1
|
Jiang W, Gong M, Shen L, Yu C, Ruan H, Chen P, Gao S, Xiao Z. The Receptor for Advanced Glycation End-products in the Mouse Anterior Cingulate Cortex is Involved in Neuron‒Astrocyte Coupling in Chronic Inflammatory Pain and Anxiety Comorbidity. Mol Neurobiol 2025; 62:7183-7204. [PMID: 39863743 PMCID: PMC12078453 DOI: 10.1007/s12035-025-04713-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 01/16/2025] [Indexed: 01/27/2025]
Abstract
Previous studies have shown that astrocyte activation in the anterior cingulate cortex (ACC), accompanied by upregulation of the astrocyte marker S100 calcium binding protein B (S100B), contributes to comorbid anxiety in chronic inflammatory pain (CIP), but the exact downstream mechanism is still being explored. The receptor for advanced glycation end-products (RAGE) plays an important role in chronic pain and psychosis by recognizing ligands, including S100B. Therefore, we speculate that RAGE may be involved in astrocyte regulation of the comorbidity between CIP and anxiety by recognizing S100B. Here, we investigated the potential role of RAGE and the correlation between RAGE and astrocyte regulation in the ACC using a mouse model of complete Freund's adjuvant (CFA)-induced inflammatory pain. We detected substantial upregulation of RAGE expression in ACC neurons when anxiety-like behaviors occurred in CFA-treated mice. The inhibition of RAGE expression decreased the hyperexcitability of ACC neurons and alleviated both hyperalgesia and anxiety in CFA-treated mice. Furthermore, we found that the ACC astrocytic S100B level increased over a similar time course. Intra-ACC application of S100B or downregulation of ACC astrocytic S100B via suppression of astrocyte activation significantly affected RAGE levels and the relative behaviors of CFA-treated mice. Taken together, these findings suggest that the upregulation of ACC neuronal RAGE results from the activation of astrocytic S100B and leads to the maintenance of pain perception and anxiety in the late phase after CFA injection, which may partly explain the mechanism by which ACC neuron‒astrocyte coupling promotes the maintenance of CIP and anxiety comorbidity.
Collapse
Affiliation(s)
- Wei Jiang
- Key Laboratory of Anesthesia and Organ Protection (Zunyi Medical University), Ministry of Education, Zunyi Medical University, Xinpu New District Campus No. 1 Street, Zunyi, 563000, Guizhou, China
- Department of Rehabilitation Medicine, Daping Hospital, Army Medical University, No. 10 Changjiang branch Road, Chongqing, 400042, China
| | - Minmin Gong
- Graduate School, Zunyi Medical University, Xinpu New District Campus No. 1 Street, Zunyi, 563000, Guizhou, China
- Department of Physiology, School of Preclinical Medicine Science, Zunyi Medical University, Xinpu New District Campus No. 1 Street, Zunyi, 563000, Guizhou, China
| | - Linlin Shen
- Department of Respiratory and Critical Care Medicine, Xinqiao Hospital, Army Medical University, No. 83 Xinqiao Street, Chongqing, 400037, China
| | - Chenghui Yu
- Chongqing Key Laboratory of Micro-Nano Systems and Intelligent Transduction, Chongqing Technology and Business University, Eshibaoshan, Chongqing, 400067, China
| | - Huaizhen Ruan
- Department of Neurobiology, College of Basic Medical Science, Chongqing Key Laboratory of Neurobiology, Army Medical University, No. 30 Gaotanyan Street, Chongqing, 400038, China
| | - Penghui Chen
- Department of Neurobiology, College of Basic Medical Science, Chongqing Key Laboratory of Neurobiology, Army Medical University, No. 30 Gaotanyan Street, Chongqing, 400038, China.
| | - Shihao Gao
- Department of Rehabilitation Medicine, Daping Hospital, Army Medical University, No. 10 Changjiang branch Road, Chongqing, 400042, China.
| | - Zhi Xiao
- Guizhou Key Laboratory of Brain Science, Zunyi Medical University, Xinpu New District Campus No. 1 Street, Zunyi, 563000, China.
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Xinpu New District Campus No. 1 Street, Zunyi, 563000, China.
| |
Collapse
|
2
|
Tsubota M, Sasaki K, Shin E, Okamura Y, Nishimura A, Yamagata A, Nonaka Y, Sekiguchi F, Tomono Y, Nishibori M, Okada T, Toyooka N, Kawabata A. HMGB1 derived from macrophages and enteric glial cells contributes to the butyrate-induced colonic hypersensitivity in mice. Eur J Pharmacol 2025; 999:177660. [PMID: 40274181 DOI: 10.1016/j.ejphar.2025.177660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 03/30/2025] [Accepted: 04/22/2025] [Indexed: 04/26/2025]
Abstract
High mobility group box1 (HMGB1), a nuclear protein, once acetylated by histone acetyltransferase, is released into the extracellular space, and causes pain signals, thereby contributing to pathological pain. Repeated intracolonic administration of butyrate, known to inhibit histone deacetylase (HDAC), produces colonic hypersensitivity in rodents, being widely used as models for irritable bowel syndrome (IBS). Thus, we asked whether HMGB1 would participate in the butyrate-induced colonic hypersensitivity in mice, and analyzed the underlying mechanisms. Repeated butyrate treatment caused colonic hypersensitivity to distension and intraluminal sulfide, a functional enhancer of Cav3.2 channels, in mice, which was prevented by repeated treatment with an anti-HMGB1-neutralizing antibody, thrombomodulin alfa (TMα) capable of causing thrombin-dependent degradation of HMGB1, antagonists for RAGE, TLR4 and CXCR4, membrane receptors of HMGB1, liposomal clodronate, a macrophage depletor, and ethyl pyruvate capable of inhibiting HMGB1 release from macrophages. Butyrate treatment increased the number of Iba1-positive macrophages, but not S100B-positive enteric glial cells (EGCs), and the rate of cytosolic/whole cell HMGB1 levels in both types of cells in the colonic mucosa. In macrophage-like RAW264.7 cells and EGC-like CRL-2690 cells, butyrate as well as trichostatin A, a well-known HDAC inhibitor, at the same concentrations that increased histone acetylation, evoked cytoplasmic translocation and extracellular release of nuclear HMGB1. Together, butyrate is considered to cause HMGB1 release from macrophages and EGCs most probably by inhibiting HDAC, resulting in colonic hypersensitivity in mice. HMGB1 and its membrane receptors might serve as drug targets for colonic hypersensitivity in IBS patients.
Collapse
Affiliation(s)
- Maho Tsubota
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, 577-8502, Japan
| | - Kana Sasaki
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, 577-8502, Japan
| | - Eunkyung Shin
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, 577-8502, Japan
| | - Yuta Okamura
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, 577-8502, Japan
| | - Ayaka Nishimura
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, 577-8502, Japan
| | - Ayumu Yamagata
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, 577-8502, Japan
| | - Yui Nonaka
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, 577-8502, Japan
| | - Fumiko Sekiguchi
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, 577-8502, Japan
| | - Yasuko Tomono
- Department of Translational Research and Drug Development, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Okayama, 700-8558, Japan
| | - Masahiro Nishibori
- Department of Translational Research and Drug Development, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Okayama, 700-8558, Japan
| | - Takuya Okada
- Faculty of Engineering, University of Toyama, 3190 Gofuku, Toyama, 930-8555, Japan
| | - Naoki Toyooka
- Faculty of Engineering, University of Toyama, 3190 Gofuku, Toyama, 930-8555, Japan
| | - Atsufumi Kawabata
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, 577-8502, Japan.
| |
Collapse
|
3
|
Yang Y, Sun W, Yang F, Liang T, Li CL, Wang Y, Wang XL, Wang RR, Wu SC, Chen J. High energy diet-induced prediabetic neuropathic pain is mediated by reduction of SIRT6 negative control of both spinal and peripheral neuroinflammation. Neuroscience 2025; 569:58-66. [PMID: 39909339 DOI: 10.1016/j.neuroscience.2025.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 01/16/2025] [Accepted: 02/02/2025] [Indexed: 02/07/2025]
Abstract
Prediabetic neuropathic pain has been classified as peripheral neuropathic pain associated with polyneuropathy caused by impaired glucose tolerance or impaired fasting glucose, which is a preclinical stage and might develop type 2 diabetes mellitus. Our previous research highlighted that prediabetes is accompanied by dramatic bilateral mechanical hyperalgesia following high energy diet (HED) which results in myelin and axonal degenerations along somatosensory system. However, the pathogenic mechanisms underlying prediabetic neuropathic pain remain unclear. The nuclear sirtuin 6 (SIRT6) is a crucial deacetylase in the regulation of multiple cellular biological processes, such as DNA repair, genome stability, inflammation and metabolic homeostasis. In current study, we show that the expressions of SIRT6 were significantly decreased, while its downstream NF-κB and proinflammatory mediator IL-6 and IL-1β were significantly increased in both dorsal root ganglia (DRG) and spinal dorsal horn of rats with prediabetic neuropathic pain induced by HED. Moreover, siRNA-SIRT6 treatment induced a significant reduction in bilateral paw withdrawal mechanical thresholds, indicating that SIRT6 down-regulation contributed to prediabetic neuropathic pain induced by HED. Furthermore, it was also found that SIRT6 reduction induced the activation of HMGB1 via disinhibition of NF-κB in both DRG and spinal dorsal horn of prediabetic rats. In conclusion, prediabetic neuropathic pain is caused by SIRT6 reduction through upregulating HMGB1-RAGE signaling at both peripheral and spinal levels.
