1
|
Pain E, Snowden S, Oddy J, Shinhmar S, Alhammad YMA, King JS, Müller-Taubenberger A, Williams RSB. Pharmacological inhibition of ENT1 enhances the impact of specific dietary fats on energy metabolism gene expression. Proc Natl Acad Sci U S A 2024; 121:e2321874121. [PMID: 39207736 PMCID: PMC11388398 DOI: 10.1073/pnas.2321874121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 06/26/2024] [Indexed: 09/04/2024] Open
Abstract
Medium chain fatty acids are commonly consumed as part of diets for endurance sports and as medical treatment in ketogenic diets where these diets regulate energy metabolism and increase adenosine levels. However, the role of the equilibrative nucleoside transporter 1 (ENT1), which is responsible for adenosine transport across membranes in this process, is not well understood. Here, we investigate ENT1 activity in controlling the effects of two dietary medium chain fatty acids (decanoic and octanoic acid), employing the tractable model system Dictyostelium. We show that genetic ablation of three ENT1 orthologues unexpectedly improves cell proliferation specifically following decanoic acid treatment. This effect is not caused by increased adenosine levels triggered by both fatty acids in the presence of ENT1 activity. Instead, we show that decanoic acid increases expression of energy-related genes relevant for fatty acid β-oxidation, and that pharmacological inhibition of ENT1 activity leads to an enhanced effect of decanoic acid to increase expression of tricarboxylicacid cycle and oxidative phosphorylation components. Importantly, similar transcriptional changes have been shown in the rat hippocampus during ketogenic diet treatment. We validated these changes by showing enhanced mitochondria load and reduced lipid droplets. Thus, our data show that ENT1 regulates the medium chain fatty acid-induced increase in cellular adenosine levels and the decanoic acid-induced expression of important metabolic enzymes in energy provision, identifying a key role for ENT1 proteins in metabolic effects of medium chain fatty acids.
Collapse
Affiliation(s)
- Erwann Pain
- Centre for Biomedical Sciences, Department of Biological Sciences, School of Life Sciences and the Environment, Royal Holloway University of London, Egham TW20 OEX, United Kingdom
| | - Stuart Snowden
- Centre for Biomedical Sciences, Department of Biological Sciences, School of Life Sciences and the Environment, Royal Holloway University of London, Egham TW20 OEX, United Kingdom
| | - Joseph Oddy
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva 4 CH-1211, Switzerland
| | - Sonia Shinhmar
- Centre for Biomedical Sciences, Department of Biological Sciences, School of Life Sciences and the Environment, Royal Holloway University of London, Egham TW20 OEX, United Kingdom
| | - Yousef M A Alhammad
- Department of Biomedical Sciences, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Jason S King
- Department of Biomedical Sciences, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Annette Müller-Taubenberger
- Department of Cell Biology, Biomedical Center, Ludwig Maximilian University of Munich, Planegg-Martinsried 82152, Germany
| | - Robin S B Williams
- Centre for Biomedical Sciences, Department of Biological Sciences, School of Life Sciences and the Environment, Royal Holloway University of London, Egham TW20 OEX, United Kingdom
| |
Collapse
|
2
|
Heslop-Harrison G, Nakabayashi K, Espinosa-Ruiz A, Robertson F, Baines R, Thompson CRL, Hermann K, Alabadí D, Leubner-Metzger G, Williams RSB. Functional mechanism study of the allelochemical myrigalone A identifies a group of ultrapotent inhibitors of ethylene biosynthesis in plants. PLANT COMMUNICATIONS 2024; 5:100846. [PMID: 38460510 PMCID: PMC11211550 DOI: 10.1016/j.xplc.2024.100846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 12/21/2023] [Accepted: 02/14/2024] [Indexed: 03/11/2024]
Abstract
Allelochemicals represent a class of natural products released by plants as root, leaf, and fruit exudates that interfere with the growth and survival of neighboring plants. Understanding how allelochemicals function to regulate plant responses may provide valuable new approaches to better control plant function. One such allelochemical, Myrigalone A (MyA) produced by Myrica gale, inhibits seed germination and seedling growth through an unknown mechanism. Here, we investigate MyA using the tractable model Dictyostelium discoideum and reveal that its activity depends on the conserved homolog of the plant ethylene synthesis protein 1-aminocyclopropane-1-carboxylic acid oxidase (ACO). Furthermore, in silico modeling predicts the direct binding of MyA to ACO within the catalytic pocket. In D. discoideum, ablation of ACO mimics the MyA-dependent developmental delay, which is partially restored by exogenous ethylene, and MyA reduces ethylene production. In Arabidopsis thaliana, MyA treatment delays seed germination, and this effect is rescued by exogenous ethylene. It also mimics the effect of established ACO inhibitors on root and hypocotyl extension, blocks ethylene-dependent root hair production, and reduces ethylene production. Finally, in silico binding analyses identify a range of highly potent ethylene inhibitors that block ethylene-dependent response and reduce ethylene production in Arabidopsis. Thus, we demonstrate a molecular mechanism by which the allelochemical MyA reduces ethylene biosynthesis and identify a range of ultrapotent inhibitors of ethylene-regulated responses.
Collapse
Affiliation(s)
- George Heslop-Harrison
- Centre for Biomedical Sciences, Department of Biological Sciences, Royal Holloway University of London, Egham TW20 0EX, UK
| | - Kazumi Nakabayashi
- Centre for Plant Molecular Sciences, Department of Biological Sciences, Royal Holloway University of London, Egham TW20 0EX, UK
| | - Ana Espinosa-Ruiz
- Instituto de Biología Molecular y Celular de Plantas (CSIC-UPV), 46022 Valencia, Spain
| | - Francesca Robertson
- Centre for Biomedical Sciences, Department of Biological Sciences, Royal Holloway University of London, Egham TW20 0EX, UK; Centre for Plant Molecular Sciences, Department of Biological Sciences, Royal Holloway University of London, Egham TW20 0EX, UK
| | - Robert Baines
- Centre for Life's Origins and Evolution, Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Christopher R L Thompson
- Centre for Life's Origins and Evolution, Department of Genetics, Evolution and Environment, University College London, London, UK
| | | | - David Alabadí
- Instituto de Biología Molecular y Celular de Plantas (CSIC-UPV), 46022 Valencia, Spain
| | - Gerhard Leubner-Metzger
- Centre for Plant Molecular Sciences, Department of Biological Sciences, Royal Holloway University of London, Egham TW20 0EX, UK
| | - Robin S B Williams
- Centre for Biomedical Sciences, Department of Biological Sciences, Royal Holloway University of London, Egham TW20 0EX, UK.
