signatures to delineate multifactorial correlations, and to unveil the variability seen in therapeutic intervention outcomes. The clinically validated miRNA biomarkers, along with the relevant SNPs identified, have to be suitably implemented in the clinical setting in order to enhance patient stratification capacity, to contribute to a better understanding of the underlying pathophysiological mechanisms, to guide the selection of innovative therapeutic schemes, and to identify innovative drugs and delivery systems. In this article, the miRNA–gene networks and the genomic signatures resulting from the SNPs will be analyzed as a method of highlighting specific gene-signaling circuits as sources of molecular knowledge which is relevant to CVDs. In concordance with this concept, and as a case study, the design of the clinical trial GESS (NCT03150680) is referenced. The latter is presented in a manner to provide a direction for the improvement of the implementation of pharmacogenomics and precision cardiovascular medicine trials.
Collapse
Affiliation(s)
- Fani Chatzopoulou
- Laboratory of Microbiology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (F.C.); (A.P.); (D.C.)
- Labnet Laboratories, Department of Molecular Biology and Genetics, 54638 Thessaloniki, Greece
| | - Konstantinos A. Kyritsis
- Laboratory of Pharmacology, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (K.A.K.); (C.I.P.); (N.F.T.)
| | - Christos I. Papagiannopoulos
- Laboratory of Pharmacology, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (K.A.K.); (C.I.P.); (N.F.T.)
| | - Eleftheria Galatou
- Department of Life & Health Sciences, University of Nicosia, Nicosia 1700, Cyprus;
| | - Nikolaos Mittas
- Department of Chemistry, International Hellenic University, 65404 Kavala, Greece;
| | - Nikoleta F. Theodoroula
- Laboratory of Pharmacology, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (K.A.K.); (C.I.P.); (N.F.T.)
| | - Andreas S. Papazoglou
- 1st Cardiology Department, AHEPA University General Hospital of Thessaloniki, 54636 Thessaloniki, Greece; (A.S.P.); (E.K.); (G.S.)
| | - Efstratios Karagiannidis
- 1st Cardiology Department, AHEPA University General Hospital of Thessaloniki, 54636 Thessaloniki, Greece; (A.S.P.); (E.K.); (G.S.)
| | - Maria Chatzidimitriou
- Department of Biomedical Sciences, School of Health Sciences, International Hellenic University, 57400 Thessaloniki, Greece;
| | - Anna Papa
- Laboratory of Microbiology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (F.C.); (A.P.); (D.C.)
| | - Georgios Sianos
- 1st Cardiology Department, AHEPA University General Hospital of Thessaloniki, 54636 Thessaloniki, Greece; (A.S.P.); (E.K.); (G.S.)
| | - Lefteris Angelis
- Department of Informatics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Dimitrios Chatzidimitriou
- Laboratory of Microbiology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (F.C.); (A.P.); (D.C.)
| | - Ioannis S. Vizirianakis
- Laboratory of Pharmacology, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (K.A.K.); (C.I.P.); (N.F.T.)
- Department of Life & Health Sciences, University of Nicosia, Nicosia 1700, Cyprus;
- Correspondence: or
| |
Collapse
|
7
|
Du T, Fang Q, Zhang Z, Zhu C, Xu R, Chen G, Wang Y. Lentinan Protects against Nonalcoholic Fatty Liver Disease by Reducing Oxidative Stress and Apoptosis via the PPARα Pathway. Metabolites 2022; 12:metabo12010055. [PMID: 35050176 PMCID: PMC8780611 DOI: 10.3390/metabo12010055] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/02/2022] [Accepted: 01/05/2022] [Indexed: 02/07/2023] Open
Abstract
Lentinan (LNT), a type of polysaccharide derived from Lentinus edodes, has manifested protective effects during liver injury and hepatocellular carcinoma, but little is known about its effects on nonalcoholic fatty liver disease (NAFLD). This study aimed to investigate whether LNT can affect the progression of NAFLD and the associated mechanisms. C57BL/6J mice were fed a normal chow diet or a high-fat diet (HFD) with or without LNT (6 mg/kg/d). AML12 cells were exposed to 200 μM palmitate acid (PA) with or without LNT (5 μg/mL). After 21 wk of the high-fat diet, LNT significantly decreased plasma triglyceride levels and liver lipid accumulation, reduced excessive reactive oxygen species production, and subsequently attenuated hepatic apoptosis in NAFLD mice. These effects were associated with increased PPARα levels, a decreased Bax/Bcl-2 ratio, and enhancement of the antioxidant defense system in vivo. Similar effects were also observed in cultured cells. More importantly, these protective effects of LNT on palmitate acid-treated AML12 cells were almost abolished by PPARα knockdown. In conclusion, this study demonstrates that LNT may ameliorate hepatic steatosis and decrease oxidative stress and apoptosis by activating the PPARα pathway and is a potential drug target for NAFLD.
