1
|
Smadja DM, Abreu MM. Hyperthermia and targeting heat shock proteins: innovative approaches for neurodegenerative disorders and Long COVID. Front Neurosci 2025; 19:1475376. [PMID: 39967803 PMCID: PMC11832498 DOI: 10.3389/fnins.2025.1475376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 01/03/2025] [Indexed: 02/20/2025] Open
Abstract
Neurodegenerative diseases (NDs) and Long COVID represent critical and growing global health challenges, characterized by complex pathophysiological mechanisms including neuronal deterioration, protein misfolding, and persistent neuroinflammation. The emergence of innovative therapeutic approaches, such as whole-body hyperthermia (WBH), offers promising potential to modulate underlying pathophysiological mechanisms in NDs and related conditions like Long COVID. WBH, particularly in fever-range, enhances mitochondrial function, induces heat shock proteins (HSPs), and modulates neuroinflammation-benefits that pharmacological treatments often struggle to replicate. HSPs such as HSP70 and HSP90 play pivotal roles in protein folding, aggregation prevention, and cellular protection, directly targeting pathological processes seen in NDs like Alzheimer's, Parkinson's, and Huntington's disease. Preliminary findings also suggest WBH's potential to alleviate neurological symptoms in Long COVID, where persistent neuroinflammation and serotonin dysregulation are prominent. Despite the absence of robust clinical trials, the therapeutic implications of WBH extend to immune modulation and the restoration of disrupted physiological pathways. However, the dual nature of hyperthermia's effects-balancing pro-inflammatory and anti-inflammatory responses-emphasizes the need for dose-controlled applications and stringent patient monitoring to minimize risks in vulnerable populations. While WBH shows potential interest, significant challenges remain. These include individual variability in response, limited accessibility to advanced hyperthermia technologies, and the need for standardized clinical protocols. Future research must focus on targeted clinical trials, biomarker identification, and personalized treatment strategies to optimize WBH's efficacy in NDs and Long COVID. The integration of WBH into therapeutic paradigms could mark a transformative step in addressing these complex conditions.
Collapse
Affiliation(s)
- David M. Smadja
- Paris Cité University, INSERM, Paris Cardiovascular Research Centre, Team Endotheliopathy and Hemostasis Disorders, Paris, France
- Hematology Department, Hôpital Européen Georges Pompidou, Assistance Publique Hôpitaux de Paris-Centre Université Paris Cité (APHP-CUP), Paris, France
| | - M. Marc Abreu
- BTT Medical Institute, Aventura, FL, United States
- BTT Engineering Department, Aventura, FL, United States
| |
Collapse
|
2
|
Bishop CR, Yan K, Nguyen W, Rawle DJ, Tang B, Larcher T, Suhrbier A. Microplastics dysregulate innate immunity in the SARS-CoV-2 infected lung. Front Immunol 2024; 15:1382655. [PMID: 38803494 PMCID: PMC11128561 DOI: 10.3389/fimmu.2024.1382655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/24/2024] [Indexed: 05/29/2024] Open
Abstract
Introduction Global microplastic (MP) pollution is now well recognized, with humans and animals consuming and inhaling MPs on a daily basis, with a growing body of concern surrounding the potential impacts on human health. Methods Using a mouse model of mild COVID-19, we describe herein the effects of azide-free 1 μm polystyrene MP beads, co-delivered into lungs with a SARS-CoV-2 omicron BA.5 inoculum. The effect of MPs on the host response to SARS-CoV-2 infection was analysed using histopathology and RNA-Seq at 2 and 6 days post-infection (dpi). Results Although infection reduced clearance of MPs from the lung, virus titres and viral RNA levels were not significantly affected by MPs, and overt MP-associated clinical or histopathological changes were not observed. However, RNA-Seq of infected lungs revealed that MP exposure suppressed innate immune responses at 2 dpi and increased pro-inflammatory signatures at 6 dpi. The cytokine profile at 6 dpi showed a significant correlation with the 'cytokine release syndrome' signature observed in some COVID-19 patients. Discussion The findings are consistent with the recent finding that MPs can inhibit phagocytosis of apoptotic cells via binding of Tim4. They also add to a growing body of literature suggesting that MPs can dysregulate inflammatory processes in specific disease settings.