| |
Collapse
|
3
|
Heslop-Harrison G, Goddard A, Williams RSB. Mutation Screening of Dictyostelium Restriction Enzyme-Mediated Integration (REMI) Libraries. Methods Mol Biol 2024; 2814:209-222. [PMID: 38954208 DOI: 10.1007/978-1-0716-3894-1_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Identifying the mechanisms of action of existing and novel drugs is essential for the development of new compounds for therapeutic and commercial use. Here we provide a technique to identify these mechanisms through isolating mutant cell lines that show resistance to drug-induced phenotypes using Dictyostelium discoideum REMI libraries. This approach provides a robust and rapid chemical-genetic screening technique that enables an unbiased approach to identify proteins and molecular pathways that control drug sensitivity. Mutations that result in drug resistance often occur in target proteins thus identifying the specific protein targets for drugs and bioactive natural products. Following the identification of a list of putative molecular targets user selected compound targets can be analyzed to confirm and validate direct inhibitory effects.
Collapse
Affiliation(s)
- George Heslop-Harrison
- Centre for Biomedical Sciences, School of Biological Sciences, Royal Holloway University of London, Egham, UK
| | - Anthony Goddard
- Centre for Biomedical Sciences, School of Biological Sciences, Royal Holloway University of London, Egham, UK
| | - Robin S B Williams
- Centre for Biomedical Sciences, School of Biological Sciences, Royal Holloway University of London, Egham, UK.
| |
Collapse
|
4
|
Schaf J, Shinhmar S, Zeng Q, Pardo OE, Beesley P, Syed N, Williams RSB. Enhanced Sestrin expression through Tanshinone 2A treatment improves PI3K-dependent inhibition of glioma growth. Cell Death Discov 2023; 9:172. [PMID: 37202382 DOI: 10.1038/s41420-023-01462-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 04/28/2023] [Accepted: 05/03/2023] [Indexed: 05/20/2023] Open
Abstract
Glioblastomas are a highly aggressive cancer type which respond poorly to current pharmaceutical treatments, thus novel therapeutic approaches need to be investigated. One such approach involves the use of the bioactive natural product Tanshinone IIA (T2A) derived from the Chinese herb Danshen, where mechanistic insight for this anti-cancer agent is needed to validate its use. Here, we employ a tractable model system, Dictyostelium discoideum, to provide this insight. T2A potently inhibits cellular proliferation of Dictyostelium, suggesting molecular targets in this model. We show that T2A rapidly reduces phosphoinositide 3 kinase (PI3K) and protein kinase B (PKB) activity, but surprisingly, the downstream complex mechanistic target of rapamycin complex 1 (mTORC1) is only inhibited following chronic treatment. Investigating regulators of mTORC1, including PKB, tuberous sclerosis complex (TSC), and AMP-activated protein kinase (AMPK), suggests these enzymes were not responsible for this effect, implicating an additional molecular mechanism of T2A. We identify this mechanism as the increased expression of sestrin, a negative regulator of mTORC1. We further show that combinatory treatment using a PI3K inhibitor and T2A gives rise to a synergistic inhibition of cell proliferation. We then translate our findings to human and mouse-derived glioblastoma cell lines, where both a PI3K inhibitor (Paxalisib) and T2A reduces glioblastoma proliferation in monolayer cultures and in spheroid expansion, with combinatory treatment significantly enhancing this effect. Thus, we propose a new approach for cancer treatment, including glioblastomas, through combinatory treatment with PI3K inhibitors and T2A.
Collapse
Affiliation(s)
- Judith Schaf
- Centre for Biomedical Sciences, School of Biological Sciences, Royal Holloway University of London, Egham, TW20 0EX, UK
| | - Sonia Shinhmar
- Centre for Biomedical Sciences, School of Biological Sciences, Royal Holloway University of London, Egham, TW20 0EX, UK
| | - Qingyu Zeng
- John Fulcher Neuro-Oncology Laboratory, Imperial College London, Hammersmith Hospital, London, UK
| | - Olivier E Pardo
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, London, UK
| | - Philip Beesley
- Centre for Biomedical Sciences, School of Biological Sciences, Royal Holloway University of London, Egham, TW20 0EX, UK
| | - Nelofer Syed
- John Fulcher Neuro-Oncology Laboratory, Imperial College London, Hammersmith Hospital, London, UK
| | - Robin S B Williams
- Centre for Biomedical Sciences, School of Biological Sciences, Royal Holloway University of London, Egham, TW20 0EX, UK.
| |
Collapse
|
5
|
Palumbo JM, Thomas BF, Budimirovic D, Siegel S, Tassone F, Hagerman R, Faulk C, O’Quinn S, Sebree T. Role of the endocannabinoid system in fragile X syndrome: potential mechanisms for benefit from cannabidiol treatment. J Neurodev Disord 2023; 15:1. [PMID: 36624400 PMCID: PMC9830713 DOI: 10.1186/s11689-023-09475-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 12/28/2022] [Indexed: 01/11/2023] Open
Abstract
Multiple lines of evidence suggest a central role for the endocannabinoid system (ECS) in the neuronal development and cognitive function and in the pathogenesis of fragile X syndrome (FXS). This review describes the ECS, its role in the central nervous system, how it is dysregulated in FXS, and the potential role of cannabidiol as a treatment for FXS. FXS is caused by deficiency or absence of the fragile X messenger ribonucleoprotein 1 (FMR1) protein, FMRP, typically due to the presence of >200 cytosine, guanine, guanine sequence repeats leading to methylation of the FMR1 gene promoter. The absence of FMRP, following FMR1 gene-silencing, disrupts ECS signaling, which has been implicated in FXS pathogenesis. The ECS facilitates synaptic homeostasis and plasticity through the cannabinoid receptor 1, CB1, on presynaptic terminals, resulting in feedback inhibition of neuronal signaling. ECS-mediated feedback inhibition and synaptic plasticity are thought to be disrupted in FXS, leading to overstimulation, desensitization, and internalization of presynaptic CB1 receptors. Cannabidiol may help restore synaptic homeostasis by acting as a negative allosteric modulator of CB1, thereby attenuating the receptor overstimulation, desensitization, and internalization. Moreover, cannabidiol affects DNA methylation, serotonin 5HT1A signal transduction, gamma-aminobutyric acid receptor signaling, and dopamine D2 and D3 receptor signaling, which may contribute to beneficial effects in patients with FXS. Consistent with these proposed mechanisms of action of cannabidiol in FXS, in the CONNECT-FX trial the transdermal cannabidiol gel, ZYN002, was associated with improvements in measures of social avoidance, irritability, and social interaction, particularly in patients who are most affected, showing ≥90% methylation of the FMR1 gene.