Collapse
Affiliation(s)
- Tingyi Du
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (T.D.); (Q.F.); (Z.Z.); (C.Z.)
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Qin Fang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (T.D.); (Q.F.); (Z.Z.); (C.Z.)
| | - Zhihao Zhang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (T.D.); (Q.F.); (Z.Z.); (C.Z.)
| | - Chuanmeng Zhu
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (T.D.); (Q.F.); (Z.Z.); (C.Z.)
| | - Renfan Xu
- Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China;
| | - Guangzhi Chen
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (T.D.); (Q.F.); (Z.Z.); (C.Z.)
- Correspondence: (G.C.); (Y.W.); Tel./Fax: +86-27-6937-8422 (G.C. & Y.W.)
| | - Yan Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (T.D.); (Q.F.); (Z.Z.); (C.Z.)
- Correspondence: (G.C.); (Y.W.); Tel./Fax: +86-27-6937-8422 (G.C. & Y.W.)
| |
Collapse
|
8
|
Mao L, Yin R, Yang L, Zhao D. Role of advanced glycation end products on vascular smooth muscle cells under diabetic atherosclerosis. Front Endocrinol (Lausanne) 2022; 13:983723. [PMID: 36120471 PMCID: PMC9470882 DOI: 10.3389/fendo.2022.983723] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/11/2022] [Indexed: 11/30/2022] Open
Abstract
Atherosclerosis (AS) is a chronic inflammatory disease and leading cause of cardiovascular diseases. The progression of AS is a multi-step process leading to high morbidity and mortality. Hyperglycemia, dyslipidemia, advanced glycation end products (AGEs), inflammation and insulin resistance which strictly involved in diabetes are closely related to the pathogenesis of AS. A growing number of studies have linked AGEs to AS. As one of the risk factors of cardiac metabolic diseases, dysfunction of VSMCs plays an important role in AS pathogenesis. AGEs are increased in diabetes, participate in the occurrence and progression of AS through multiple molecular mechanisms of vascular cell injury. As the main functional cells of vascular, vascular smooth muscle cells (VSMCs) play different roles in each stage of atherosclerotic lesions. The interaction between AGEs and receptor for AGEs (RAGE) accelerates AS by affecting the proliferation and migration of VSMCs. In addition, increasing researches have reported that AGEs promote osteogenic transformation and macrophage-like transformation of VSMCs, and affect the progression of AS through other aspects such as autophagy and cell cycle. In this review, we summarize the effect of AGEs on VSMCs in atherosclerotic plaque development and progression. We also discuss the AGEs that link AS and diabetes mellitus, including oxidative stress, inflammation, RAGE ligands, small noncoding RNAs.