Collapse
Affiliation(s)
- Yan Yang
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi'an 710038 Shaanxi Province, PR China
| | - Wei Sun
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi'an 710038 Shaanxi Province, PR China
| | - Fan Yang
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi'an 710038 Shaanxi Province, PR China
| | - Ting Liang
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi'an 710038 Shaanxi Province, PR China
| | - Chun-Li Li
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi'an 710038 Shaanxi Province, PR China
| | - Yan Wang
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi'an 710038 Shaanxi Province, PR China
| | - Xiao-Liang Wang
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi'an 710038 Shaanxi Province, PR China
| | - Rui-Rui Wang
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi'an 710038 Shaanxi Province, PR China
| | - Shuang-Chan Wu
- Sanhang Institute for Brain Science and Technology, Northwestern Polytechnical University, Xi'an 710129 Shaanxi Province, PR China.
| | - Jun Chen
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi'an 710038 Shaanxi Province, PR China; Sanhang Institute for Brain Science and Technology, Northwestern Polytechnical University, Xi'an 710129 Shaanxi Province, PR China.
| |
Collapse
|
4
|
Zhang W, Jiao B, Yu S, Zhang K, Sun J, Liu B, Zhang X. Spinal AT1R contributes to neuroinflammation and neuropathic pain via NOX2-dependent redox signaling in microglia. Free Radic Biol Med 2025; 227:143-156. [PMID: 39638264 DOI: 10.1016/j.freeradbiomed.2024.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 11/17/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
Microglia-mediated neuroinflammation demonstrates a crucial act in the progression of neuropathic pain. Oxidative damage induced by reactive oxygen species (ROS) derived from NADPH oxidase (NOX) in microglia drives proinflammatory microglia activation. Recent evidence points to the central renin angiotensin system (RAS) is involved in oxidative stress and neuroinflammation, with the angiotensin converting enzyme/angiotensin II/angiotensin receptor-1 (ACE/Ang II/AT1R) axis promoting inflammation through increased ROS production, counteracted by the ACE2/Ang (1-7)/Mas receptor (MasR) axis. While interventions targeting spinal AT1R have been shown to alleviate nociceptive hypersensitivity; yet the mechanisms remain elusive. Here, we discovered that spared nerve injury (SNI)-induced mechanical allodynia in rats were associated with M1-like microglia activation, oxidative stress and overactivity of ACE/Ang II/AT1R axis in the spinal cord. Increased AT1R and NOX2 expression were observed in activated dorsal horn microglia following SNI. Blockade of AT1R with losartan potassium (LOP) suppressed NOX2-mediated oxidative stress, and promoted a shift in microglia from the proinflammatory M1 phenotype to the anti-inflammatory M2 phenotype in LPS-treated BV-2 cells. Additionally, NOX2 overexpression triggered the activation of the high-mobility group box 1/nuclear factor-kappa B (HMGB1/NF-κB) signaling pathway. Intrathecal administration of LOP effectively inhibited SNI-induced NOX2 overactivation in microglia and suppressed the HMGB1/NF-kB pathway, reducing oxidative stress and shifting the microglia polarization from M1 to M2 in the spinal cord, thereby attenuating neuroinflammation and pain hypersensitivity. Collectively, these findings underscore the neuroimmune-modulating effects of spinal AT1R in neuropathic pain, highlighting the regulation of redox homeostasis in microglia via a NOX2 dependent mechanism.
Collapse
Affiliation(s)
- Wencui Zhang
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Bo Jiao
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Shangchen Yu
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Kaiwen Zhang
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Jiaoli Sun
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Baowen Liu
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China.
| | - Xianwei Zhang
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China.
| |
Collapse
|
5
|
Araldi D, Staurengo-Ferrari L, Bogen O, Bonet IJM, Green PG, Levine JD. Mu-Opioid Receptor (MOR) Dependence of Pain in Chemotherapy-Induced Peripheral Neuropathy. J Neurosci 2024; 44:e0243242024. [PMID: 39256047 PMCID: PMC11484550 DOI: 10.1523/jneurosci.0243-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 08/06/2024] [Accepted: 09/02/2024] [Indexed: 09/12/2024] Open
Abstract
We recently demonstrated that transient attenuation of Toll-like receptor 4 (TLR4) in dorsal root ganglion (DRG) neurons, can both prevent and reverse pain associated with chemotherapy-induced peripheral neuropathy (CIPN), a severe side effect of cancer chemotherapy, for which treatment options are limited. Given the reduced efficacy of opioid analgesics to treat neuropathic, compared with inflammatory pain, the cross talk between nociceptor TLR4 and mu-opioid receptors (MORs), and that MOR and TLR4 agonists induce hyperalgesic priming (priming), which also occurs in CIPN, we determined, using male rats, whether (1) antisense knockdown of nociceptor MOR attenuates CIPN, (2) and attenuates the priming associated with CIPN, and (3) CIPN also produces opioid-induced hyperalgesia (OIH). We found that intrathecal MOR antisense prevents and reverses hyperalgesia induced by oxaliplatin and paclitaxel, two common clinical chemotherapy agents. Oxaliplatin-induced priming was also markedly attenuated by MOR antisense. Additionally, intradermal morphine, at a dose that does not affect nociceptive threshold in controls, exacerbates mechanical hyperalgesia (OIH) in rats with CIPN, suggesting the presence of OIH. This OIH associated with CIPN is inhibited by interventions that reverse Type II priming [the combination of an inhibitor of Src and mitogen-activated protein kinase (MAPK)], an MOR antagonist, as well as a TLR4 antagonist. Our findings support a role of nociceptor MOR in oxaliplatin-induced pain and priming. We propose that priming and OIH are central to the symptom burden in CIPN, contributing to its chronicity and the limited efficacy of opioid analgesics to treat neuropathic pain.