Collapse
Affiliation(s)
- Joseph M. Palumbo
- grid.422480.80000 0004 8307 0679Zynerba Pharmaceuticals Inc., Devon, PA USA
| | | | - Dejan Budimirovic
- grid.240023.70000 0004 0427 667XDepartments of Psychiatry and Neurogenetics, Fragile X Clinic, Kennedy Krieger Institute, Baltimore, MD USA ,grid.21107.350000 0001 2171 9311Department of Psychiatry & Behavioral Sciences-Child Psychiatry, Johns Hopkins School of Medicine, Baltimore, MD USA
| | - Steven Siegel
- grid.42505.360000 0001 2156 6853Department of Psychiatry and Behavioral Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA USA
| | - Flora Tassone
- grid.413079.80000 0000 9752 8549Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California-Davis Medical Center, Sacramento, CA USA ,grid.413079.80000 0000 9752 8549Department of Biochemistry and Molecular Medicine, School of Medicine, University of California-Davis, Sacramento, CA USA
| | - Randi Hagerman
- grid.413079.80000 0000 9752 8549Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California-Davis Medical Center, Sacramento, CA USA ,grid.27860.3b0000 0004 1936 9684Department of Pediatrics, University of California Davis School of Medicine, Sacramento, CA USA
| | - Christopher Faulk
- grid.17635.360000000419368657Department of Animal Science, University of Minnesota, St. Paul, MN USA
| | - Stephen O’Quinn
- grid.422480.80000 0004 8307 0679Zynerba Pharmaceuticals Inc., Devon, PA USA
| | - Terri Sebree
- grid.422480.80000 0004 8307 0679Zynerba Pharmaceuticals Inc., Devon, PA USA
| |
Collapse
|
6
|
Gheasuddin Y, Galea GL. Cannabidiol impairs neural tube closure in mouse whole embryo culture. Birth Defects Res 2022; 114:1186-1193. [PMID: 35416425 PMCID: PMC9790336 DOI: 10.1002/bdr2.2013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/24/2022] [Accepted: 03/30/2022] [Indexed: 12/31/2022]
Abstract
BACKGROUND Cannabidiol (CBD) is a nonpsychoactive constituent of cannabis widely available as a dietary supplement. Previous reports that it impairs the retinoid, sonic hedgehog, and folate metabolism pathways raise concern that it may impair closure of the embryonic neural tube (NT), producing NT defects including spina bifida and exencephaly. METHODS We undertook teratogenicity testing of CBD in mouse whole embryo culture. RESULTS At concentrations that do not diminish embryo viability, growth, or axial rotation, CBD dose-dependently impairs cranial NT closure, increasing the proportion of embryos that develop exencephaly. It concomitantly diminishes closure of the spinal NT, the posterior neuropore (PNP), producing longer neuropores at the end of culture which is a hallmark of spina bifida risk. Exposure to CBD does not disrupt the formation of long F-actin cables in surface ectoderm cells flanking the PNP or folding of the neuroepithelium at predictable hinge points. At the cellular level, CBD exposure does not alter proliferation or apoptosis of the spinal neuroepithelium. DISCUSSION Thus, CBD acts selectively as a neuroteratogen predisposing to spina bifida and exencephaly in mouse whole embryo culture at exposure levels not associated with overt toxicity. Large-scale testing of CBD's effects on NT closure, particularly in at-risk groups, is warranted to inform its marketing to women of childbearing age.
Collapse
Affiliation(s)
- Yosuf Gheasuddin
- Developmental Biology and CancerUCL GOS Institute of Child HealthLondonUK
| | - Gabriel L. Galea
- Developmental Biology and CancerUCL GOS Institute of Child HealthLondonUK
| |
Collapse
|
7
|
Cytotoxic Effects of Cannabidiol on Neonatal Rat Cortical Neurons and Astrocytes: Potential Danger to Brain Development. Toxins (Basel) 2022; 14:toxins14100720. [PMID: 36287988 PMCID: PMC9611593 DOI: 10.3390/toxins14100720] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/14/2022] [Accepted: 10/19/2022] [Indexed: 11/29/2022] Open
Abstract
The influence of cannabidiol (CBD) on brain development is inadequately understood. Since CBD is considered a non-intoxicating drug, it has attracted great interest concerning its potential medical applicability, including in pregnant women and children. Here, we elucidated the response of perinatal rat cortical neurons and astrocytes to CBD at submicromolar (0.1, 0.5, 1, 5 µM) concentrations attainable in humans. The effect of CBD was concentration- and time-dependent and cell-specific. In neurons, 0.1 µM CBD induced an early and transient change in mitochondrial membrane potential (ΔΨm), ATP depletion, and caspase-8 activation, followed by rapid ATP recovery and progressive activation of caspase-9 and caspase-3/7, resulting in early apoptotic cell death with reduction and shortening of dendrites, cell shrinkage, and chromatin condensation. The decrease in neuronal viability, ATP depletion, and caspase activation due to CBD exposure was prevented by transient receptor potential vanilloid 1 (TRPV1) antagonist. In astrocytes, 0.5 µM CBD caused an immediate short-term dysregulation of ΔΨm, followed by ATP depletion with transient activation of caspase-8 and progressive activation of caspase-9 and caspase-3/7, leading to early apoptosis and subsequent necroptosis. In astrocytes, both TRPV1 and cannabinoid receptor 1 (CB<sub>1</sub>) antagonists protected viability and prevented apoptosis. Given that CBD is a non-intoxicating drug, our results clearly show that this is not the case during critical periods of brain development when it can significantly interfere with the endogenous cannabinoid system.