Collapse
Affiliation(s)
| | | | | | - Dong Zhao
- *Correspondence: Longyan Yang, ; Dong Zhao,
| |
Collapse
|
9
|
Liang D, Wen Z, Han W, Li W, Pan L, Zhang R. Curcumin protects against inflammation and lung injury in rats with acute pulmonary embolism with the involvement of microRNA-21/PTEN/NF-κB axis. Mol Cell Biochem 2021; 476:2823-2835. [PMID: 33730297 DOI: 10.1007/s11010-021-04127-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 03/04/2021] [Indexed: 02/08/2023]
Abstract
This study was intended to investigate the effect of Curcumin on acute pulmonary embolism (APE) via microRNA-21 (miR-21)/PTEN/NF-κB axis. APE model was induced on rats and administrated with Curcumin. Western blot analysis and RT-qPCR manifested the downregulation of Sp1, miR-21 and NF-κB, but the upregulation of PTEN in Curcumin-treated APE rats. Blood gas analysis, ELISA, and weighing of wet weight/dry weight (W/D) ratio indicated that Curcumin diminished mPAP and RVSP levels, W/D ratio, thrombus volume, and inflammatory factors in the lungs of APE rats. Further mechanical analysis was conducted by dual-luciferase reporter assays and ChIP assay, which showed that Sp1 increased miR-21 expression by binding to the miR-21 promoter, and that PTEN was targeted by miR-21. The APE rats were injected with adenovirus to evaluate the effect of Sp1, miR-21, or PTEN on lung injury and inflammation. It was observed that downregulation of miR-21 or Sp1, or upregulation of PTEN diminished mPAP and RVSP levels, W/D ratio, thrombus volume, and inflammatory factors in the lungs of APE rats. In summary, Curcumin decreased miR-21 expression by downregulating Sp1 to upregulate PTEN and to impair the NF-κB signaling pathway, thus suppressing lung injury and inflammation in APE rats.
Collapse
Affiliation(s)
- Dean Liang
- Department of Vascular Surgery, Luoyang Central Hospital Affiliated To Zhengzhou University, Luoyang, 471009, Henan, People's Republic of China
| | - Zhiguo Wen
- Department of Vascular Surgery, Luoyang Central Hospital Affiliated To Zhengzhou University, Luoyang, 471009, Henan, People's Republic of China
| | - Wanli Han
- Department of Vascular Surgery, Luoyang Central Hospital Affiliated To Zhengzhou University, Luoyang, 471009, Henan, People's Republic of China
| | - Wenming Li
- Department of Vascular Surgery, Luoyang Central Hospital Affiliated To Zhengzhou University, Luoyang, 471009, Henan, People's Republic of China
| | - Longfei Pan
- Department of Emergency Medicine, Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, People's Republic of China
| | - Ruipeng Zhang
- Department of Vascular Surgery, Shaanxi Provincial People's Hospital, No. 256, Youyi West Road, Beilin District, Xi'an, 710068, Shaanxi, People's Republic of China.
| |
Collapse
|
10
|
Chen H, Xu X, Liu Z, Wu Y. MiR-22-3p Suppresses Vascular Remodeling and Oxidative Stress by Targeting CHD9 during the Development of Hypertension. J Vasc Res 2021; 58:180-190. [PMID: 33794525 DOI: 10.1159/000514311] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 01/06/2021] [Indexed: 11/19/2022] Open
Abstract
Hypertension is considered a risk factor for a series of systematic diseases. Known factors including genetic predisposition, age, and diet habits are strongly associated with the initiation of hypertension. The current study aimed to investigate the role of miR-22-3p in hypertension. In this study, we discovered that the miR-22-3p level was significantly decreased in the thoracic aortic vascular tissues and aortic smooth muscle cells (ASMCs) of spontaneously hypertensive rats. Functionally, the overexpression of miR-22-3p facilitated the switch of ASMCs from the synthetic to contractile phenotype. To investigate the underlying mechanism, we predicted 11 potential target mRNAs for miR-22-3p. After screening, chromodomain helicase DNA-binding 9 (CHD9) was validated to bind with miR-22-3p. Rescue assays showed that the co-overexpression of miR-22-3p and CHD9 reversed the inhibitory effect of miR-22-3p mimics on cell proliferation, migration, and oxidative stress in ASMCs. Finally, miR-22-3p suppressed vascular remodeling and oxidative stress in vivo. Overall, miR-22-3p regulated ASMC phenotype switch by targeting CHD9. This new discovery provides a potential insight into hypertension treatment.