Collapse
Affiliation(s)
- Dionéia Araldi
- Department of Oral and Maxillofacial Surgery, UCSF Pain and Addiction Research Center, University of California at San Francisco, San Francisco, California 94143
| | - Larissa Staurengo-Ferrari
- Department of Oral and Maxillofacial Surgery, UCSF Pain and Addiction Research Center, University of California at San Francisco, San Francisco, California 94143
| | - Oliver Bogen
- Department of Oral and Maxillofacial Surgery, UCSF Pain and Addiction Research Center, University of California at San Francisco, San Francisco, California 94143
| | - Ivan J M Bonet
- Department of Oral and Maxillofacial Surgery, UCSF Pain and Addiction Research Center, University of California at San Francisco, San Francisco, California 94143
| | - Paul G Green
- Department of Oral and Maxillofacial Surgery, UCSF Pain and Addiction Research Center, University of California at San Francisco, San Francisco, California 94143
- Department of Preventative and Restorative Dental Sciences, Division of Neuroscience, University of California at San Francisco, San Francisco, California 94143
| | - Jon D Levine
- Department of Oral and Maxillofacial Surgery, UCSF Pain and Addiction Research Center, University of California at San Francisco, San Francisco, California 94143
- Department of Medicine, Division of Neuroscience, University of California at San Francisco, San Francisco, California 94143
| |
Collapse
|
6
|
Dash UK, Mazumdar D, Singh S. High Mobility Group Box Protein (HMGB1): A Potential Therapeutic Target for Diabetic Encephalopathy. Mol Neurobiol 2024; 61:8188-8205. [PMID: 38478143 DOI: 10.1007/s12035-024-04081-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/28/2024] [Indexed: 09/21/2024]
Abstract
HMGB (high mobility group B) is one of the ubiquitous non-histone nuclear protein superfamilies that make up the HMG (high mobility group) protein group. HMGB1 is involved in a variety of physiological and pathological processes in the human body, including a structural role in the cell nucleus as well as replication, repair, DNA transcription, and assembly of nuclear proteins. It functions as a signaling regulator in the cytoplasm and a pro-inflammatory cytokine in the extracellular environment. Among several studies, HMGB1 protein is also emerging as a crucial factor involved in the development and progression of diabetic encephalopathy (DE) along with other factors such as hyperglycaemia-induced oxidative and nitrosative stress. Diabetes' chronic side effect is DE, which manifests as cognitive and psychoneurological dysfunction. The HMGB1 is released outside to the extracellular medium in diabetes condition through active or passive routes, where it functions as a damage-associated molecular pattern (DAMP) molecule to activate several signaling pathways by interacting with receptors for advanced glycosylation end-products (RAGE)/toll like receptors (TLR). HMGB1 reportedly activates inflammatory pathways, disrupts the blood-brain barrier, causes glutamate toxicity and oxidative stress, and promotes neuroinflammation, contributing to the development of cognitive impairment and neuronal damage which is suggestive of the involvement of HMGB1 in the enhancement of the diabetes-induced encephalopathic condition. Additionally, HMGB1 is reported to induce insulin resistance, further exacerbating the metabolic dysfunction associated with diabetes mellitus (DM). Thus, the present review explores the possible pathways associated with DM-induced hyperactivation of HMGB1 ultimately leading to DE.
Collapse
Affiliation(s)
- Udit Kumar Dash
- Biochemistry and Molecular Biology Laboratory, Department of Zoology, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, 495009, India
| | - Debashree Mazumdar
- Biochemistry and Molecular Biology Laboratory, Department of Zoology, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, 495009, India
| | - Santosh Singh
- Biochemistry and Molecular Biology Laboratory, Department of Zoology, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, 495009, India.
| |
Collapse
|
7
|
Yuan J, Guo L, Ma J, Zhang H, Xiao M, Li N, Gong H, Yan M. HMGB1 as an extracellular pro-inflammatory cytokine: Implications for drug-induced organic damage. Cell Biol Toxicol 2024; 40:55. [PMID: 39008169 PMCID: PMC11249443 DOI: 10.1007/s10565-024-09893-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 06/18/2024] [Indexed: 07/16/2024]
Abstract
Drug-induced organic damage encompasses various intricate mechanisms, wherein HMGB1, a non-histone chromosome-binding protein, assumes a significant role as a pivotal hub gene. The regulatory functions of HMGB1 within the nucleus and extracellular milieu are interlinked. HMGB1 exerts a crucial regulatory influence on key biological processes including cell survival, inflammatory regulation, and immune response. HMGB1 can be released extracellularly from the cell during these processes, where it functions as a pro-inflammation cytokine. HMGB1 interacts with multiple cell membrane receptors, primarily Toll-like receptors (TLRs) and receptor for advanced glycation end products (RAGE), to stimulate immune cells and trigger inflammatory response. The excessive or uncontrolled HMGB1 release leads to heightened inflammatory responses and cellular demise, instigating inflammatory damage or exacerbating inflammation and cellular demise in different diseases. Therefore, a thorough review on the significance of HMGB1 in drug-induced organic damage is highly important for the advancement of pharmaceuticals, ensuring their effectiveness and safety in treating inflammation as well as immune-related diseases. In this review, we initially outline the characteristics and functions of HMGB1, emphasizing their relevance in disease pathology. Then, we comprehensively summarize the prospect of HMGB1 as a promising therapeutic target for treating drug-induced toxicity. Lastly, we discuss major challenges and propose potential avenues for advancing the development of HMGB1-based therapeutics.
Collapse
Affiliation(s)
- JianYe Yuan
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China
- Xiangya School of Medicine, Central South University, Changsha, China
- Department of Pathology, The Eight Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Lin Guo
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China
| | - JiaTing Ma
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China
| | - HeJian Zhang
- Xiangya School of Medicine, Central South University, Changsha, China
| | - MingXuan Xiao
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China
| | - Ning Li
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Hui Gong
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China
| | - Miao Yan
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, China.
- Institute of Clinical Pharmacy, Central South University, Changsha, China.
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China.
| |
Collapse
|
8
|
Weng HR. Emerging Molecular and Synaptic Targets for the Management of Chronic Pain Caused by Systemic Lupus Erythematosus. Int J Mol Sci 2024; 25:3602. [PMID: 38612414 PMCID: PMC11011483 DOI: 10.3390/ijms25073602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/13/2024] [Accepted: 03/19/2024] [Indexed: 04/14/2024] Open
Abstract
Patients with systemic lupus erythematosus (SLE) frequently experience chronic pain due to the limited effectiveness and safety profiles of current analgesics. Understanding the molecular and synaptic mechanisms underlying abnormal neuronal activation along the pain signaling pathway is essential for developing new analgesics to address SLE-induced chronic pain. Recent studies, including those conducted by our team and others using the SLE animal model (MRL/lpr lupus-prone mice), have unveiled heightened excitability in nociceptive primary sensory neurons within the dorsal root ganglia and increased glutamatergic synaptic activity in spinal dorsal horn neurons, contributing to the development of chronic pain in mice with SLE. Nociceptive primary sensory neurons in lupus animals exhibit elevated resting membrane potentials, and reduced thresholds and rheobases of action potentials. These changes coincide with the elevated production of TNFα and IL-1β, as well as increased ERK activity in the dorsal root ganglion, coupled with decreased AMPK activity in the same region. Dysregulated AMPK activity is linked to heightened excitability in nociceptive sensory neurons in lupus animals. Additionally, the increased glutamatergic synaptic activity in the spinal dorsal horn in lupus mice with chronic pain is characterized by enhanced presynaptic glutamate release and postsynaptic AMPA receptor activation, alongside the reduced activity of glial glutamate transporters. These alterations are caused by the elevated activities of IL-1β, IL-18, CSF-1, and thrombin, and reduced AMPK activities in the dorsal horn. Furthermore, the pharmacological activation of spinal GPR109A receptors in microglia in lupus mice suppresses chronic pain by inhibiting p38 MAPK activity and the production of both IL-1β and IL-18, as well as reducing glutamatergic synaptic activity in the spinal dorsal horn. These findings collectively unveil crucial signaling molecular and synaptic targets for modulating abnormal neuronal activation in both the periphery and spinal dorsal horn, offering insights into the development of analgesics for managing SLE-induced chronic pain.
Collapse
Affiliation(s)
- Han-Rong Weng
- Department of Basic Sciences, California Northstate University College of Medicine, Elk Grove, CA 95757, USA
| |
Collapse
|
9
|
Hines RB, Schoborg C, Sumner T, Zhu X, Elgin EA, Zhang S. The association between sociodemographic, clinical, and potentially preventive therapies with oxaliplatin-induced peripheral neuropathy in colorectal cancer patients. Support Care Cancer 2023; 31:386. [PMID: 37294347 PMCID: PMC10680061 DOI: 10.1007/s00520-023-07850-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 05/29/2023] [Indexed: 06/10/2023]
Abstract
PURPOSE The purpose of this retrospective cohort study was to evaluate whether several potentially preventive therapies reduced the rate of oxaliplatin-induced peripheral neuropathy (OIPN) in colorectal cancer patients and to assess the relationship of sociodemographic/clinical factors with OIPN diagnosis. METHODS Data were obtained from the Surveillance, Epidemiology, and End Results database combined with Medicare claims. Eligible patients were diagnosed with colorectal cancer between 2007 and 2015, ≥ 66 years of age, and treated with oxaliplatin. Two definitions were used to denote diagnosis of OIPN based on diagnosis codes: OIPN 1 (specific definition, drug-induced polyneuropathy) and OIPN 2 (broader definition, additional codes for peripheral neuropathy). Cox regression was used to obtain hazard ratios (HR) with 95% confidence intervals (CI) for the relative rate of OIPN within 2 years of oxaliplatin initiation. RESULTS There were 4792 subjects available for analysis. At 2 years, the unadjusted cumulative incidence of OIPN 1 was 13.1% and 27.1% for OIPN 2. For both outcomes, no therapies reduced the rate of OIPN diagnosis. The anticonvulsants gabapentin and oxcarbazepine/carbamazepine were associated with an increased rate of OIPN (both definitions) as were increasing cycles of oxaliplatin. Compared to younger patients, those 75-84 years of age experienced a 15% decreased rate of OIPN. For OIPN 2, prior peripheral neuropathy and moderate/severe liver disease were also associated with an increased hazard rate. For OIPN 1, state buy-in health insurance coverage was associated with a decreased hazard rate. CONCLUSION Additional studies are needed to identify preventive therapeutics for OIPN in cancer patients treated with oxaliplatin.
