1
|
Kakiyama G, Bai-Kamara N, Rodriguez-Agudo D, Takei H, Minowa K, Fuchs M, Biddinger S, Windle JJ, Subler MA, Murai T, Suzuki M, Nittono H, Sanyal A, Pandak WM. Liver specific transgenic expression of CYP7B1 attenuates early western diet-induced MASLD progression. J Lipid Res 2025; 66:100757. [PMID: 39952566 PMCID: PMC11954105 DOI: 10.1016/j.jlr.2025.100757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 01/30/2025] [Accepted: 02/10/2025] [Indexed: 02/17/2025] Open
Abstract
Effect of liver specific oxysterol 7α-hydroxylase (CYP7B1) overexpression on the Western diet (WD)-induced metabolic dysfunction-associated steatotic liver disease (MASLD) progression was studied in mice. Among various hepatic genes impacted during MASLD development, CYP7B1 is consistently suppressed in multiple MASLD mouse models and in human MASLD cohorts. CYP7B1 enzyme suppression leads to accumulations of bioactive oxysterols such as (25R)26-hydroxycholesterol (26HC) and 25-hydroxycholesterol (25HC). We challenged liver specific CYP7B1 transgenic (CYP7B1hep.tg) overexpressing mice with ad libitum WD feeding. Unlike their WT counterparts, WD-fed CYP7B1hep.tg mice developed no significant hepatotoxicity as evidenced by liver histology, lipid quantifications, and serum biomarker analyses. Hepatic 26HC and 25HC levels were maintained at the basal levels. The comparative gene expression/lipidomic analyses between WT and CYP7B1hep.tg mice revealed that chronically accumulated 26HC initiates LXR/PPAR-mediated hepatic fatty acid uptake and lipogenesis which surpasses fatty acid metabolism and export; compromising metabolic functions. In addition, major pathways related to oxidative stress, inflammation, and immune system including retinol metabolism, arachidonic acid metabolism, and linoleic acid metabolism were significantly impacted in the WD-fed WT mice. All pathways were unaltered in CYP7B1hep.tg mice liver. Furthermore, the nucleus of WT mouse liver but not of CYP7B1hep.tg mouse liver accumulated 26HC and 25HC in response to WD. These data strongly suggested that these two oxysterols are specifically important in nuclear transcriptional regulation for the described cytotoxic pathways. In conclusion, this study represents a "proof-of-concept" that maintaining normal mitochondrial cholesterol metabolism with hepatic CYP7B1 expression prevents oxysterol-driven liver toxicity; thus attenuating MASLD progression.
Collapse
Affiliation(s)
- Genta Kakiyama
- Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA, USA; Research Services, Central Virginia Veterans Affairs Health Care System, Richmond, VA, USA.