Collapse
MESH Headings
- Animals
- Aorta, Thoracic/metabolism
- Aorta, Thoracic/pathology
- Aorta, Thoracic/physiopathology
- Cadherins/genetics
- Cadherins/metabolism
- Cell Movement
- Cell Proliferation
- Disease Models, Animal
- Gene Expression Regulation
- Hypertension/genetics
- Hypertension/metabolism
- Hypertension/pathology
- Hypertension/physiopathology
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/physiopathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Oxidative Stress
- Rats, Inbred SHR
- Rats, Sprague-Dawley
- Signal Transduction
- Vascular Remodeling
- Rats
Collapse
Affiliation(s)
- Hanqing Chen
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiru Xu
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhengqing Liu
- Department of Endocrine, Suzhou Ninth People's Hospital, Suzhou, China
| | - Yong Wu
- Department of Cardiovascular Medicine, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| |
Collapse
|
11
|
Dai B, Wang F, Nie X, Du H, Zhao Y, Yin Z, Li H, Fan J, Wen Z, Wang DW, Chen C. The Cell Type-Specific Functions of miR-21 in Cardiovascular Diseases. Front Genet 2020; 11:563166. [PMID: 33329700 PMCID: PMC7714932 DOI: 10.3389/fgene.2020.563166] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 09/18/2020] [Indexed: 12/16/2022] Open
Abstract
Cardiovascular diseases are one of the prime reasons for disability and death worldwide. Diseases and conditions, such as hypoxia, pressure overload, infection, and hyperglycemia, might initiate cardiac remodeling and dysfunction by inducing hypertrophy or apoptosis in cardiomyocytes and by promoting proliferation in cardiac fibroblasts. In the vascular system, injuries decrease the endothelial nitric oxide levels and affect the phenotype of vascular smooth muscle cells. Understanding the underlying mechanisms will be helpful for the development of a precise therapeutic approach. Various microRNAs are involved in mediating multiple pathological and physiological processes in the heart. A cardiac enriched microRNA, miR-21, which is essential for cardiac homeostasis, has been demonstrated to act as a cell–cell messenger with diverse functions. This review describes the cell type–specific functions of miR-21 in different cardiovascular diseases and its prospects in clinical therapy.
Collapse
Affiliation(s)
- Beibei Dai
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Feng Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Xiang Nie
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Hengzhi Du
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Yanru Zhao
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Zhongwei Yin
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Huaping Li
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Jiahui Fan
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Zheng Wen
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Dao Wen Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Chen Chen
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| |
Collapse
|
12
|
Ning L, Wei W, Wenyang J, Rui X, Qing G. Cytosolic DNA-STING-NLRP3 axis is involved in murine acute lung injury induced by lipopolysaccharide. Clin Transl Med 2020; 10:e228. [PMID: 33252860 PMCID: PMC7668192 DOI: 10.1002/ctm2.228] [Citation(s) in RCA: 175] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/26/2020] [Accepted: 10/30/2020] [Indexed: 12/16/2022] Open
Abstract
The role of NOD-like receptor protein 3 (NLRP3)-mediated pyroptosis in acute lung injury (ALI) has been well identified previously. Stimulator of interferon genes (STING) is an indispensable adaptor protein, which could regulate inflammation and pyroptosis during infection; however, its role in lipopolysaccharide (LPS)-induced ALI remains obscure. This study aimed to explore whether STING participated in the development of LPS-induced ALI as well as the underlying mechanism. We confirmed that LPS significantly enhanced the expression and phosphorylation of STING in lung tissue and primary macrophages from mice. STING deficiency relieved inflammation and oxidative stress in LPS-treated murine lungs and macrophages. Meanwhile, STING deficiency also abolished the activation of NLRP3 inflammasome and pyroptosis; however, NLRP3 overexpression by adenovirus offset the beneficial effects of STING deficiency in macrophages treated with LPS. Additionally, the level of mitochondrial DNA (mt-DNA) significantly increased in macrophages after LPS treatment. Intriguingly, although exogenous mt-DNA stimulation did not influence the level of STING, it could still trigger the phosphorylation of STING as well as pyroptosis, inflammation, and oxidative stress of macrophages. And the adverse effects induced by mt-DNA could be offset after STING was knocked out. Furthermore, the inhibition of the sensory receptor of cytosolic DNA (cyclic GMP-AMP synthase, cGAS) also blocked the activation of STING and NLRP3 inflammasome, meanwhile, it alleviated ALI without affecting the expression of STING after LPS challenge. Furthermore, cGAS inhibition also blocked the production of cGAMP induced by LPS, indicating that mt-DNA and cGAS could activate STING-NLRP3-mediated pyroptosis independent of the expression of STING. Finally, we found that LPS upregulated the expression of transcription factor c-Myc, which subsequently enhanced the activity of STING promoter and promoted its expression without affecting its phosphorylation. Collectively, our study disclosed that LPS could activate STING in a cytosolic DNA-dependent manner and upregulate the expression of STING in a c-Myc-dependent manner, which cooperatively contribute to ALI.