Collapse
Affiliation(s)
- Robert B Hines
- Department of Population Health Sciences, University of Central Florida College of Medicine, 6900 Lake Nona Blvd., Orlando, FL, 328270, USA.
| | - Christopher Schoborg
- Department of Statistics & Data Science, University of Central Florida College of Sciences, Orlando, FL, USA
| | - Timothy Sumner
- Department of Statistics & Data Science, University of Central Florida College of Sciences, Orlando, FL, USA
| | - Xiang Zhu
- Department of Population Health Sciences, University of Central Florida College of Medicine, 6900 Lake Nona Blvd., Orlando, FL, 328270, USA
- Office of Research, University of Central Florida College of Medicine, Orlando, FL, USA
| | - Elizabeth A Elgin
- Department of Population Health Sciences, University of Central Florida College of Medicine, 6900 Lake Nona Blvd., Orlando, FL, 328270, USA
- Department of Medical Education, University of Central Florida College of Medicine, Orlando, FL, USA
| | - Shunpu Zhang
- Department of Statistics & Data Science, University of Central Florida College of Sciences, Orlando, FL, USA
| |
Collapse
|
10
|
Ye S, Mahmood DFD, Ma F, Leng L, Bucala R, Vera PL. Urothelial Oxidative Stress and ERK Activation Mediate HMGB1-Induced Bladder Pain. Cells 2023; 12:1440. [PMID: 37408274 PMCID: PMC10217556 DOI: 10.3390/cells12101440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/08/2023] [Accepted: 05/15/2023] [Indexed: 07/07/2023] Open
Abstract
Activation of intravesical protease activated receptors-4 (PAR4) results in bladder pain through the release of urothelial macrophage migration inhibitory factor (MIF) and high mobility group box-1 (HMGB1). We aimed to identify HMGB1 downstream signaling events at the bladder that mediate HMGB1-induced bladder pain in MIF-deficient mice to exclude any MIF-related effects. We studied whether oxidative stress and ERK activation are involved by examining bladder tissue in mice treated with intravesical disulfide HMGB1 for 1 h and analyzed with Western blot and immunohistochemistry. HMGB1 intravesical treatment increased urothelium 4HNE and phospho-ERK1/2 staining, suggesting that HMGB1 increased urothelial oxidative stress and ERK activation. Furthermore, we examined the functional roles of these events. We evaluated lower abdominal mechanical thresholds (an index of bladder pain) before and 24 h after intravesical PAR4 or disulfide HMGB1. Intravesical pre-treatments (10 min prior) included: N-acetylcysteine amide (NACA, reactive oxygen species scavenger) and FR180204 (FR, selective ERK1/2 inhibitor). Awake micturition parameters (voided volume; frequency) were assessed at 24 h after treatment. Bladders were collected for histology at the end of the experiment. Pre-treatment with NACA or FR significantly prevented HMGB1-induced bladder pain. No significant effects were noted on micturition volume, frequency, inflammation, or edema. Thus, HMGB1 activates downstream urothelial oxidative stress production and ERK1/2 activation to mediate bladder pain. Further dissection of HMGB1 downstream signaling pathway may lead to novel potential therapeutic strategies to treat bladder pain.
Collapse
Affiliation(s)
- Shaojing Ye
- Lexington VA Health Care System, Research & Development, Lexington, KY 40502, USA
| | - Dlovan F. D. Mahmood
- Lexington VA Health Care System, Research & Development, Lexington, KY 40502, USA
| | - Fei Ma
- Lexington VA Health Care System, Research & Development, Lexington, KY 40502, USA
| | - Lin Leng
- Department of Internal Medicine, Yale University, New Haven, CT 06510, USA
| | - Richard Bucala
- Department of Internal Medicine, Yale University, New Haven, CT 06510, USA
| | - Pedro L. Vera
- Lexington VA Health Care System, Research & Development, Lexington, KY 40502, USA
- Department of Physiology, University of Kentucky, Lexington, KY 40506, USA
| |
Collapse
|
11
|
Weng HR, Taing K, Chen L, Penney A. EZH2 Methyltransferase Regulates Neuroinflammation and Neuropathic Pain. Cells 2023; 12:1058. [PMID: 37048131 PMCID: PMC10093242 DOI: 10.3390/cells12071058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/24/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
Recent studies by us and others have shown that enhancer of zeste homolog-2 (EZH2), a histone methyltransferase, in glial cells regulates the genesis of neuropathic pain by modulating the production of proinflammatory cytokines and chemokines. In this review, we summarize recent advances in this research area. EZH2 is a subunit of polycomb repressive complex 2 (PRC2), which primarily serves as a histone methyltransferase to catalyze methylation of histone 3 on lysine 27 (H3K27), ultimately resulting in transcriptional repression. Animals with neuropathic pain exhibit increased EZH2 activity and neuroinflammation of the injured nerve, spinal cord, and anterior cingulate cortex. Inhibition of EZH2 with DZNep or GSK-126 ameliorates neuroinflammation and neuropathic pain. EZH2 protein expression increases upon activation of Toll-like receptor 4 and calcitonin gene-related peptide receptors, downregulation of miR-124-3p and miR-378 microRNAs, or upregulation of Lncenc1 and MALAT1 long noncoding RNAs. Genes suppressed by EZH2 include suppressor of cytokine signaling 3 (SOCS3), nuclear factor (erythroid-derived 2)-like-2 factor (NrF2), miR-29b-3p, miR-146a-5p, and brain-specific angiogenesis inhibitor 1 (BAI1). Pro-inflammatory mediators facilitate neuronal activation along pain-signaling pathways by sensitizing nociceptors in the periphery, as well as enhancing excitatory synaptic activities and suppressing inhibitory synaptic activities in the CNS. These studies collectively reveal that EZH2 is implicated in signaling pathways known to be key players in the process of neuroinflammation and genesis of neuropathic pain. Therefore, targeting the EZH2 signaling pathway may open a new avenue to mitigate neuroinflammation and neuropathic pain.
Collapse
Affiliation(s)
- Han-Rong Weng
- Department of Basic Sciences, California Northstate University College of Medicine, Elk Grove, CA 95757, USA
| | | | | | | |
Collapse
|
12
|
Fang XX, Zhai MN, Zhu M, He C, Wang H, Wang J, Zhang ZJ. Inflammation in pathogenesis of chronic pain: Foe and friend. Mol Pain 2023; 19:17448069231178176. [PMID: 37220667 DOI: 10.1177/17448069231178176] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023] Open
Abstract
Chronic pain is a refractory health disease worldwide causing an enormous economic burden on individuals and society. Accumulating evidence suggests that inflammation in the peripheral nervous system (PNS) and central nervous system (CNS) is the major factor in the pathogenesis of chronic pain. The inflammation in the early- and late phase may have distinctive effects on the initiation and resolution of pain, which can be viewed as friend or foe. On the one hand, painful injuries lead to the activation of glial cells and immune cells in the PNS, releasing pro-inflammatory mediators, which contribute to the sensitization of nociceptors, leading to chronic pain; neuroinflammation in the CNS drives central sensitization and promotes the development of chronic pain. On the other hand, macrophages and glial cells of PNS and CNS promote pain resolution via anti-inflammatory mediators and specialized pro-resolving mediators (SPMs). In this review, we provide an overview of the current understanding of inflammation in the deterioration and resolution of pain. Further, we summarize a number of novel strategies that can be used to prevent and treat chronic pain by controlling inflammation. This comprehensive view of the relationship between inflammation and chronic pain and its specific mechanism will provide novel targets for the treatment of chronic pain.