| | - Nanah Bai-Kamara
- Research Services, Central Virginia Veterans Affairs Health Care System, Richmond, VA, USA
| | - Daniel Rodriguez-Agudo
- Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA, USA; Research Services, Central Virginia Veterans Affairs Health Care System, Richmond, VA, USA
| | - Hajime Takei
- Junshin Clinic Bile Acid Institute, Meguro-ku, Tokyo, Japan
| | - Kei Minowa
- Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA, USA; Research Services, Central Virginia Veterans Affairs Health Care System, Richmond, VA, USA; Department of Pediatrics, Juntendo University Faculty of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Michael Fuchs
- Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA, USA; Research Services, Central Virginia Veterans Affairs Health Care System, Richmond, VA, USA
| | - Sudha Biddinger
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, MA, USA
| | - Jolene J Windle
- Department of Human and Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond VA, USA
| | - Mark A Subler
- Department of Human and Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond VA, USA
| | - Tsuyoshi Murai
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Ishikari, Hokkaido, Japan
| | - Mitsuyoshi Suzuki
- Department of Pediatrics, Juntendo University Faculty of Medicine, Bunkyo-ku, Tokyo, Japan
| | | | - Arun Sanyal
- Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA, USA; Stravitz-Sanyal Institute for Liver Disease and Metabolic Health, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - William M Pandak
- Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA, USA; Research Services, Central Virginia Veterans Affairs Health Care System, Richmond, VA, USA
| |
Collapse
|
2
|
Farhan F, Raghupathy RK, Baran MR, Wong A, Biswas L, Jiang HR, Craft JA, Shu X. Dysregulation of lipid metabolism in the liver of Tspo knockout mice. Biochim Biophys Acta Mol Cell Biol Lipids 2025; 1870:159566. [PMID: 39349136 DOI: 10.1016/j.bbalip.2024.159566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/17/2024] [Accepted: 09/27/2024] [Indexed: 10/02/2024]
Abstract
The translocator protein, TSPO, has been implicated in a wide range of cellular processes exerted from its position in the outer mitochondrial membrane from where it influences lipid metabolism and mitochondrial oxidative activity. Understanding how this protein regulates a profusion of processes requires further elucidation and to that end we have examined lipid metabolism and used an RNAseq strategy to compare transcript abundance in wildtype and Tspo knockout (KO) mouse liver. The levels of cholesterol, triglyceride and phospholipid were significantly elevated in the KO mouse liver. The expression of cholesterol homeostasis genes was markedly downregulated. Determination of the differential expression revealed that many genes were either up- or downregulated in the KO animals. However, a striking observation within the results was a decrease of transcripts for protein degradation proteins in KO animals while protease inhibitors were enriched. When the entire abundance data-set was analysed with CEMiTool, and revealed a module of proteins that were under-represented in the KO animals. These could subsequently be formed into a network comprising three interlinked clusters at the centre of which were proteins of cytoplasmic ribosomes with gene ontology terms suggesting impairment to translation. The largest cluster was dominated by proteins of lipid metabolism but also contained disparate systems of iron metabolism and behaviour. The third cluster was dominated by proteins of the electron transport chain and oxidative phosphorylation. These findings suggest that TSPO contributes to lipid metabolism, detoxification of active oxygen species and oxidative phosphorylation, and regulates mitochondrial retrograde signalling.
Collapse
Affiliation(s)
- Fahad Farhan
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow G4 0BA, United Kingdom
| | - Rakesh Kotapati Raghupathy
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow G4 0BA, United Kingdom
| | - Michal R Baran
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow G4 0BA, United Kingdom
| | - Aileen Wong
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow G4 0BA, United Kingdom
| | - Lincoln Biswas
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow G4 0BA, United Kingdom
| | - Hui-Rong Jiang
- Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, Scotland, United Kingdom
| | - John A Craft
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow G4 0BA, United Kingdom.
| | - Xinhua Shu
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow G4 0BA, United Kingdom; Department of Vision Science, Glasgow Caledonian University, Glasgow G4 0BA, United Kingdom.