Collapse
Affiliation(s)
- Li Ning
- Department of Thoracic SurgeryRenmin Hospital of Wuhan UniversityWuhanChina
| | - Wang Wei
- Department of Thoracic SurgeryRenmin Hospital of Wuhan UniversityWuhanChina
| | - Jiang Wenyang
- Department of Thoracic SurgeryRenmin Hospital of Wuhan UniversityWuhanChina
| | - Xiong Rui
- Department of Thoracic SurgeryRenmin Hospital of Wuhan UniversityWuhanChina
| | - Geng Qing
- Department of Thoracic SurgeryRenmin Hospital of Wuhan UniversityWuhanChina
| |
Collapse
|
13
|
Shang W, Liang X, Li S, Li T, Zheng L, Shao W, Wang Y, Liu F, Ma L, Jia J. Orphan nuclear receptor Nurr1 promotes Helicobacter pylori-associated gastric carcinogenesis by directly enhancing CDK4 expression. EBioMedicine 2020; 53:102672. [PMID: 32114387 PMCID: PMC7047206 DOI: 10.1016/j.ebiom.2020.102672] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 01/18/2020] [Accepted: 01/28/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Abnormal expression of the orphan nuclear receptor Nurr1 is a critical factor in the etiology of multiple cancers. However, its potential role in gastric cancer (GC) remains elusive. In this study, we have demonstrated that the expression of Nurr1 was elevated and had an oncogenic function in GC. METHODS Nurr1 expression was analyzed in clinical specimens and the GEO database. Functions of Nurr1 in GC cells were analyzed using Nurr1 knockdown and overexpression. Various cell and molecular biological methods were used to explore the potential mechanisms of Nurr1 upregulation and its role in promoting GC. FINDINGS Overexpression of Nurr1 was directly related to the poor prognosis of GC patients. What's more, Nurr1 was induced by Helicobacter pylori (H. pylori) via the PI3K/AKT-Sp1 pathway. Sp1 enhanced Nurr1 expression by binding to its promoter to activate the transcription. Upregulated Nurr1 then directly targeted CDK4 by binding to its promoter region to increase its expression, thereby facilitated GC cells proliferation both in vitro and in vivo. INTERPRETATION We identified Nurr1 as a driving oncogenic factor in GC. In addition, Nurr1 could be used as a potential therapeutic target for the diagnosis and treatment of H. pylori-associated GC. FUNDING This work was supported by the National Natural Science Foundation of China (Nos 81801983, 81871620, 81971901, 81772151 and 81571960), and the Department of Science and Technology of Shandong Province (2018CXGC1208).