Collapse
Affiliation(s)
- Xiao-Xia Fang
- Department of Human Anatomy, School of Medicine, Nantong University, Nantong, China
| | - Meng-Nan Zhai
- Department of Human Anatomy, School of Medicine, Nantong University, Nantong, China
| | - Meixuan Zhu
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Cheng He
- Department of Human Anatomy, School of Medicine, Nantong University, Nantong, China
| | - Heng Wang
- Department of Human Anatomy, School of Medicine, Nantong University, Nantong, China
| | - Juan Wang
- Department of Human Anatomy, School of Medicine, Nantong University, Nantong, China
| | - Zhi-Jun Zhang
- Department of Human Anatomy, School of Medicine, Nantong University, Nantong, China
| |
Collapse
|
13
|
Su PYP, Zhang L, He L, Zhao N, Guan Z. The Role of Neuro-Immune Interactions in Chronic Pain: Implications for Clinical Practice. J Pain Res 2022; 15:2223-2248. [PMID: 35957964 PMCID: PMC9359791 DOI: 10.2147/jpr.s246883] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/19/2022] [Indexed: 11/23/2022] Open
Abstract
Chronic pain remains a public health problem and contributes to the ongoing opioid epidemic. Current pain management therapies still leave many patients with poorly controlled pain, thus new or improved treatments are desperately needed. One major challenge in pain research is the translation of preclinical findings into effective clinical practice. The local neuroimmune interface plays an important role in the initiation and maintenance of chronic pain and is therefore a promising target for novel therapeutic development. Neurons interface with immune and immunocompetent cells in many distinct microenvironments along the nociceptive circuitry. The local neuroimmune interface can modulate the activity and property of the neurons to affect peripheral and central sensitization. In this review, we highlight a specific subset of many neuroimmune interfaces. In the central nervous system, we examine the interface between neurons and microglia, astrocytes, and T lymphocytes. In the periphery, we profile the interface between neurons in the dorsal root ganglion with T lymphocytes, satellite glial cells, and macrophages. To bridge the gap between preclinical research and clinical practice, we review the preclinical studies of each neuroimmune interface, discuss current clinical treatments in pain medicine that may exert its action at the neuroimmune interface, and highlight opportunities for future clinical research efforts.
Collapse
Affiliation(s)
- Po-Yi Paul Su
- Department of Anesthesia and Perioperative Care, University of California San Francisco, San Francisco, CA, USA
| | - Lingyi Zhang
- Department of Anesthesia and Perioperative Care, University of California San Francisco, San Francisco, CA, USA
- Department of Anesthesiology, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, People’s Republic of China
| | - Liangliang He
- Department of Anesthesia and Perioperative Care, University of California San Francisco, San Francisco, CA, USA
- Department of Pain Management, Xuanwu Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Na Zhao
- Department of Anesthesia and Perioperative Care, University of California San Francisco, San Francisco, CA, USA
| | - Zhonghui Guan
- Department of Anesthesia and Perioperative Care, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
14
|
Ye S, Ma F, Mahmood DFD, Meyer-Siegler KL, Leng L, Bucala R, Vera PL. Bladder Oxidative Stress and HMGB1 Release Contribute to PAR4-Mediated Bladder Pain in Mice. Front Syst Neurosci 2022; 16:882493. [PMID: 35645739 PMCID: PMC9135998 DOI: 10.3389/fnsys.2022.882493] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/05/2022] [Indexed: 11/13/2022] Open
Abstract
Activation of intravesical PAR4 receptors leads to bladder hyperalgesia (BHA) through release of urothelial macrophage migration inhibitory factor (MIF) and urothelial high mobility group box-1 (HMGB1). MIF deficiency and/or MIF antagonism at the bladder block BHA in mice yet the mechanisms are not clear. Since oxidative stress and ERK phosphorylation are involved in MIF signaling we hypothesized that oxidative stress and/or ERK signaling, activated by MIF release, promote intravesical HMGB1 release to induce BHA. We induced BHA by intravesical PAR4 infusion in female C57BL/6 mice. Mechanical sensitivity was evaluated by measuring abdominal von Frey (VF) 50% thresholds before (baseline) and 24 h post-infusion. Intravesical pre-treatment (10 min infusion prior to PAR4) with N-acetylcysteine amide (NACA; reactive-oxygen species scavenger; 3 mg in 50 μl), FR180204 (selective ERK1/2 inhibitor; 200 μg in 50 μl), ethyl pyruvate (EP; HMGB1 release inhibitor; 600 μg in 50 μl), or diluent controls (50 μl) tested the effects of pre-treatment on PAR4-induced BHA. Intravesical fluid was collected after each treatment and HMGB1 concentration was measured using ELISA. Awake micturition parameters (volume and frequency) were assessed at the end of the experiments. Bladders were collected and examined for histological signs of edema and inflammation. Pre-treatment with PBS followed by PAR4 induced BHA in mice but PBS followed by scrambled peptide did not. Pre-treatment with NACA or EP partially blocked PAR4-induced BHA while FR180204 had no effect. A significant correlation between intravesical HMGB1 levels and 50% VF thresholds was observed. All PAR4 treated groups had increased levels of HMGB1 in the intravesical fluid compared to PBS-Scrambled group although not statistically significant. No significant effects were noted on awake micturition volume, micturition frequency or histological evidence of bladder edema or inflammation. Our results show that intravesical antagonism of bladder reactive-oxygen species accumulation was effective in reducing PAR4-induced bladder pain. The correlation between intravesical levels of HMGB1 and bladder pain indicates that released HMGB1 is pivotal to bladder pain. Thus, modulating events in the MIF signaling cascade triggered by PAR4 activation (including bladder oxidative stress and HMGB1 release) warrant further investigation as possible therapeutic strategies.
Collapse
Affiliation(s)
- Shaojing Ye
- Lexington VA Health Care System, Research and Development, Lexington, KY, United States
| | - Fei Ma
- Lexington VA Health Care System, Research and Development, Lexington, KY, United States
| | - Dlovan F. D. Mahmood
- Lexington VA Health Care System, Research and Development, Lexington, KY, United States
| | | | - Lin Leng
- Department of Internal Medicine, Yale University, New Haven, CT, United States
| | - Richard Bucala
- Department of Internal Medicine, Yale University, New Haven, CT, United States
| | - Pedro L. Vera
- Lexington VA Health Care System, Research and Development, Lexington, KY, United States
- Department of Physiology, University of Kentucky, Lexington, KY, United States
- *Correspondence: Pedro L. Vera
| |
Collapse
|
15
|
Meng L, Huang J, Qiu F, Shan X, Chen L, Sun S, Wang Y, Yang J. Peripheral Neuropathy During Concomitant Administration of Proteasome Inhibitors and Factor Xa Inhibitors: Identifying the Likelihood of Drug-Drug Interactions. Front Pharmacol 2022; 13:757415. [PMID: 35359859 PMCID: PMC8963930 DOI: 10.3389/fphar.2022.757415] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 02/15/2022] [Indexed: 11/13/2022] Open
Abstract
Backgrounds: Proteasome inhibitors (PI) cause toxic peripheral neuropathy (PN), which is one of the dose-limiting adverse events of these treatments. Recent preclinical studies find that factor Xa inhibitor (FXaI), rivaroxaban, promotes PN in animals receiving oxaliplatin. Cancer patients can receive combined therapy of PI and FXaI. This study aimed to identify and characterize the interaction signals for the concomitant use of PI and FXaI resulting in PN.Methods: Reports from the United States FDA Adverse Event Reporting System (FAERS) were extracted from the first quarter of 2004 to the first quarter of 2020 for analysis. The Standardized Medical Dictionary for Regulatory Activities (MedDRA) query was used to identify PN cases. We conducted an initial disproportionality investigation to detect PN adverse event signals associated with the combined use of PI and FXaI by estimating a reporting odds ratio (ROR) with a 95% confidence interval (CI). The adjusted RORs were then analyzed by logistic regression analysis (adjusting for age, gender, and reporting year), and additive/multiplicative models were performed to further confirm the findings. Additionally, subset data analysis was performed on the basis of a single drug of PI and FXaI.Results: A total of 159,317 adverse event reports (including 2,822 PN reports) were included. The combined use of PI and FXaI was associated with a higher reporting of PN (RORadj = 7.890, 95%CI, 5.321–11.698). The result remained significant based on additive/multiplicative methods. The observed association was consistent in the analysis restricted to all specific PI agents (bortezomib and ixazomib) and FXaI (rivaroxaban), except apixaban.Conclusion: Analysis of FAERS data identified reporting associations of PN in the combined use of PI and FXaI, suggesting the need for more robust preclinical and clinical studies to elucidate the relationship.