Collapse
|
8
|
Storey CL, Williams RSB, Fisher PR, Annesley SJ. Dictyostelium discoideum: A Model System for Neurological Disorders. Cells 2022; 11:cells11030463. [PMID: 35159273 PMCID: PMC8833889 DOI: 10.3390/cells11030463] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/23/2022] [Accepted: 01/24/2022] [Indexed: 12/14/2022] Open
Abstract
Background: The incidence of neurological disorders is increasing due to population growth and extended life expectancy. Despite advances in the understanding of these disorders, curative strategies for treatment have not yet eventuated. In part, this is due to the complexities of the disorders and a lack of identification of their specific underlying pathologies. Dictyostelium discoideum has provided a useful, simple model to aid in unraveling the complex pathological characteristics of neurological disorders including Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, neuronal ceroid lipofuscinoses and lissencephaly. In addition, D. discoideum has proven to be an innovative model for pharmaceutical research in the neurological field. Scope of review: This review describes the contributions of D. discoideum in the field of neurological research. The continued exploration of proteins implicated in neurological disorders in D. discoideum may elucidate their pathological roles and fast-track curative therapeutics.
Collapse
Affiliation(s)
- Claire Louise Storey
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Bundoora 3086, Australia; (C.L.S.); (P.R.F.)
| | - Robin Simon Brooke Williams
- Centre for Biomedical Sciences, School of Biological Sciences, Royal Holloway University of London, Egham TW20 0EX, UK;
| | - Paul Robert Fisher
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Bundoora 3086, Australia; (C.L.S.); (P.R.F.)
| | - Sarah Jane Annesley
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Bundoora 3086, Australia; (C.L.S.); (P.R.F.)
- Correspondence: ; Tel.: +61-394-791-412
| |
Collapse
|
9
|
Land MH, Toth ML, MacNair L, Vanapalli SA, Lefever TW, Peters EN, Bonn-Miller MO. Effect of Cannabidiol on the Long-Term Toxicity and Lifespan in the Preclinical Model Caenorhabditis elegans. Cannabis Cannabinoid Res 2021; 6:522-527. [PMID: 33998871 PMCID: PMC8713279 DOI: 10.1089/can.2020.0103] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Introduction: Despite widespread use of cannabidiol (CBD), no lifelong toxicity study has been published to date. Caenorhabditis elegans is often used in preclinical lifelong toxicity studies, due to an estimated 60-80% of their genes having a human ortholog, and their short lifespan of ∼2-3 weeks. In this study, we examined both acute and long-term exposure studies of CBD at physiologically relevant concentrations. Materials and Methods: Acute toxicity was determined by treating day 1 adults with a wide range of CBD concentrations (0.4 μM to 4 mM) and assessing mortality and motility compared to control animals. Thermotolerance was examined by treating adult animals with CBD (0.4 μM to 4 mM) and exposing them to 37°C for 4 h, and then scoring for the number of alive animals treated with CBD compared to controls. Long-term toxicity was assessed by exposing day 1 adults to 10, 40, and 100 μM CBD until all animals perished. Control animals had no active drug exposure. Results: We report both acute and long-term exposure studies of CBD to adult C. elegans at physiologically relevant concentrations. Acute toxicity results showed that no animal died when exposed to 0.4-4000 μM CBD. The thermotolerance study showed that 40 μM CBD, but not other treatment levels, significantly increased resistance to heat stress by 141% compared to the untreated controls. Notably, whole-life exposure of C. elegans to 10-100 μM CBD revealed a maximum life extension of 18% observed at 40 μM CBD. In addition, motility analysis of the same groups revealed an increase in late-stage life activity by up to 206% compared to controls. Conclusion: These results serve as the only CBD lifelong exposure data in an in vivo model to date. While further research into the lifelong use of CBD should be carried out in mammalian models, the C. elegans model indicates a lack of long-term toxicity at physiologically relevant concentrations.
Collapse
Affiliation(s)
- M. Hunter Land
- Canopy Growth Corporation, Smiths Falls, Ontario, Canada
| | | | - Laura MacNair
- Canopy Growth Corporation, Smiths Falls, Ontario, Canada
| | - Siva A. Vanapalli
- NemaLife, Inc., Lubbock, Texas, USA
- Texas Tech University, Lubbock, Texas, USA
| | | | | | | |
Collapse
|
10
|
Decanoic Acid Stimulates Autophagy in D. discoideum. Cells 2021; 10:cells10112946. [PMID: 34831171 PMCID: PMC8616062 DOI: 10.3390/cells10112946] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/20/2021] [Accepted: 10/25/2021] [Indexed: 12/22/2022] Open
Abstract
Ketogenic diets, used in epilepsy treatment, are considered to work through reduced glucose and ketone generation to regulate a range of cellular process including autophagy induction. Recent studies into the medium-chain triglyceride (MCT) ketogenic diet have suggested that medium-chain fatty acids (MCFAs) provided in the diet, decanoic acid and octanoic acid, cause specific therapeutic effects independent of glucose reduction, although a role in autophagy has not been investigated. Both autophagy and MCFAs have been widely studied in Dictyostelium, with findings providing important advances in the study of autophagy-related pathologies such as neurodegenerative diseases. Here, we utilize this model to analyze a role for MCFAs in regulating autophagy. We show that treatment with decanoic acid but not octanoic acid induces autophagosome formation and modulates autophagic flux in high glucose conditions. To investigate this effect, decanoic acid, but not octanoic acid, was found to induce the expression of autophagy-inducing proteins (Atg1 and Atg8), providing a mechanism for this effect. Finally, we demonstrate a range of related fatty acid derivatives with seizure control activity, 4BCCA, 4EOA, and Epilim (valproic acid), also function to induce autophagosome formation in this model. Thus, our data suggest that decanoic acid and related compounds may provide a less-restrictive therapeutic approach to activate autophagy.