Collapse
MESH Headings
- Animals
- Carcinogenesis/genetics
- Cell Line, Tumor
- Cyclin-Dependent Kinase 4/genetics
- Cyclin-Dependent Kinase 4/metabolism
- Gene Expression Regulation, Neoplastic
- Helicobacter pylori/pathogenicity
- Humans
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Nude
- Nuclear Receptor Subfamily 4, Group A, Member 2/genetics
- Nuclear Receptor Subfamily 4, Group A, Member 2/metabolism
- Phosphatidylinositol 3-Kinases/metabolism
- Promoter Regions, Genetic
- Proto-Oncogene Proteins c-akt/metabolism
- Sp1 Transcription Factor/metabolism
- Stomach Neoplasms/genetics
- Stomach Neoplasms/metabolism
- Stomach Neoplasms/microbiology
- Stomach Neoplasms/pathology
- Transcriptional Activation
- Up-Regulation
Collapse
Affiliation(s)
- Wenjing Shang
- Department of Microbiology/Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, School of Basic Medical Science, Shandong University, Jinan, Shandong 250012, PR China; Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Science, Shandong University, Jinan, Shandong 250012, PR China
| | - Xiuming Liang
- Department of Microbiology/Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, School of Basic Medical Science, Shandong University, Jinan, Shandong 250012, PR China; Shandong University-Karolinska Institute Collaborative Laboratory for Cancer Research, Jinan, Shandong 250012, PR China
| | - Shuyan Li
- Department of Microbiology/Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, School of Basic Medical Science, Shandong University, Jinan, Shandong 250012, PR China
| | - Tongyu Li
- Department of Microbiology/Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, School of Basic Medical Science, Shandong University, Jinan, Shandong 250012, PR China
| | - Lixin Zheng
- Department of Microbiology/Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, School of Basic Medical Science, Shandong University, Jinan, Shandong 250012, PR China
| | - Wei Shao
- Department of Microbiology/Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, School of Basic Medical Science, Shandong University, Jinan, Shandong 250012, PR China
| | - Yue Wang
- Department of Microbiology/Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, School of Basic Medical Science, Shandong University, Jinan, Shandong 250012, PR China
| | - Fen Liu
- Department of Microbiology/Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, School of Basic Medical Science, Shandong University, Jinan, Shandong 250012, PR China
| | - Lin Ma
- Department of Microbiology/Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, School of Basic Medical Science, Shandong University, Jinan, Shandong 250012, PR China; Qianfoshan Hospital, Jinan, Shandong 250012, PR China.
| | - Jihui Jia
- Department of Microbiology/Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, School of Basic Medical Science, Shandong University, Jinan, Shandong 250012, PR China; Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Science, Shandong University, Jinan, Shandong 250012, PR China; Shandong University-Karolinska Institute Collaborative Laboratory for Cancer Research, Jinan, Shandong 250012, PR China.
| |
Collapse
|
14
|
Ren W, Liang L, Li Y, Wei FY, Mu N, Zhang L, He W, Cao Y, Xiong D, Li H. Upregulation of miR‑423 improves autologous vein graft restenosis via targeting ADAMTS‑7. Int J Mol Med 2020; 45:532-542. [PMID: 31894258 PMCID: PMC6984782 DOI: 10.3892/ijmm.2019.4419] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 10/31/2019] [Indexed: 12/20/2022] Open
Abstract
Coronary artery bypass graft (CABG) is one of the primary methods of treating coronary heart disease (CHD); however, vein graft restenosis is a major limiting factor of the effectiveness of CABG. Emerging evidence has indicated that miR‑423 is associated with vascular diseases. Additionally, upregulation of a disintegrin and metalloproteinase with thrombospondin motifs‑7 (ADAMTS‑7) contributes to neointima formation by promoting the proliferation and migration of vascular smooth muscle cells and inhibiting the proliferation and migration of endothelial cells. The aim of the present study was to examine the effects of miR‑423 target, ADAMTS‑7, on regulating vein graft disease and identify novel biomarkers for use in therapy of vein graft failure (VGF). Aberrant expression of miR‑423 in plasma of patients with CHD prior to and following CABG confirms that miR‑423 may be a suitable target for preventing VGF. Furthermore, a dual‑luciferase reporter gene assay indicated that miR‑423 directly interacted with ADAMTS‑7 and suppressed its expression. Ectopic expression of miR‑423 suppressed ADAMTS‑7, resulting in decreased proliferation and migration rates of human umbilical vein smooth muscle cells by targeting ADAMTS‑7, but resulted in increased proliferation and migration of human umbilical vein endothelial cells in vitro. Overexpression of miR‑423 also enhanced re‑endothelialization and decreased neointimal formation in a rat vein graft model. In conclusion, the results of the present study demonstrated that the miR‑423/ADAMTS‑7 axis may possess potential clinical value for the prevention and treatment of restenosis in patients with CHD following CABG.