Collapse
Affiliation(s)
- Long Meng
- Key Laboratory of Biochemistry and Molecular Pharmacology, Department of Pharmacology, Chongqing Medical University, Chongqing, China
- Department of Pharmacy, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jing Huang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Feng Qiu
- Department of Pharmacy, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xuefeng Shan
- Department of Pharmacy, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lin Chen
- Department of Pharmacy, Chongqing Health Center for Women and Children, Chongqing, China
| | - Shusen Sun
- Department of Pharmacy Practice, College of Pharmacy and Health Sciences, Western New England University, Springfield, MA, United States
- Department of Pharmacy, Xiangya Hospital Central South University, Changsha, China
| | - Yuwei Wang
- Chongqing University Cancer Hospital, Chongqing, China
| | - Junqing Yang
- Key Laboratory of Biochemistry and Molecular Pharmacology, Department of Pharmacology, Chongqing Medical University, Chongqing, China
- *Correspondence: Junqing Yang,
| |
Collapse
|
16
|
Miyamoto T, Domoto R, Sekiguchi F, Kamaguchi R, Nishimura R, Matsuno M, Tsubota M, Fujitani M, Hatanaka S, Koizumi Y, Wang D, Nishibori M, Kawabata A. Development of hepatic impairment aggravates chemotherapy-induced peripheral neuropathy following oxaliplatin treatment: Evidence from clinical and preclinical studies. J Pharmacol Sci 2022; 148:315-325. [PMID: 35177211 DOI: 10.1016/j.jphs.2022.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/08/2021] [Accepted: 01/11/2022] [Indexed: 10/19/2022] Open
Abstract
Oxaliplatin often induces peripheral neuropathy, a dose-limiting adverse reaction, and in rare cases leads to sinusoidal obstruction syndrome. We thus conducted a retrospective cohort study to examine the relationship between oxaliplatin-induced peripheral neuropathy (OIPN) and hepatic impairment, and then perform a fundamental study to analyze the underlying mechanisms. Analysis of medical records in cancer patients treated with oxaliplatin indicated that laboratory test parameters of hepatic impairment including AST, ALT and APRI (AST to platelet ratio index) moderately increased during oxaliplatin treatment, which was positively correlated with the severity of OIPN (grades 1-4), and associated with later incidence of survivors with OIPN grades ≥2. In mice, hepatic injury induced by CCl4 or ethanol accelerated OIPN in mice, an effect prevented by inactivation of high mobility group box 1 (HMGB1), known to participate in OIPN, by the neutralizing antibody or thrombomodulin alfa capable of promoting its thrombin-dependent degradation. Oxaliplatin also aggravated the hepatic injury in mice. CCl4 released HMGB1 from cultured hepatic parenchymal cells, and oxaliplatin at clinically achievable concentrations released HMGB1 from hepatic parenchymal and non-parenchymal cells. Our clinical and preclinical data suggest that the development of mild hepatic impairment during oxaliplatin treatment is associated with later aggravation of OIPN.
Collapse
Affiliation(s)
- Tomoyoshi Miyamoto
- Laboratory of Pharmacology & Pathophysiology, Faculty of Pharmacy, Kindai University, Higashi-Osaka, Japan; Department of Pharmacy, Seichokai Fuchu Hospital, Izumi, Japan
| | - Risa Domoto
- Laboratory of Pharmacology & Pathophysiology, Faculty of Pharmacy, Kindai University, Higashi-Osaka, Japan
| | - Fumiko Sekiguchi
- Laboratory of Pharmacology & Pathophysiology, Faculty of Pharmacy, Kindai University, Higashi-Osaka, Japan
| | - Riki Kamaguchi
- Laboratory of Pharmacology & Pathophysiology, Faculty of Pharmacy, Kindai University, Higashi-Osaka, Japan
| | - Rika Nishimura
- Laboratory of Pharmacology & Pathophysiology, Faculty of Pharmacy, Kindai University, Higashi-Osaka, Japan
| | - Misato Matsuno
- Laboratory of Pharmacology & Pathophysiology, Faculty of Pharmacy, Kindai University, Higashi-Osaka, Japan
| | - Maho Tsubota
- Laboratory of Pharmacology & Pathophysiology, Faculty of Pharmacy, Kindai University, Higashi-Osaka, Japan
| | | | | | - Yuichi Koizumi
- Department of Pharmacy, Seichokai Fuchu Hospital, Izumi, Japan
| | - Dengli Wang
- Department of Pharmacology, Okayama University Graduate School of Medicine, Okayama, Japan
| | - Masahiro Nishibori
- Department of Translational Research and Drug Development, Okayama University Graduate School of Medicine, Okayama, Japan
| | - Atsufumi Kawabata
- Laboratory of Pharmacology & Pathophysiology, Faculty of Pharmacy, Kindai University, Higashi-Osaka, Japan.
| |
Collapse
|
17
|
Domoto R, Sekiguchi F, Kamaguchi R, Iemura M, Yamanishi H, Tsubota M, Wang D, Nishibori M, Kawabata A. Role of neuron-derived ATP in paclitaxel-induced HMGB1 release from macrophages and peripheral neuropathy. J Pharmacol Sci 2021; 148:156-161. [PMID: 34924121 DOI: 10.1016/j.jphs.2021.11.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/25/2021] [Accepted: 11/05/2021] [Indexed: 10/19/2022] Open
Abstract
We examined the role of ATP and high mobility group box 1 (HMGB1) in paclitaxel-induced peripheral neuropathy (PIPN). PIPN in mice was prevented by HMGB1 neutralization, macrophage depletion, and P2X7 or P2X4 blockade. Paclitaxel and ATP synergistically released HMGB1 from macrophage-like RAW264.7 cells, but not neuron-like NG108-15 cells. The paclitaxel-induced HMGB1 release from RAW264.7 cells was accelerated by co-culture with NG108-15 cells in a manner dependent on P2X7 or P2X4. Paclitaxel released ATP from NG108-15 cells, but not RAW264.7 cells. Thus, PIPN is considered to involve acceleration of HMGB1 release from macrophages through P2X7 and P2X4 activation by neuron-derived ATP.
Collapse
Affiliation(s)
- Risa Domoto
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University, Higashi-Osaka 577-8502, Japan
| | - Fumiko Sekiguchi
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University, Higashi-Osaka 577-8502, Japan
| | - Riki Kamaguchi
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University, Higashi-Osaka 577-8502, Japan
| | - Maiko Iemura
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University, Higashi-Osaka 577-8502, Japan
| | - Hiroki Yamanishi
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University, Higashi-Osaka 577-8502, Japan
| | - Maho Tsubota
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University, Higashi-Osaka 577-8502, Japan
| | - Dengli Wang
- Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Masahiro Nishibori
- Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Atsufumi Kawabata
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University, Higashi-Osaka 577-8502, Japan.
| |
Collapse
|
18
|
Sato F, Nakamura Y, Ma S, Kochi T, Hisaoka-Nakashima K, Wang D, Liu K, Wake H, Nishibori M, Morioka N. Central high mobility group box-1 induces mechanical hypersensitivity with spinal microglial activation in a mouse model of hemi-Parkinson's disease. Biomed Pharmacother 2021; 145:112479. [PMID: 34915668 DOI: 10.1016/j.biopha.2021.112479] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/30/2021] [Accepted: 11/30/2021] [Indexed: 02/07/2023] Open
Abstract
Parkinson's disease (PD) patients often complain of pain, but this problem has been neglected and is poorly understood. High mobility group box-1 (HMGB1), an alarmin/damage-associated molecular patterns protein, is increased in the cerebrospinal fluid in PD patients. However, little is known of the relationship between HMGB1 and pain associated with PD. Here, we investigated the role of central HMGB1 in the regulation of nociceptive hypersensitivity in a mouse model of PD. Male ddY mice were microinjected unilaterally with 6-hydroxydopamine (6OHDA) into the striatum. These hemi-PD mice were treated with anti-HMGB1 neutralizing antibody (nAb; 10 µg in 10 µL) by intranasal (i.n.) administration. The mechanical hypersensitivity of the hind paws was evaluated with the von Frey test. Spinal microglial activity was analyzed by immunostaining for ionized calcium-binding adapter molecule 1. The 6OHDA-administered mice displayed unilateral loss of dopamine neurons in the substantia nigra and mechanical hypersensitivity in both hind paws. Moreover, spinal microglia were activated in these hemi-PD mice. Twenty-eight days after the 6OHDA injections, repeated i.n., but not systemic, treatment with anti-HMGB1 nAb inhibited the bilateral mechanical hypersensitivity and spinal microglial activation. However, the anti-HMGB1 nAb did not ameliorate the dopamine neuron loss. Moreover, intracerebroventricular injection with recombinant HMGB1 induced mechanical hypersensitivity. These findings indicate that HMGB1 is involved in the maintenance of nociceptive symptoms in hemi-PD mice via spinal microglial activation. Therefore, central HMGB1 may have potential as a therapeutic target for pain associated with PD.