| |
Collapse
|
3
|
Vasović DD, Ivković S, Živanović A, Major T, Milašin JM, Nikolić NS, Simonović JM, Šutulović N, Hrnčić D, Stanojlović O, Vesković M, Rašić DM, Mladenović D. Reduced light exposure mitigates streptozotocin-induced vascular changes and gliosis in diabetic retina by an anti-inflammatory effect and increased retinal cholesterol turnover. Chem Biol Interact 2024; 394:110996. [PMID: 38593908 DOI: 10.1016/j.cbi.2024.110996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 04/11/2024]
Abstract
Diabetic retinopathy is not cured efficiently and changes of lifestyle measures may delay early retinal injury in diabetes. The aim of our study was to investigate the effects of reduced daily light exposure on retinal vascular changes in streptozotocin (STZ)-induced model of DM with emphasis on inflammation, Aqp4 expression, visual cycle and cholesterol metabolism-related gene expression in rat retina and RPE. Male Wistar rats were divided into the following groups: 1. control; 2. diabetic group (DM) treated with streptozotocin (100 mg/kg); 3. group exposed to light/dark cycle 6/18 h (6/18); 4. diabetic group exposed to light/dark cycle 6/18 h (DM+6/18). Retinal vascular abnormalities were estimated based on lectin staining, while the expression of genes involved in the visual cycle, cholesterol metabolism, and inflammation was determined by qRT-PCR. Reduced light exposure alleviated vasculopathy, gliosis and the expression of IL-1 and TNF-α in the retina with increased perivascular Aqp4 expression. The expression of genes involved in visual cycle and cholesterol metabolism was significantly up-regulated in RPE in DM+6/18 vs. DM group. In the retina only the expression of APOE was significantly higher in DM+6/18 vs. DM group. Reduced light exposure mitigates vascular changes and gliosis in DM via its anti-inflammatory effect, increased retinal cholesterol turnover and perivascular Aqp4 expression.
Collapse
Affiliation(s)
- Dolika D Vasović
- Eye Hospital, University Clinical Centre of Serbia, 11000, Belgrade, Serbia
| | - Sanja Ivković
- Department of Molecular Biology and Endocrinology, Vinca - Institute for Nuclear Sciences, National Institute of Republic of Serbia, University of Belgrade, 11000, Belgrade, Serbia
| | - Ana Živanović
- Department of Molecular Biology and Endocrinology, Vinca - Institute for Nuclear Sciences, National Institute of Republic of Serbia, University of Belgrade, 11000, Belgrade, Serbia
| | - Tamara Major
- Department of Pharmacology, Faculty of Pharmacy, University of Belgrade, 11000, Belgrade, Serbia
| | - Jelena M Milašin
- Department of Human Genetics, School of Dental Medicine, University of Belgrade, 11000, Belgrade, Serbia
| | - Nađa S Nikolić
- Department of Human Genetics, School of Dental Medicine, University of Belgrade, 11000, Belgrade, Serbia
| | - Jelena M Simonović
- Department of Human Genetics, School of Dental Medicine, University of Belgrade, 11000, Belgrade, Serbia
| | - Nikola Šutulović
- Laboratory for Neurophysiology, Institute of Medical Physiology "Richard Burian", Faculty of Medicine, University of Belgrade, 11000, Belgrade, Serbia
| | - Dragan Hrnčić
- Laboratory for Neurophysiology, Institute of Medical Physiology "Richard Burian", Faculty of Medicine, University of Belgrade, 11000, Belgrade, Serbia
| | - Olivera Stanojlović
- Laboratory for Neurophysiology, Institute of Medical Physiology "Richard Burian", Faculty of Medicine, University of Belgrade, 11000, Belgrade, Serbia
| | - Milena Vesković
- Institute of Pathophysiology "Ljubodrag Buba Mihailovic", Faculty of Medicine, University of Belgrade, 11000, Belgrade, Serbia
| | - Dejan M Rašić
- Eye Hospital, University Clinical Centre of Serbia, 11000, Belgrade, Serbia; School of Medicine, University of Belgrade, 11000, Belgrade, Serbia
| | - Dušan Mladenović
- Institute of Pathophysiology "Ljubodrag Buba Mihailovic", Faculty of Medicine, University of Belgrade, 11000, Belgrade, Serbia.