Collapse
|
11
|
Kim J, Choi H, Kang EK, Ji GY, Kim Y, Choi IS. In Vitro Studies on Therapeutic Effects of Cannabidiol in Neural Cells: Neurons, Glia, and Neural Stem Cells. Molecules 2021; 26:molecules26196077. [PMID: 34641624 PMCID: PMC8512311 DOI: 10.3390/molecules26196077] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/28/2021] [Accepted: 09/30/2021] [Indexed: 11/25/2022] Open
Abstract
(‒)-Cannabidiol (CBD) is one of the major phytocannabinoids extracted from the Cannabis genus. Its non-psychoactiveness and therapeutic potential, partly along with some anecdotal—if not scientific or clinical—evidence on the prevention and treatment of neurological diseases, have led researchers to investigate the biochemical actions of CBD on neural cells. This review summarizes the previously reported mechanistic studies of the CBD actions on primary neural cells at the in vitro cell-culture level. The neural cells are classified into neurons, microglia, astrocytes, oligodendrocytes, and neural stem cells, and the CBD effects on each cell type are described. After brief introduction on CBD and in vitro studies of CBD actions on neural cells, the neuroprotective capability of CBD on primary neurons with the suggested operating actions is discussed, followed by the reported CBD actions on glia and the CBD-induced regeneration from neural stem cells. A summary section gives a general overview of the biochemical actions of CBD on neural cells, with a future perspective. This review will provide a basic and fundamental, but crucial, insight on the mechanistic understanding of CBD actions on neural cells in the brain, at the molecular level, and the therapeutic potential of CBD in the prevention and treatment of neurological diseases, although to date, there seem to have been relatively limited research activities and reports on the cell culture-level, in vitro studies of CBD effects on primary neural cells.
Collapse
Affiliation(s)
- Jungnam Kim
- Department of Chemistry, KAIST, Daejeon 34141, Korea; (J.K.); (H.C.); (E.K.K.)
| | - Hyunwoo Choi
- Department of Chemistry, KAIST, Daejeon 34141, Korea; (J.K.); (H.C.); (E.K.K.)
| | - Eunhye K. Kang
- Department of Chemistry, KAIST, Daejeon 34141, Korea; (J.K.); (H.C.); (E.K.K.)
| | - Gil Yong Ji
- Cannabis Medical, Inc., Sandong-ro 433-31, Eumbong-myeon, Asan-si 31418, Korea; (G.Y.J.); (Y.K.)
| | - Youjeong Kim
- Cannabis Medical, Inc., Sandong-ro 433-31, Eumbong-myeon, Asan-si 31418, Korea; (G.Y.J.); (Y.K.)
| | - Insung S. Choi
- Department of Chemistry, KAIST, Daejeon 34141, Korea; (J.K.); (H.C.); (E.K.K.)
- Correspondence:
| |
Collapse
|
12
|
Vincent O, Antón-Esteban L, Bueno-Arribas M, Tornero-Écija A, Navas MÁ, Escalante R. The WIPI Gene Family and Neurodegenerative Diseases: Insights From Yeast and Dictyostelium Models. Front Cell Dev Biol 2021; 9:737071. [PMID: 34540850 PMCID: PMC8442847 DOI: 10.3389/fcell.2021.737071] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/12/2021] [Indexed: 02/01/2023] Open
Abstract
WIPIs are a conserved family of proteins with a characteristic 7-bladed β-propeller structure. They play a prominent role in autophagy, but also in other membrane trafficking processes. Mutations in human WIPI4 cause several neurodegenerative diseases. One of them is BPAN, a rare disease characterized by developmental delay, motor disorders, and seizures. Autophagy dysfunction is thought to play an important role in this disease but the precise pathological consequences of the mutations are not well established. The use of simple models such as the yeast Saccharomyces cerevisiae and the social amoeba Dictyostelium discoideum provides valuable information on the molecular and cellular function of these proteins, but also sheds light on possible pathways that may be relevant in the search for potential therapies. Here, we review the function of WIPIs as well as disease-causing mutations with a special focus on the information provided by these simple models.
Collapse
Affiliation(s)
- Olivier Vincent
- Instituto de Investigaciones Biomédicas Alberto Sols CSIC/UAM, Madrid, Spain
| | - Laura Antón-Esteban
- Instituto de Investigaciones Biomédicas Alberto Sols CSIC/UAM, Madrid, Spain
| | | | - Alba Tornero-Écija
- Instituto de Investigaciones Biomédicas Alberto Sols CSIC/UAM, Madrid, Spain
| | - María-Ángeles Navas
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - Ricardo Escalante
- Instituto de Investigaciones Biomédicas Alberto Sols CSIC/UAM, Madrid, Spain
| |
Collapse
|
13
|
Pain E, Shinhmar S, Williams RSB. Using Dictyostelium to Advance Our Understanding of the Role of Medium Chain Fatty Acids in Health and Disease. Front Cell Dev Biol 2021; 9:722066. [PMID: 34589488 PMCID: PMC8473879 DOI: 10.3389/fcell.2021.722066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/20/2021] [Indexed: 12/31/2022] Open
Abstract
Ketogenic diets have been utilized for many years to improve health, and as a dietary approach for the treatment of a range of diseases, where the mechanism of these low carbohydrate and high fat diets is widely considered to be through the production of metabolic products of fat breakdown, called ketones. One of these diets, the medium chain triglyceride ketogenic diet, involves high fat dietary intake in the form of medium chain fatty acids (MCFAs), decanoic and octanoic acid, and is commonly used in endurance and high intensity exercises but has also demonstrated beneficial effects in the treatment of numerous pathologies including drug resistant epilepsy, cancer, and diabetes. Recent advances, using Dictyostelium discoideum as a model, have controversially proposed several direct molecular mechanisms for decanoic acid in this diet, independent of ketone generation. Studies in this model have identified that decanoic acid reduces phosphoinositide turnover, diacylglycerol kinase (DGK) activity, and also inhibits the mechanistic target of rapamycin complex 1 (mTORC1). These discoveries could potentially impact the treatment of a range of disorders including epilepsy, cancer and bipolar disorder. In this review, we summarize the newly proposed mechanisms for decanoic acid, identified using D. discoideum, and highlight potential roles in health and disease treatment.