Collapse
Affiliation(s)
- Fumiaki Sato
- Department of Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Japan
| | - Yoki Nakamura
- Department of Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Japan.
| | - Simeng Ma
- Department of Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Japan
| | - Takahiro Kochi
- Department of Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Japan; Department of Dental Anesthesiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Japan
| | - Kazue Hisaoka-Nakashima
- Department of Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Japan
| | - Dengli Wang
- Department of Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Japan
| | - Keyue Liu
- Department of Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Japan
| | - Hidenori Wake
- Department of Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Japan; Department of Pharmacology, Faculty of Medicine, Kindai University, Japan
| | - Masahiro Nishibori
- Department of Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Japan
| | - Norimitsu Morioka
- Department of Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Japan.
| |
Collapse
|
19
|
Tsubota M, Miyazaki T, Ikeda Y, Hayashi Y, Aokiba Y, Tomita S, Sekiguchi F, Wang D, Nishibori M, Kawabata A. Caspase-Dependent HMGB1 Release from Macrophages Participates in Peripheral Neuropathy Caused by Bortezomib, a Proteasome-Inhibiting Chemotherapeutic Agent, in Mice. Cells 2021; 10:cells10102550. [PMID: 34685531 PMCID: PMC8533714 DOI: 10.3390/cells10102550] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/21/2021] [Accepted: 09/23/2021] [Indexed: 02/06/2023] Open
Abstract
Given the role of macrophage-derived high mobility group box 1 (HMGB1) in chemotherapy-induced peripheral neuropathy (CIPN) caused by paclitaxel, we analyzed the role of HMGB1 and macrophages in the CIPN caused by bortezomib, a proteasome-inhibiting chemotherapeutic agent used for the treatment of multiple myeloma. Repeated administration of bortezomib caused CIPN accompanied by early-stage macrophage accumulation in the dorsal root ganglion. This CIPN was prevented by an anti-HMGB1-neutralizing antibody, thrombomodulin alfa capable of accelerating thrombin-dependent degradation of HMGB1, antagonists of the receptor for advanced glycation end-products (RAGE) and C-X-C motif chemokine receptor 4 (CXCR4), known as HMGB1-targeted membrane receptors, or macrophage depletion with liposomal clodronate, as reported in a CIPN model caused by paclitaxel. In macrophage-like RAW264.7 cells, bortezomib as well as MG132, a well-known proteasome inhibitor, caused HMGB1 release, an effect inhibited by caspase inhibitors but not inhibitors of NF-κB and p38 MAP kinase, known to mediate paclitaxel-induced HMGB1 release from macrophages. Bortezomib increased cleaved products of caspase-8 and caused nuclear fragmentation or condensation in macrophages. Repeated treatment with the caspase inhibitor prevented CIPN caused by bortezomib in mice. Our findings suggest that bortezomib causes caspase-dependent release of HMGB1 from macrophages, leading to the development of CIPN via activation of RAGE and CXCR4.
Collapse
Affiliation(s)
- Maho Tsubota
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashiosaka 577-8502, Japan; (M.T.); (T.M.); (Y.I.); (Y.H.); (Y.A.); (S.T.); (F.S.)
| | - Takaya Miyazaki
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashiosaka 577-8502, Japan; (M.T.); (T.M.); (Y.I.); (Y.H.); (Y.A.); (S.T.); (F.S.)
| | - Yuya Ikeda
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashiosaka 577-8502, Japan; (M.T.); (T.M.); (Y.I.); (Y.H.); (Y.A.); (S.T.); (F.S.)
| | - Yusuke Hayashi
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashiosaka 577-8502, Japan; (M.T.); (T.M.); (Y.I.); (Y.H.); (Y.A.); (S.T.); (F.S.)
| | - Yui Aokiba
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashiosaka 577-8502, Japan; (M.T.); (T.M.); (Y.I.); (Y.H.); (Y.A.); (S.T.); (F.S.)
| | - Shiori Tomita
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashiosaka 577-8502, Japan; (M.T.); (T.M.); (Y.I.); (Y.H.); (Y.A.); (S.T.); (F.S.)
| | - Fumiko Sekiguchi
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashiosaka 577-8502, Japan; (M.T.); (T.M.); (Y.I.); (Y.H.); (Y.A.); (S.T.); (F.S.)
| | - Dengli Wang
- Department of Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan; (D.W.); (M.N.)
| | - Masahiro Nishibori
- Department of Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan; (D.W.); (M.N.)
| | - Atsufumi Kawabata
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashiosaka 577-8502, Japan; (M.T.); (T.M.); (Y.I.); (Y.H.); (Y.A.); (S.T.); (F.S.)
- Correspondence: ; Tel.: +81-6-4307-3631
| |
Collapse
|
20
|
Macrophage as a Peripheral Pain Regulator. Cells 2021; 10:cells10081881. [PMID: 34440650 PMCID: PMC8392675 DOI: 10.3390/cells10081881] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/22/2021] [Accepted: 07/22/2021] [Indexed: 12/30/2022] Open
Abstract
A neuroimmune crosstalk is involved in somatic and visceral pathological pain including inflammatory and neuropathic components. Apart from microglia essential for spinal and supraspinal pain processing, the interaction of bone marrow-derived infiltrating macrophages and/or tissue-resident macrophages with the primary afferent neurons regulates pain signals in the peripheral tissue. Recent studies have uncovered previously unknown characteristics of tissue-resident macrophages, such as their origins and association with regulation of pain signals. Peripheral nerve macrophages and intestinal resident macrophages, in addition to adult monocyte-derived infiltrating macrophages, secrete a variety of mediators, such as tumor necrosis factor-α, interleukin (IL)-1β, IL-6, high mobility group box 1 and bone morphogenic protein 2 (BMP2), that regulate the excitability of the primary afferents. Neuron-derived mediators including neuropeptides, ATP and macrophage-colony stimulating factor regulate the activity or polarization of diverse macrophages. Thus, macrophages have multitasks in homeostatic conditions and participate in somatic and visceral pathological pain by interacting with neurons.
Collapse
|
21
|
Affiliation(s)
- Hideo Kimura
- Department of Pharmacology, Sanyo-Onoda City University (Tokyo University of Science, Yamaguchi), Sanyo-Onoda, Yamaguchi, Japan
| |
Collapse
|
22
|
Totoki T, Ito T, Yamada S, Honda G, Hattori T, Maruyama I. Specific detection of high mobility group box 1 degradation product with a novel ELISA. Mol Med 2021; 27:59. [PMID: 34107884 PMCID: PMC8190996 DOI: 10.1186/s10020-021-00323-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 05/31/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND During sepsis or sterile tissue injury, the nuclear protein high mobility group box 1 (HMGB1) can be released to the extracellular space and ultimately into systemic circulation, where it mediates systemic inflammation and remote organ failure. The proinflammatory effects of HMGB1 can be suppressed by recombinant thrombomodulin (rTM), in part through a mechanism involving thrombin-rTM-mediated degradation of HMGB1. Given that HMGB1 is proinflammatory but the HMGB1 degradation product (desHMGB1) is not, an analytical method that discriminates between these two molecules may provide a more in-depth understanding of HMGB1-induced pathogenicity as well as rTM-mediated therapeutic efficiency. METHODS A peptide that has a shared amino-terminal structure with desHMGB1 was synthesized. C3H/lpr mice were immunized with the desHMGB1 peptide conjugate, and antibody-secreting hybridoma cells were developed using conventional methods. The reactivity and specificity of the antibodies were then analyzed using antigen-coated enzyme-linked immunosorbent assay (ELISA) as well as antibody-coated ELISA. Next, plasma desHMGB1 levels were examined in a cecal ligation and puncture (CLP)-induced septic mouse model treated with rTM. RESULTS Through a series of screening steps, we obtained a monoclonal antibody that recognized desHMGB1 but did not recognize intact HMGB1. ELISA using this antibody specifically detected desHMGB1, which was significantly increased in CLP-induced septic mice treated with rTM compared with those treated with saline. CONCLUSIONS In this study, we obtained a desHMGB1-specific monoclonal antibody. ELISA using the novel monoclonal antibody may be an option for the in-depth analysis of HMGB1-induced pathogenicity as well as rTM-mediated therapeutic efficiency.
