1
|
Tanaka T, Hirai S, Manabe H, Endo K, Shimbo H, Nishito Y, Horiuchi J, Yoshitane H, Okado H. Minocycline prevents early age-related cognitive decline in a mouse model of intellectual disability caused by ZBTB18/RP58 haploinsufficiency. J Neuroinflammation 2024; 21:260. [PMID: 39396010 PMCID: PMC11471036 DOI: 10.1186/s12974-024-03217-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 09/01/2024] [Indexed: 10/14/2024] Open
Abstract
Haploinsufficiency of the transcriptional repressor ZBTB18/RP58 is associated with intellectual disability. However, the mechanisms causing this disability are unknown, and preventative measures and treatments are not available. Here, we assessed multiple behaviors in Zbtb18/Rp58 heterozygous-knockout mice, and examined local field potentials, DNA fragmentation, mitochondrial morphology, and performed histochemical and transcriptome analyses in the hippocampus to evaluate chronic inflammation. In wild-type mice, object location memory was present at a similar level at 2 and 4-5 months of age, and became impaired at 12-18 months. In contrast, Zbtb18/Rp58 heterozygous-knockout mice displayed early onset impairments in object location memory by 4-5 months of age. These mice also exhibited earlier accumulation of DNA and mitochondrial damage, and activated microglia in the dentate gyrus, which are associated with defective DNA repair. Notably, chronic minocycline therapy, which has neuroprotective and anti-inflammatory effects, attenuated age-related phenotypes, including accumulation of DNA damage, increased microglial activation, and impairment of object location memory. Our results suggest that Zbtb18/Rp58 activity is required for DNA repair and its reduction results in DNA and mitochondrial damage, increased activation of microglia, and inflammation, leading to accelerated declines in cognitive functions. Minocycline has potential as a therapeutic agent for the treatment of ZBTB18/RP58 haploinsufficiency-associated cognitive dysfunction.
Collapse
Affiliation(s)
- Tomoko Tanaka
- Department of Psychiatry and Behavioral Science, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan.
- Department of Basic Medical Science, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan.
| | - Shinobu Hirai
- Department of Psychiatry and Behavioral Science, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan
| | - Hiroyuki Manabe
- Department of Neurophysiology, Nara Medical University, Nara, 634-8521, Japan
| | - Kentaro Endo
- Center for Medical Research Cooperation, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan
| | - Hiroko Shimbo
- Department of Psychiatry and Behavioral Science, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan
| | - Yasumasa Nishito
- Center for Medical Research Cooperation, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan
| | - Junjiro Horiuchi
- Center for Medical Research Cooperation, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan
| | - Hikari Yoshitane
- Department of Basic Medical Science, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan
| | - Haruo Okado
- Department of Psychiatry and Behavioral Science, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan.
| |
Collapse
|
2
|
Hirai S, Miwa H, Shimbo H, Nakajima K, Kondo M, Tanaka T, Ohtaka-Maruyama C, Hirai S, Okado H. The mouse model of intellectual disability by ZBTB18/RP58 haploinsufficiency shows cognitive dysfunction with synaptic impairment. Mol Psychiatry 2023; 28:2370-2381. [PMID: 36721027 DOI: 10.1038/s41380-023-01941-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 12/29/2022] [Accepted: 01/06/2023] [Indexed: 02/02/2023]
Abstract
ZBTB18/RP58 (OMIM *608433) is one of the pivotal genes responsible for 1q43q44 microdeletion syndrome (OMIM #612337) and its haploinsufficiency induces intellectual disability. However, the underlying pathological mechanism of ZBTB18/RP58 haploinsufficiency is unknown. In this study, we generated ZBTB18/RP58 heterozygous mice and found that these mutant mice exhibit multiple behavioral deficits, including impairment in motor learning, working memory, and memory flexibility, which are related to behaviors in people with intellectual disabilities, and show no gross abnormalities in their cytoarchitectures but dysplasia of the corpus callosum, which has been reported in certain population of patients with ZBTB18 haploinsufficiency as well as in those with 1q43q44 microdeletion syndrome, indicating that these mutant mice are a novel model of ZBTB18/RP58 haploinsufficiency, which reflects heterozygotic ZBTB18 missense, truncating variants and some phenotypes of 1q43q44 microdeletion syndrome based on ZBTB18/RP58 haploinsufficiency. Furthermore, these mice show glutamatergic synaptic dysfunctions, including a reduced glutamate receptor expression, altered properties of NMDA receptor-mediated synaptic responses, a decreased saturation level of long-term potentiation of excitatory synaptic transmission, and distinct morphological characteristics of the thick-type spines. Therefore, these results suggest that ZBTB18/RP58 haploinsufficiency leads to impaired excitatory synaptic maturation, which in turn results in cognitive dysfunction in ZBTB18 haploinsufficiency.
Collapse
Affiliation(s)
- Sayaka Hirai
- Neural Development Project, Department of Brain Development and Neural Regeneration, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan
| | - Hideki Miwa
- Neural Development Project, Department of Brain Development and Neural Regeneration, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan.
- Molecular Neuropsychopharmacology Section, Department of Neuropsychopharmacology, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, 187-8553, Japan.