Collapse
Affiliation(s)
| | | | - Robin S. B. Williams
- Centre for Biomedical Sciences, School of Biological Sciences, Royal Holloway University of London, Egham, United Kingdom
| |
Collapse
|
14
|
Houston JT, Nenert R, Allendorfer JB, Bebin EM, Gaston TE, Goodman AM, Szaflarski JP. White matter integrity after cannabidiol administration for treatment resistant epilepsy. Epilepsy Res 2021; 172:106603. [PMID: 33725662 DOI: 10.1016/j.eplepsyres.2021.106603] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 02/15/2021] [Accepted: 03/05/2021] [Indexed: 01/09/2023]
Abstract
OBJECTIVE The effects of individual cannabinoids on white matter integrity are unclear. Human studies have shown white matter maturation alterations in regular recreational cannabis users with the magnitude of these effects dependent on the age of exposure. However, studies have yet to determine which phytocannabinoids are most responsible for these changes. In the current study, we analyzed the effects of pharmaceutical grade cannabidiol oral solution (CBD; Epidiolex® in the U.S.; Epidyolex® in the EU; 100 mg/mL oral solution) on white matter integrity using diffusion MRI in patients with treatment resistant epilepsy (TRE). METHODS 15 patients with TRE underwent 3 T diffusion MRI prior to receiving CBD and then again approximately 12 weeks later while on a stable dose of CBD for at least two weeks. DTI analyzes were conducted using DSI Studio and tract-based spatial statistics (TBSS). RESULTS DTI analysis using DSI Studio showed significant increases in fractional anisotropy (FA) in the right medial lemniscus (p = 0.03), right superior cerebellar peduncle (p = 0.03) and the pontine crossing tract (p = 0.04); decreased mean diffusivity (MD) in the left uncinate fasciculus (p = 0.02) and the middle cerebellar peduncle (p = 0.04); decreased axial diffusivity (AD) in the left superior cerebellar peduncle (p = 0.05), right anterior limb of the internal capsule (p = 0.03), and right posterior limb of the internal capsule (p = 0.02); and decreased radial diffusivity (RD) in the middle cerebellar peduncle (p = 0.03) and left uncinate fasiculus (p = 0.01). The follow-up ANCOVA also yielded significant results when controlling for covariates of CBD dosage, age, sex, change in seizure frequency, and scanner type: FA increased in the pontine crossing tract (p = 0.03); RD decreased in the middle cerebellar peduncle (p = 0.04) and left uncinate fasciculus (p = 0.04). Subsequent TBSS analysis controlling for the same variables yielded no significant white matter differences between groups. CONCLUSION These findings indicate relatively minor short-term effects of highly-purified plant-derived CBD on white matter structural integrity in patients with TRE.
Collapse
Affiliation(s)
- J T Houston
- Department of Neurology and UAB Epilepsy Center, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - R Nenert
- Department of Neurology and UAB Epilepsy Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - J B Allendorfer
- Department of Neurology and UAB Epilepsy Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - E M Bebin
- Department of Neurology and UAB Epilepsy Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - T E Gaston
- Department of Neurology and UAB Epilepsy Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - A M Goodman
- Department of Neurology and UAB Epilepsy Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - J P Szaflarski
- Department of Neurology and UAB Epilepsy Center, University of Alabama at Birmingham, Birmingham, AL, USA; Departments of Neurosurgery and Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
15
|
Damstra-Oddy JL, Warren EC, Perry CJ, Desfougères Y, Fitzpatrick JMK, Schaf J, Costelloe L, Hind W, Downer EJ, Saiardi A, Williams RSB. Phytocannabinoid-dependent mTORC1 regulation is dependent upon inositol polyphosphate multikinase activity. Br J Pharmacol 2021; 178:1149-1163. [PMID: 33347604 PMCID: PMC9328663 DOI: 10.1111/bph.15351] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND AND PURPOSE Cannabidiol (CBD) has been shown to differentially regulate the mechanistic target of rapamycin complex 1 (mTORC1) in preclinical models of disease, where it reduces activity in models of epilepsies and cancer and increases it in models of multiple sclerosis (MS) and psychosis. Here, we investigate the effects of phytocannabinoids on mTORC1 and define a molecular mechanism. EXPERIMENTAL APPROACH A novel mechanism for phytocannabinoids was identified using the tractable model system, Dictyostelium discoideum. Using mouse embryonic fibroblasts, we further validate this new mechanism of action. We demonstrate clinical relevance using cells derived from healthy individuals and from people with MS (pwMS). KEY RESULTS Both CBD and the more abundant cannabigerol (CBG) enhance mTORC1 activity in D. discoideum. We identify a mechanism for this effect involving inositol polyphosphate multikinase (IPMK), where elevated IPMK expression reverses the response to phytocannabinoids, decreasing mTORC1 activity upon treatment, providing new insight on phytocannabinoids' actions. We further validated this mechanism using mouse embryonic fibroblasts. Clinical relevance of this effect was shown in primary human peripheral blood mononuclear cells, where CBD and CBG treatment increased mTORC1 activity in cells derived from healthy individuals and decreased mTORC1 activity in cells derived from pwMS. CONCLUSION AND IMPLICATIONS Our findings suggest that both CBD and the abundant CBG differentially regulate mTORC1 signalling through a mechanism dependent on the activity of the upstream IPMK signalling pathway, with potential relevance to the treatment of mTOR-related disorders, including MS.