Collapse
Affiliation(s)
- Cameron R. Bishop
- Inflammation Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Kexin Yan
- Inflammation Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Wilson Nguyen
- Inflammation Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Daniel J. Rawle
- Inflammation Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Bing Tang
- Inflammation Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Thibaut Larcher
- Institut National de Recherche Agronomique, Unité Mixte de Recherche, Oniris, Nantes, France
| | - Andreas Suhrbier
- Inflammation Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- Australian Infectious Disease Research Centre, Global Virus Network (GVN) Center of Excellence, Brisbane, QLD, Australia
| |
Collapse
|
3
|
Schroeder HT, De Lemos Muller CH, Heck TG, Krause M, Homem de Bittencourt PI. Heat shock response during the resolution of inflammation and its progressive suppression in chronic-degenerative inflammatory diseases. Cell Stress Chaperones 2024; 29:116-142. [PMID: 38244765 PMCID: PMC10939074 DOI: 10.1016/j.cstres.2024.01.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 01/22/2024] Open
Abstract
The heat shock response (HSR) is a crucial biochemical pathway that orchestrates the resolution of inflammation, primarily under proteotoxic stress conditions. This process hinges on the upregulation of heat shock proteins (HSPs) and other chaperones, notably the 70 kDa family of heat shock proteins, under the command of the heat shock transcription factor-1. However, in the context of chronic degenerative disorders characterized by persistent low-grade inflammation (such as insulin resistance, obesity, type 2 diabetes, nonalcoholic fatty liver disease, and cardiovascular diseases) a gradual suppression of the HSR does occur. This work delves into the mechanisms behind this phenomenon. It explores how the Western diet and sedentary lifestyle, culminating in the endoplasmic reticulum stress within adipose tissue cells, trigger a cascade of events. This cascade includes the unfolded protein response and activation of the NOD-like receptor pyrin domain-containing protein-3 inflammasome, leading to the emergence of the senescence-associated secretory phenotype and the propagation of inflammation throughout the body. Notably, the activation of the NOD-like receptor pyrin domain-containing protein-3 inflammasome not only fuels inflammation but also sabotages the HSR by degrading human antigen R, a crucial mRNA-binding protein responsible for maintaining heat shock transcription factor-1 mRNA expression and stability on heat shock gene promoters. This paper underscores the imperative need to comprehend how chronic inflammation stifles the HSR and the clinical significance of evaluating the HSR using cost-effective and accessible tools. Such understanding is pivotal in the development of innovative strategies aimed at the prevention and treatment of these chronic inflammatory ailments, which continue to take a heavy toll on global health and well-being.
Collapse
Affiliation(s)
- Helena Trevisan Schroeder
- Laboratory of Cellular Physiology (FisCel), Department of Physiology, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Carlos Henrique De Lemos Muller
- Laboratory of Inflammation, Metabolism and Exercise Research (LAPIMEX), Department of Physiology, ICBS, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Thiago Gomes Heck
- Post Graduate Program in Integral Health Care (PPGAIS-UNIJUÍ/UNICRUZ/URI), Regional University of Northwestern Rio Grande Do Sul State (UNIJUI) and Post Graduate Program in Mathematical and Computational Modeling (PPGMMC), UNIJUI, Ijuí, Rio Grande do Sul, Brazil
| | - Mauricio Krause
- Laboratory of Inflammation, Metabolism and Exercise Research (LAPIMEX), Department of Physiology, ICBS, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Paulo Ivo Homem de Bittencourt
- Laboratory of Cellular Physiology (FisCel), Department of Physiology, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil.
| |
Collapse
|
4
|
Zhou H, Ren X, Yang Y, Xu B, Li Y, Feng Y, Shisong F, Liu J. An alternative way of SARS-COV-2 to induce cell stress and elevated DNA damage risk in cardiomyocytes without direct infection. Immun Inflamm Dis 2022; 10:e638. [PMID: 35759228 PMCID: PMC9186334 DOI: 10.1002/iid3.638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/18/2022] [Accepted: 04/25/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND The outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-COV-2) in 2020 has led to millions of deaths worldwide. Case reports suggested that infection of SARS-CoV-2 is potentially associated with occurrences of cardiovascular pathology. However, the mode of action and mechanisms of SARS-CoV-2 influencing cardiomyocytes still remain largely unclear. AIMS To explore the mechanisms underlying cardiomyocytes damage induced by SARS-CoV-2 infection. MATERIALS & METHODS the serum markers of cardiovascular injury were analyzed by ELISA. The isolated SARS-CoV-2 virus were co-cultured with human cardiomyocytes (AC16) and immunofluorescence assay was used evaluate the invasion of virus. Moreover, serum obtained from acute stage of SARS-CoV-2 infected patients and healthy controls were used to incubate with AC16 cells, then indicators associated with cell stress and DNA damage were analyzed by Western-blot. RESULTS we found that high-sensitivity troponin T (hsTnT), an indicator of cardiovascular disease, was higher in the acute stage of COVID-19. Additionally, in vitro coculture of SARS-CoV-2 and AC16 cells showed almost no infectious ability of SARS-CoV-2 to directly infect AC16 cells. Results of serum treatment suggested that serum from infected subjects induced cell stress (upregulation of p53 and HSP70) and elevation of DNA damage risk (increased γH2Ax and H3K79me2) in AC16. DISCUSSION our observations indicated a hard way for SARS-CoV-2 to infect cardiomyocytes directly. However, infection-induced immune storm in serum could bring stress and elevated DNA damage risks to cardiovascular system. CONCLUSION These findings indicated the possibilities of SARS-CoV-2 inducing stress and elevating DNA damage risk to cardiomyocytes without direct infection.