- Sleep Disorders Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan.
| | - Hiroko Shimbo
- Neural Development Project, Department of Brain Development and Neural Regeneration, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan
- Clinical Research Institute, Kanagawa Children's Medical Center, Yokohama, Japan
- Sleep Disorders Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan
| | - Keisuke Nakajima
- Neural Development Project, Department of Brain Development and Neural Regeneration, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan
- Sleep Disorders Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan
| | - Masahiro Kondo
- Neural Development Project, Department of Brain Development and Neural Regeneration, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan
- Department of Legal Medicine, Nihon University School of Dentistry, Chiyoda, Tokyo, 101-8310, Japan
| | - Tomoko Tanaka
- Neural Development Project, Department of Brain Development and Neural Regeneration, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan
- Department of Basic Medical Science, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan
| | - Chiaki Ohtaka-Maruyama
- Neural Development Project, Department of Brain Development and Neural Regeneration, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan
- Developmental Neuroscience Project, Department of Brain & Neurosciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Shinobu Hirai
- Neural Development Project, Department of Brain Development and Neural Regeneration, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan.
- Brain Metabolic Regulation Group, Frontier Laboratory, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan.
| | - Haruo Okado
- Neural Development Project, Department of Brain Development and Neural Regeneration, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan.
- Sleep Disorders Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan.
| |
Collapse
|
3
|
Li Y, Zhu Y, Chen L, Xia S, Adegboro AA, Wanggou S, Li X. Transcription factor ZBTB42 is a novel prognostic factor associated with immune cell infiltration in glioma. Front Pharmacol 2023; 14:1102277. [PMID: 36762114 PMCID: PMC9905726 DOI: 10.3389/fphar.2023.1102277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/16/2023] [Indexed: 01/26/2023] Open
Abstract
Background: ZBTB42 is a transcription factor that belongs to the ZBTB transcript factor family and plays an important role in skeletal muscle development. Dysregulation of ZBTB42 expression can lead to a variety of diseases. However, the function of ZBTB42 in glioma development has not been studied by now. Methods: We analyzed the expression of ZBTB42 in LGG and GBM via the The Cancer Genome Atlas CGA and Chinese Glioma Genome Atlas database. Gene Ontology, KEGG, and GSVA analyses were performed to illustrate ZBTB42-related pathways. ESTIMATE and CIBERSORT were applied to calculate the immune score and immune cell proportion in glioma. One-class logistic regression OCLR algorithm was used to study the stemness of glioma. Multivariate Cox analysis was employed to detect the prognostic value of five ZBTB42-related genes. Results: Our results show that ZBTB42 is highly expressed in glioma and may be a promising prognostic factor for Low Grade Glioma and GBM. In addition, ZBTB42 is related to immune cell infiltration and may play a role in the immune suppression microenvironment. What's more, ZBTB42 is correlated with stem cell markers and positively associated with glioma stemness. Finally, a five genes nomogram based on ZBTB42 was constructed and has an effective prognosis prediction ability. Conclusion: We identify that ZBTB42 is a prognostic biomarker for Low Grade Glioma and GBM and its function is related to the suppressive tumor microenvironment and stemness of glioma.
Collapse
Affiliation(s)
- Yanwen Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China,Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, China
| | - Yongwei Zhu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China,Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, China,*Correspondence: Yongwei Zhu, ; Xuejun Li,
| | - Long Chen
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China,Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, China
| | - Shunjin Xia
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China,Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, China
| | - Abraham Ayodeji Adegboro
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China,Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, China
| | - Siyi Wanggou
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China,Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, China
| | - Xuejun Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China,Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, China,*Correspondence: Yongwei Zhu, ; Xuejun Li,
| |
Collapse
|
4
|
Bu S, Lv Y, Liu Y, Qiao S, Wang H. Zinc Finger Proteins in Neuro-Related Diseases Progression. Front Neurosci 2021; 15:760567. [PMID: 34867169 PMCID: PMC8637543 DOI: 10.3389/fnins.2021.760567] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 10/11/2021] [Indexed: 01/02/2023] Open
Abstract
Zinc finger proteins (ZNF) are among the most abundant proteins in eukaryotic genomes. It contains several zinc finger domains that can selectively bind to certain DNA or RNA and associate with proteins, therefore, ZNF can regulate gene expression at the transcriptional and translational levels. In terms of neurological diseases, numerous studies have shown that many ZNF are associated with neurological diseases. The purpose of this review is to summarize the types and roles of ZNF in neuropsychiatric disorders. We will describe the structure and classification of ZNF, then focus on the pathophysiological role of ZNF in neuro-related diseases and summarize the mechanism of action of ZNF in neuro-related diseases.
Collapse
Affiliation(s)
- Siyuan Bu
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing, China
| | - Yihan Lv
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing, China
| | - Yusheng Liu
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing, China
| | - Sen Qiao
- Department of Pharmacology, Center for Molecular Signaling (PZMS), School of Medicine, Saarland University, Homburg, Germany
| | - Hongmei Wang
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing, China
| |
Collapse
|
5
|
Affiliation(s)
- Hideo Kimura
- Department of Pharmacology, Sanyo-Onoda City University (Tokyo University of Science, Yamaguchi), Sanyo-Onoda, Yamaguchi, Japan
| |
Collapse
|