Collapse
Affiliation(s)
- Joseph L Damstra-Oddy
- Centre for Biomedical Sciences, School of Biological Sciences, Royal Holloway University of London, Egham, UK
| | - Eleanor C Warren
- Centre for Biomedical Sciences, School of Biological Sciences, Royal Holloway University of London, Egham, UK
| | - Christopher J Perry
- Centre for Biomedical Sciences, School of Biological Sciences, Royal Holloway University of London, Egham, UK
| | - Yann Desfougères
- Laboratory for Molecular Cell Biology, University College London, London, UK
| | - John-Mark K Fitzpatrick
- Discipline of Physiology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, University of Dublin, Dublin, Ireland
| | - Judith Schaf
- Centre for Biomedical Sciences, School of Biological Sciences, Royal Holloway University of London, Egham, UK
| | - Lisa Costelloe
- Department of Neurology, Beaumont Hospital, Dublin, Ireland
| | | | - Eric J Downer
- Discipline of Physiology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, University of Dublin, Dublin, Ireland
| | - Adolfo Saiardi
- Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Robin S B Williams
- Centre for Biomedical Sciences, School of Biological Sciences, Royal Holloway University of London, Egham, UK
| |
Collapse
|
16
|
Martín‐González J, Montero‐Bullón J, Lacal J. Dictyostelium discoideum as a non-mammalian biomedical model. Microb Biotechnol 2021; 14:111-125. [PMID: 33124755 PMCID: PMC7888446 DOI: 10.1111/1751-7915.13692] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 10/06/2020] [Accepted: 10/11/2020] [Indexed: 02/06/2023] Open
Abstract
Dictyostelium discoideum is one of eight non-mammalian model organisms recognized by the National Institute of Health for the study of human pathology. The use of this slime mould is possible owing to similarities in cell structure, behaviour and intracellular signalling with mammalian cells. Its haploid set of chromosomes completely sequenced amenable to genetic manipulation, its unique and short life cycle with unicellular and multicellular stages, and phenotypic richness encoding many human orthologues, make Dictyostelium a representative and simple model organism to unveil cellular processes in human disease. Dictyostelium studies within the biomedical field have provided fundamental knowledge in the areas of bacterial infection, immune cell chemotaxis, autophagy/phagocytosis and mitochondrial and neurological disorders. Consequently, Dictyostelium has been used to the development of related pharmacological treatments. Herein, we review the utilization of Dictyostelium as a model organism in biomedicine.
Collapse
Affiliation(s)
- Javier Martín‐González
- Molecular Genetics of Human Diseases GroupDepartment of Microbiology and GeneticsFaculty of BiologyUniversity of SalamancaCampus Miguel de UnamunoSalamancaE‐37007Spain
| | - Javier‐Fernando Montero‐Bullón
- Metabolic Engineering GroupDepartment of Microbiology and GeneticsUniversity of SalamancaCampus Miguel de UnamunoSalamancaE‐37007Spain
| | - Jesus Lacal
- Molecular Genetics of Human Diseases GroupDepartment of Microbiology and GeneticsFaculty of BiologyUniversity of SalamancaCampus Miguel de UnamunoSalamancaE‐37007Spain
| |
Collapse
|
17
|
Williams CM, Stephens GJ. Development of cannabidiol as a treatment for severe childhood epilepsies. Br J Pharmacol 2020; 177:5509-5517. [PMID: 32986848 DOI: 10.1111/bph.15274] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 09/16/2020] [Accepted: 09/21/2020] [Indexed: 12/17/2022] Open
Abstract
In recent years, there has been a growing appreciation by regulatory authorities that cannabis-based medicines can play a useful role in disease therapy. Although often conflagrated by proponents of recreational use, the legislative rescheduling of cannabis-derived compounds, such as cannabidiol (CBD), has been associated with the steady increase in the pursuit of use of medicinal cannabis. One key driver in this interest has been the scientific demonstration of efficacy and safety of CBD in randomised, placebo-controlled clinical trials in children and young adults with difficult-to-treat epilepsies, which has encouraged increasing numbers of human trials of CBD for other indications and in other populations. The introduction of CBD as the medicine Epidiolex in the United States (in 2018) and as Epidyolex in the European Union (in 2019) as the first cannabis-derived therapeutic for the treatment of seizures was underpinned by preclinical research performed at the University of Reading. This work was awarded the British Pharmacological Society Sir James Black Award for Contributions to Drug Discovery 2019 and is discussed in the following review article.
Collapse
Affiliation(s)
- Claire M Williams
- School of Psychology and Clinical Language Science, University of Reading, Reading, Berkshire, UK
| | - Gary J Stephens
- School of Pharmacy, University of Reading, Reading, Berkshire, UK
| |
Collapse
|
18
|
Decanoic acid inhibits mTORC1 activity independent of glucose and insulin signaling. Proc Natl Acad Sci U S A 2020; 117:23617-23625. [PMID: 32879008 PMCID: PMC7519326 DOI: 10.1073/pnas.2008980117] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The mTORC1 complex provides a critical role in cell function, regulating a variety of processes including growth and autophagy. mTORC1 signaling is hyperactivated in a range of common diseases including cancer, epilepsy, and neurodegenerative disorders. Hence, mTORC1 signaling provides an important target for regulation in many contexts. Here, we show that decanoic acid, a key component of a widely used medicinal diet, reduces mTORC1 activity. We identify this in a tractable model system, and validate it in ex vivo rat brain tissue and in human iPSC-derived astrocytes from patients with a clinically relevant disease. Thus, we provide insight into an easily accessible therapeutic approach for a range of diseases. Low-glucose and -insulin conditions, associated with ketogenic diets, can reduce the activity of the mechanistic target of rapamycin complex 1 (mTORC1) signaling pathway, potentially leading to a range of positive medical and health-related effects. Here, we determined whether mTORC1 signaling is also a target for decanoic acid, a key component of the medium-chain triglyceride (MCT) ketogenic diet. Using a tractable model system, Dictyostelium, we show that decanoic acid can decrease mTORC1 activity, under conditions of constant glucose and in the absence of insulin, measured by phosphorylation of eukaryotic translation initiation factor 4E-binding protein 1 (4E-BP1). We determine that this effect of decanoic acid is dependent on a ubiquitin regulatory X domain-containing protein, mediating inhibition of a conserved Dictyostelium AAA ATPase, p97, a homolog of the human transitional endoplasmic reticulum ATPase (VCP/p97) protein. We then demonstrate that decanoic acid decreases mTORC1 activity in the absence of insulin and under high-glucose conditions in ex vivo rat hippocampus and in tuberous sclerosis complex (TSC) patient-derived astrocytes. Our data therefore indicate that dietary decanoic acid may provide a new therapeutic approach to down-regulate mTORC1 signaling.
Collapse
|
19
|
Perry CJ, Warren EC, Damstra-Oddy JL, Storey C, Francione LM, Annesley SJ, Fisher PR, Müller-Taubenberger A, Williams RSB. A Dictyostelium discoideum mitochondrial fluorescent tagging vector that does not affect respiratory function. Biochem Biophys Rep 2020; 22:100751. [PMID: 32258439 PMCID: PMC7109396 DOI: 10.1016/j.bbrep.2020.100751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/05/2020] [Accepted: 03/10/2020] [Indexed: 02/01/2023] Open
Abstract
Visualizing mitochondria in living Dictyostelium discoideum cells using fluorescent dyes is often problematic due to variability in staining, metabolism of the dyes, and unknown potential effects of the dyes on mitochondrial function. We show that fluorescent labelling of mitochondria, using an N-terminal mitochondrial localization sequence derived from the D. discoideum protein GcvH1 (glycine cleavage system H1) attached to a red fluorescent protein enables clear mitochondrial imaging. We also show that this labelling has no effect upon mitochondria load or respiratory function.