| |
Collapse
|
4
|
Yu Y, Liu Y, Meng Z. Role of traditional Chinese medicine in age-related macular degeneration: exploring the gut microbiota's influence. Front Pharmacol 2024; 15:1356324. [PMID: 38333011 PMCID: PMC10850396 DOI: 10.3389/fphar.2024.1356324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 01/15/2024] [Indexed: 02/10/2024] Open
Abstract
The pathogenesis of age-related macular degeneration (AMD), a degenerative retinopathy, remains unclear. Administration of anti-vascular endothelial growth factor agents, antioxidants, fundus lasers, photodynamic therapy, and transpupillary warming has proven effective in alleviating symptoms; however, these interventions cannot prevent or reverse AMD. Increasing evidence suggests that AMD risk is linked to changes in the composition, abundance, and diversity of the gut microbiota (GM). Activation of multiple signaling pathways by GM metabolites, including lipopolysaccharides, oxysterols, short-chain fatty acids (SCFAs), and bile acids (BAs), influences retinal physiology. Traditional Chinese medicine (TCM), known for its multi-component and multi-target advantages, can help treat AMD by altering GM composition and regulating the levels of certain substances, such as lipopolysaccharides, reducing oxysterols, and increasing SCFA and BA contents. This review explores the correlation between GM and AMD and interventions for the two to provide new perspectives on treating AMD with TCM.
Collapse
Affiliation(s)
- Yujia Yu
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yong Liu
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Shandong Province Hospital of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Zhaoru Meng
- The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
| |
Collapse
|
5
|
Ghosh S, Ghzaiel I, Vejux A, Meaney S, Nag S, Lizard G, Tripathi G, Naez F, Paul S. Impact of Oxysterols in Age-Related Disorders and Strategies to Alleviate Adverse Effects. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1440:163-191. [PMID: 38036880 DOI: 10.1007/978-3-031-43883-7_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Oxysterols or cholesterol oxidation products are a class of molecules with the sterol moiety, derived from oxidative reaction of cholesterol through enzymatic and non-enzymatic processes. They are widely reported in animal-origin foods and prove significant involvement in the regulation of cholesterol homeostasis, lipid transport, cellular signaling, and other physiological processes. Reports of oxysterol-mediated cytotoxicity are in abundance and thus consequently implicated in several age-related and lifestyle disorders such as cardiovascular diseases, bone disorders, pancreatic disorders, age-related macular degeneration, cataract, neurodegenerative disorders such as Alzheimer's and Parkinson's disease, and some types of cancers. In this chapter, we attempt to review a selection of physiologically relevant oxysterols, with a focus on their formation, properties, and roles in health and disease, while also delving into the potential of natural and synthetic molecules along with bacterial enzymes for mitigating oxysterol-mediated cell damage.
Collapse
Affiliation(s)
- Shubhrima Ghosh
- Trinity Translational Medicine Institute, School of Medicine, Trinity College Dublin, Dublin 8, Ireland
| | - Imen Ghzaiel
- Bio-PeroxIL Laboratory, EA7270, University of Bourgogne & Inserm, Dijon, France
- Faculty of Medicine, Laboratory 'Nutrition, Functional Food and Vascular Health' (LR12ES05), University of Monastir, Monastir, Tunisia
| | - Anne Vejux
- Bio-PeroxIL Laboratory, EA7270, University of Bourgogne & Inserm, Dijon, France
| | - Steve Meaney
- School of Biological, Health and Sports Sciences, Technological University Dublin, Dublin 7, Ireland
| | - Sagnik Nag
- Department of Bio-Sciences, School of Biosciences & Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Gérard Lizard
- Bio-PeroxIL Laboratory, EA7270, University of Bourgogne & Inserm, Dijon, France
| | - Garima Tripathi
- Department of Bio-Sciences, School of Biosciences & Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Falal Naez
- Department of Microbiology, Vijaygarh Jyotish Ray College, University of Calcutta, Kolkata, India
| | - Srijita Paul
- Department of Microbiology, Gurudas College, Kolkata, West Bengal, India
| |
Collapse
|
6
|
Dias IHK, Shokr H. Oxysterols as Biomarkers of Aging and Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1440:307-336. [PMID: 38036887 DOI: 10.1007/978-3-031-43883-7_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Oxysterols derive from either enzymatic or non-enzymatic oxidation of cholesterol. Even though they are produced as intermediates of bile acid synthesis pathway, they are recognised as bioactive compounds in cellular processes. Therefore, their absence or accumulation have been shown to be associated with disease phenotypes. This chapter discusses the contribution of oxysterol to ageing, age-related diseases such as neurodegeneration and various disorders such as cancer, cardiovascular disease, diabetes, metabolic and ocular disorders. It is clear that oxysterols play a significant role in development and progression of these diseases. As a result, oxysterols are being investigated as suitable markers for disease diagnosis purposes and some drug targets are in development targeting oxysterol pathways. However, further research will be needed to confirm the suitability of these potentials.