Collapse
Affiliation(s)
- Houqing Zhou
- Fuwai Hospital Chinese Academy of Medical SciencesShenzhen, Nanshan District, ShenzhenGuangdongChina
| | - Xiaohu Ren
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020‐2024), Shenzhen Center for Disease Control and PreventionNanshan District, ShenzhenGuangdongChina
- Pingshan Translationtal Medicine CenterShenzhen Bay Laboratory CenterPingshan District, ShenzhenGuangdongChina
| | - Yang Yang
- The Third People's Hospital of ShenzhenLonggang District, ShenzhenGuangdongChina
| | - Benhong Xu
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020‐2024), Shenzhen Center for Disease Control and PreventionNanshan District, ShenzhenGuangdongChina
- Pingshan Translationtal Medicine CenterShenzhen Bay Laboratory CenterPingshan District, ShenzhenGuangdongChina
| | - Yichong Li
- Fuwai Hospital Chinese Academy of Medical SciencesShenzhen, Nanshan District, ShenzhenGuangdongChina
| | - Yin Feng
- Pingshan Translationtal Medicine CenterShenzhen Bay Laboratory CenterPingshan District, ShenzhenGuangdongChina
| | - Fang Shisong
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020‐2024), Shenzhen Center for Disease Control and PreventionNanshan District, ShenzhenGuangdongChina
| | - Jianjun Liu
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020‐2024), Shenzhen Center for Disease Control and PreventionNanshan District, ShenzhenGuangdongChina
- Pingshan Translationtal Medicine CenterShenzhen Bay Laboratory CenterPingshan District, ShenzhenGuangdongChina
| |
Collapse
|
5
|
Maurya R, Shamim U, Chattopadhyay P, Mehta P, Mishra P, Devi P, Swaminathan A, Saifi S, Khare K, Yadav A, Parveen S, Sharma P, A V, Tyagi A, Jha V, Tarai B, Jha S, Faruq M, Budhiraja S, Pandey R. Human-host transcriptomic analysis reveals unique early innate immune responses in different sub-phenotypes of COVID-19. Clin Transl Med 2022; 12:e856. [PMID: 35696527 PMCID: PMC9191825 DOI: 10.1002/ctm2.856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/12/2022] [Accepted: 04/18/2022] [Indexed: 11/12/2022] Open
Affiliation(s)
- Ranjeet Maurya
- INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Uzma Shamim
- INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
| | - Partha Chattopadhyay
- INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Priyanka Mehta
- INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
| | - Pallavi Mishra
- INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
| | - Priti Devi
- INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Aparna Swaminathan
- INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
| | - Sheeba Saifi
- INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
| | - Kriti Khare
- INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Aanchal Yadav
- INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Shaista Parveen
- INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
| | - Pooja Sharma
- INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Vivekanand A
- INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Akansha Tyagi
- Max Super Speciality Hospital (A Unit of Devki Devi Foundation), Max Healthcare, Delhi, India
| | - Vinita Jha
- Max Super Speciality Hospital (A Unit of Devki Devi Foundation), Max Healthcare, Delhi, India
| | - Bansidhar Tarai
- Max Super Speciality Hospital (A Unit of Devki Devi Foundation), Max Healthcare, Delhi, India
| | - Sujeet Jha
- Max Super Speciality Hospital (A Unit of Devki Devi Foundation), Max Healthcare, Delhi, India
| | - Mohd Faruq
- INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Sandeep Budhiraja
- Max Super Speciality Hospital (A Unit of Devki Devi Foundation), Max Healthcare, Delhi, India
| | - Rajesh Pandey
- INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|