Collapse
Affiliation(s)
- Christopher J Perry
- Centre for Biomedical Sciences, School of Biological Sciences, Royal Holloway University of London, Egham, Surrey, TW20 0EX, UK
| | - Eleanor C Warren
- Centre for Biomedical Sciences, School of Biological Sciences, Royal Holloway University of London, Egham, Surrey, TW20 0EX, UK
| | - Joseph L Damstra-Oddy
- Centre for Biomedical Sciences, School of Biological Sciences, Royal Holloway University of London, Egham, Surrey, TW20 0EX, UK
| | - Claire Storey
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, Victoria, 3086, Australia
| | - Lisa M Francione
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, Victoria, 3086, Australia
| | - Sarah J Annesley
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, Victoria, 3086, Australia
| | - Paul R Fisher
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, Victoria, 3086, Australia
| | | | - Robin S B Williams
- Centre for Biomedical Sciences, School of Biological Sciences, Royal Holloway University of London, Egham, Surrey, TW20 0EX, UK
| |
Collapse
|
20
|
Perry CJ, Finch P, Müller‐Taubenberger A, Leung K, Warren EC, Damstra‐Oddy J, Sharma D, Patra PH, Glyn S, Boberska J, Stewart B, Baldwin A, Piscitelli F, Harvey RJ, Harwood A, Thompson C, Claus SP, Greene ND, McNeish AJ, Williams CM, Whalley BJ, Williams RS. A new mechanism for cannabidiol in regulating the one-carbon cycle and methionine levels in Dictyostelium and in mammalian epilepsy models. Br J Pharmacol 2020; 177:912-928. [PMID: 31693171 PMCID: PMC7024701 DOI: 10.1111/bph.14892] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 09/06/2019] [Accepted: 09/17/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND AND PURPOSE Epidiolex™, a form of highly purified cannabidiol (CBD) derived from Cannabis plants, has demonstrated seizure control activity in patients with Dravet syndrome, without a fully elucidated mechanism of action. We have employed an unbiased approach to investigate this mechanism at a cellular level. EXPERIMENTAL APPROACH We use a tractable biomedical model organism, Dictyostelium, to identify a protein controlling the effect of CBD and characterize this mechanism. We then translate these results to a Dravet syndrome mouse model and an acute in vitro seizure model. KEY RESULTS CBD activity is partially dependent upon the mitochondrial glycine cleavage system component, GcvH1 in Dictyostelium, orthologous to the human glycine cleavage system component H protein, which is functionally linked to folate one-carbon metabolism (FOCM). Analysis of FOCM components identified a mechanism for CBD in directly inhibiting methionine synthesis. Analysis of brain tissue from a Dravet syndrome mouse model also showed drastically altered levels of one-carbon components including methionine, and an in vitro rat seizure model showed an elevated level of methionine that is attenuated following CBD treatment. CONCLUSIONS AND IMPLICATIONS Our results suggest a novel mechanism for CBD in the regulating methionine levels and identify altered one-carbon metabolism in Dravet syndrome and seizure activity.
Collapse
Affiliation(s)
- Christopher J. Perry
- Centre for Biomedical Sciences, Department of Biological SciencesRoyal Holloway University of LondonEghamUK
| | - Paul Finch
- Centre for Biomedical Sciences, Department of Biological SciencesRoyal Holloway University of LondonEghamUK
| | | | - Kit‐Yi Leung
- Development Biology and Cancer ProgramUCL Great Ormond Street Institute of Child HealthLondonUK
| | - Eleanor C. Warren
- Centre for Biomedical Sciences, Department of Biological SciencesRoyal Holloway University of LondonEghamUK
| | - Joseph Damstra‐Oddy
- Centre for Biomedical Sciences, Department of Biological SciencesRoyal Holloway University of LondonEghamUK
| | - Devdutt Sharma
- Centre for Biomedical Sciences, Department of Biological SciencesRoyal Holloway University of LondonEghamUK
| | - Pabitra H. Patra
- The School of Chemistry, Food Biosciences and PharmacyUniversity of ReadingReadingUK
| | - Sarah Glyn
- The School of Chemistry, Food Biosciences and PharmacyUniversity of ReadingReadingUK
| | - Joanna Boberska
- The School of Chemistry, Food Biosciences and PharmacyUniversity of ReadingReadingUK
| | - Balint Stewart
- Faculty of Life SciencesManchester UniversityManchesterUK
| | - Amy Baldwin
- Neuroscience and Mental Health Research InstituteCardiff UniversityCardiffUK
| | - Fabiana Piscitelli
- Institute of Biomolecular ChemistryConsiglio Nazionale delle RicercheRomeItaly
| | - Robert J. Harvey
- School of Health and Sport SciencesUniversity of the Sunshine CoastSippy DownsQLDAustralia
- Sunshine Coast Health InstituteUniversity of the Sunshine CoastBirtinyaQLDAustralia
| | - Adrian Harwood
- Neuroscience and Mental Health Research InstituteCardiff UniversityCardiffUK
| | | | - Sandrine P. Claus
- The School of Chemistry, Food Biosciences and PharmacyUniversity of ReadingReadingUK
| | - Nicholas D.E. Greene
- The School of Chemistry, Food Biosciences and PharmacyUniversity of ReadingReadingUK
| | - Alister J. McNeish
- The School of Chemistry, Food Biosciences and PharmacyUniversity of ReadingReadingUK
| | - Claire M. Williams
- The School of Chemistry, Food Biosciences and PharmacyUniversity of ReadingReadingUK
| | - Benjamin J. Whalley
- The School of Chemistry, Food Biosciences and PharmacyUniversity of ReadingReadingUK
| | - Robin S.B. Williams
- Centre for Biomedical Sciences, Department of Biological SciencesRoyal Holloway University of LondonEghamUK
| |
Collapse
|