Collapse
Affiliation(s)
- Takaaki Totoki
- Department of Systems Biology in Thromboregulation, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Takashi Ito
- Department of Systems Biology in Thromboregulation, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan.
| | - Shingo Yamada
- R&D Center, Shino-Test Corporation, Sagamihara, Japan
| | - Goichi Honda
- Department of Medical Affairs, Asahi Kasei Pharma Corporation, Tokyo, Japan
| | - Tsuyoshi Hattori
- Department of Medical Affairs, Asahi Kasei Pharma Corporation, Tokyo, Japan
| | - Ikuro Maruyama
- Department of Systems Biology in Thromboregulation, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| |
Collapse
|
23
|
Deng C, Xie Y, Liu Y, Li Y, Xiao Y. Aromatherapy Plus Music Therapy Improve Pain Intensity and Anxiety Scores in Patients With Breast Cancer During Perioperative Periods: A Randomized Controlled Trial. Clin Breast Cancer 2021; 22:115-120. [PMID: 34134947 DOI: 10.1016/j.clbc.2021.05.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/09/2021] [Accepted: 05/10/2021] [Indexed: 12/22/2022]
Abstract
INTRODUCTION To investigate the effect of perioperative aromatherapy (AT) or/plus music therapy (MT) on pain and anxiety level, and the potential mechanism in women experiencing breast cancer surgery. METHODS A total of 160 patients with breast cancer were randomly assigned in a 1:1:1:1 ratio to receive usual care (UC), AT, MT, or combination therapy (CT) during perioperative periods. Pain intensity and anxiety scores were measured by visual analog scale. Interleukin (IL)-6 and high mobility group box 1 (HMGB-1) were measured by enzyme-linked immunosorbent assay. RESULTS There was a significant group effect on pain, anxiety, and IL-6 and HMGB-1 levels, with the greatest improvement occurring in the CT group (P < .001). Compared with the UC group, the AT and MT groups had lower mean changes of pain intensity and IL-6 and HMGB-1 levels, and greater anxiety reduction (P < .001). However, the differences between the AT and MT groups did not reach significance (P > .05). CONCLUSION In patients with breast cancer, perioperative CT achieves greater pain improvement and anxiety reduction and less marked increase in IL-6 and HMGB-1 levels. These results suggest that CT is an acceptable complementary and alternative medicine for breast cancer patients.
Collapse
Affiliation(s)
- Chao Deng
- National Clinical Research Center for Metabolic Diseases and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yijia Xie
- Clinical Nursing Teaching and Research Section, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yan Liu
- Clinical Nursing Teaching and Research Section, The Second Xiangya Hospital, Central South University, Changsha, China; Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yamin Li
- Clinical Nursing Teaching and Research Section, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yangfan Xiao
- Clinical Nursing Teaching and Research Section, The Second Xiangya Hospital, Central South University, Changsha, China; Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
24
|
Estrogen decline is a risk factor for paclitaxel-induced peripheral neuropathy: Clinical evidence supported by a preclinical study. J Pharmacol Sci 2021; 146:49-57. [PMID: 33858655 DOI: 10.1016/j.jphs.2021.03.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/02/2021] [Accepted: 03/04/2021] [Indexed: 12/21/2022] Open
Abstract
We performed clinical retrospective study in female cancer patients and fundamental experiments in mice, in order to clarify risk factors for paclitaxel-induced peripheral neuropathy (PIPN). In the clinical study, 131 of 189 female outpatients with cancer undergoing paclitaxel-based chemotherapy met inclusion criteria. Breast cancer survivors (n = 40) showed significantly higher overall PIPN (grades 1-4) incidence than non-breast cancer survivors (n = 91). Multivariate sub-analyses of breast cancer survivors showed that 57 years of age or older and endocrine therapy before paclitaxel treatment were significantly associated with severe PIPN (grades 2-4). The age limit was also significantly correlated with overall development of severe PIPN. In the preclinical study, female mice subjected to ovariectomy received repeated administration of paclitaxel, and mechanical nociceptive threshold was assessed by von Frey test. Ovariectomy aggravated PIPN in the mice, an effect prevented by repeated treatment with 17β-estradiol. Repeated administration of thrombomodulin alfa (TMα), known to prevent chemotherapy-induced peripheral neuropathy in rats and mice, also prevented the development of PIPN in the ovariectomized mice. Collectively, breast cancer survivors, particularly with postmenopausal estrogen decline and/or undergoing endocrine therapy, are considered a PIPN-prone subpopulation, and may require non-hormonal pharmacological intervention for PIPN in which TMα may serve as a major candidate.
Collapse
|
25
|
Sekiguchi F, Kawabata A. Role of HMGB1 in Chemotherapy-Induced Peripheral Neuropathy. Int J Mol Sci 2020; 22:ijms22010367. [PMID: 33396481 PMCID: PMC7796379 DOI: 10.3390/ijms22010367] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 12/25/2020] [Accepted: 12/26/2020] [Indexed: 12/11/2022] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN), one of major dose-limiting side effects of first-line chemotherapeutic agents such as paclitaxel, oxaliplatin, vincristine, and bortezomib is resistant to most of existing medicines. The molecular mechanisms of CIPN have not been fully understood. High mobility group box 1 (HMGB1), a nuclear protein, is a damage-associated molecular pattern protein now considered to function as a pro-nociceptive mediator once released to the extracellular space. Most interestingly, HMGB1 plays a key role in the development of CIPN. Soluble thrombomodulin (TMα), known to degrade HMGB1 in a thrombin-dependent manner, prevents CIPN in rodents treated with paclitaxel, oxaliplatin, or vincristine and in patients with colorectal cancer undergoing oxaliplatin-based chemotherapy. In this review, we describe the role of HMGB1 and its upstream/downstream mechanisms in the development of CIPN and show drug candidates that inhibit the HMGB1 pathway, possibly useful for prevention of CIPN.
Collapse
|
26
|
Pathogenic mechanisms of lipid mediator lysophosphatidic acid in chronic pain. Prog Lipid Res 2020; 81:101079. [PMID: 33259854 DOI: 10.1016/j.plipres.2020.101079] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 11/22/2020] [Accepted: 11/23/2020] [Indexed: 02/07/2023]
Abstract
A number of membrane lipid-derived mediators play pivotal roles in the initiation, maintenance, and regulation of various types of acute and chronic pain. Acute pain, comprising nociceptive and inflammatory pain warns us about the presence of damage or harmful stimuli. However, it can be efficiently reversed by opioid analgesics and anti-inflammatory drugs. Prostaglandin E2 and I2, the representative lipid mediators, are well-known causes of acute pain. However, some lipid mediators such as lipoxins, resolvins or endocannabinoids suppress acute pain. Various types of peripheral and central neuropathic pain (NeuP) as well as fibromyalgia (FM) are representatives of chronic pain and refractory owing to abnormal pain processing distinct from acute pain. Accumulating evidence demonstrated that lipid mediators represented by lysophosphatidic acid (LPA) are involved in the initiation and maintenance of both NeuP and FM in experimental animal models. The LPAR1-mediated peripheral mechanisms including dorsal root demyelination, Cavα2δ1 expression in dorsal root ganglion, and LPAR3-mediated amplification of central LPA production via glial cells are involved in the series of molecular mechanisms underlying NeuP. This review also discusses the involvement of lipid mediators in emerging research directives, including itch-sensing, sexual dimorphism, and the peripheral immune system.
Collapse
|