Collapse
Affiliation(s)
- Wenjun Ren
- Department of Cardiovascular Surgery, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan 650000, P.R. China
| | - Liwen Liang
- Department of Cardiology, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan 650000, P.R. China
| | - Yongwu Li
- Department of Cardiovascular Surgery, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan 650000, P.R. China
| | - Fei-Yu Wei
- Department of Cardiology, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan 650000, P.R. China
| | - Ninghui Mu
- Department of Geriatrics/General Medical Science, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan 650000, P.R. China
| | - Libin Zhang
- Department of Thoracic Surgery, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan 650000, P.R. China
| | - Wei He
- Department of Medical Services, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan 650000, P.R. China
| | - Yu Cao
- Department of Cardiovascular Surgery, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan 650000, P.R. China
| | - Da Xiong
- Department of Cardiovascular Surgery, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan 650000, P.R. China
| | - Hongrong Li
- Department of Cardiovascular Surgery, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan 650000, P.R. China
| |
Collapse
|
15
|
Fang Q, Tian M, Wang F, Zhang Z, Du T, Wang W, Yang Y, Li X, Chen G, Xiao L, Wei H, Wang Y, Chen C, Wang DW. Amlodipine induces vasodilation via Akt2/Sp1-activated miR-21 in smooth muscle cells. Br J Pharmacol 2019; 176:2306-2320. [PMID: 30927374 DOI: 10.1111/bph.14679] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 02/15/2019] [Accepted: 03/13/2019] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND AND PURPOSE The calcium antagonist amlodipine exerts important cardioprotective effects by modulating smooth muscle and endothelial functions. However, the mechanisms underlying these effects are incompletely understood. EXPERIMENTAL APPROACH Western blotting was used to compare the expression of key genes involved in vascular smooth muscle cell (VSMC) phenotype conversion. Recombinant adeno-associated virus system was used to regulate miRNA expression in rats via tail vein. Bioinformatics was used to predict the transcriptional regulation of miR-21 upstream followed by biochemical validation using quantitative real-time polymerase chain reaction, ChIP-qPCR and EMSA assays. KEY RESULTS Only the calcium antagonist amlodipine, and no other type of anti-hypertensive drug, induced miR-21 overexpression in plasma and aortic vessels in the animal model. Real-time PCR and luciferase assays showed that amlodipine induced miR-21 overexpression in vascular smooth muscle cells. Western blot and immunofluorescence assays demonstrated that amlodipine activated Akt2, rather than Akt1, followed by activation of transcription factor Sp1, which regulated VSMC phenotype conversion via binding to the miR-21 promoter. Furthermore, bioinformatic analyses and luciferase assays demonstrated that amlodipine activated miR-21 transcription at the -2034/-2027 Sp1-binding site, which was further demonstrated by ChIP-qPCR and EMSA assays. Consistently, small-interfering RNA-mediated knockdown of Akt2 and Sp1 significantly attenuated the effects of amlodipine on miR-21 expression in smooth muscle cells. CONCLUSION AND IMPLICATIONS These results indicate that amlodipine induces smooth muscle cell differentiation via miR-21, which is regulated by p-Akt2 and Sp1 nuclear translocation, thereby providing a novel target for cardiovascular diseases.
Collapse
Affiliation(s)
- Qin Fang
- Division of Cardiology, Department of Internal Medicine, Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Min Tian
- Division of Cardiology, Department of Internal Medicine, Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Wang
- Division of Cardiology, Department of Internal Medicine, Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Zhihao Zhang
- Division of Cardiology, Department of Internal Medicine, Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Tingyi Du
- Division of Cardiology, Department of Internal Medicine, Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Wang
- Division of Cardiology, Department of Internal Medicine, Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Yong Yang
- Division of Cardiology, Department of Internal Medicine, Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Xianqing Li
- Division of Cardiology, Department of Internal Medicine, Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Guangzhi Chen
- Division of Cardiology, Department of Internal Medicine, Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Lei Xiao
- Division of Cardiology, Department of Internal Medicine, Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Haoran Wei
- Division of Cardiology, Department of Internal Medicine, Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Wang
- Division of Cardiology, Department of Internal Medicine, Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Chen Chen
- Division of Cardiology, Department of Internal Medicine, Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Dao Wen Wang
- Division of Cardiology, Department of Internal Medicine, Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|