Collapse
Affiliation(s)
- Irundika H K Dias
- Aston Medical School, College of Health and Life Sciences, Aston University, Birmingham, UK.
| | - Hala Shokr
- Manchester Pharmacy School, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| |
Collapse
|
7
|
Ksila M, Ghzaiel I, Sassi K, Zarrouk A, Leoni V, Poli G, Rezig L, Pires V, Meziane S, Atanasov AG, Hammami S, Hammami M, Masmoudi-Kouki O, Hamdi O, Jouanny P, Samadi M, Vejux A, Ghrairi T, Lizard G. Therapeutic Applications of Oxysterols and Derivatives in Age-Related Diseases, Infectious and Inflammatory Diseases, and Cancers. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1440:379-400. [PMID: 38036890 DOI: 10.1007/978-3-031-43883-7_19] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Oxysterols, resulting from the oxidation of cholesterol, are formed either by autoxidation, enzymatically, or by both processes. These molecules, which are provided in more or less important quantities depending on the type of diet, are also formed in the body and their presence is associated with a normal physiological activity. Their increase and decrease at the cellular level and in biological fluids can have significant consequences on health due or not to the interaction of some of these molecules with different types of receptors but also because oxysterols are involved in the regulation of RedOx balance, cytokinic and non-cytokinic inflammation, lipid metabolism, and induction of cell death. Currently, various pathologies such as age-related diseases, inflammatory and infectious diseases, and several cancers are associated with abnormal levels of oxysterols. Due to the important biological activities of oxysterols, their interaction with several receptors and their very likely implications in several diseases, this review focuses on these molecules and on oxysterol derivatives, which are often more efficient, in a therapeutic context. Currently, several oxysterol derivatives are developed and are attracting a lot of interest.
Collapse
Affiliation(s)
- Mohamed Ksila
- Bio-PeroxIL Laboratory, EA7270, University of Bourgogne & Inserm, Dijon, France
- Laboratory of Neurophysiology, Cellular Physiopathology and Valorisation of Biomolecules (LR18ES03), Department of Biology, Faculty of Sciences, University Tunis El Manar, Tunis, Tunisia
| | - Imen Ghzaiel
- Bio-PeroxIL Laboratory, EA7270, University of Bourgogne & Inserm, Dijon, France
- Laboratory of Rangeland Ecosystems and Valorization of Spontaneous Plants and Associated Microorganisms (LR16IRA03), Arid Regions Institute, University of Gabes, Medenine, Tunisia
| | - Khouloud Sassi
- Bio-PeroxIL Laboratory, EA7270, University of Bourgogne & Inserm, Dijon, France
| | - Amira Zarrouk
- Laboratory of Rangeland Ecosystems and Valorization of Spontaneous Plants and Associated Microorganisms (LR16IRA03), Arid Regions Institute, University of Gabes, Medenine, Tunisia
- Faculty of Medicine, University of Sousse, Laboratory of Biochemistry, Sousse, Tunisia
| | - Valerio Leoni
- Department of Laboratory Medicine, University of Milano-Bicocca, Azienda Socio Sanitaria Territoriale Brianza ASST-Brianza, Desio Hospital, Desio, Italy
| | - Giuseppe Poli
- Department of Clinical and Biological Sciences, University of Turin, San Luigi Hospital, Turin, Italy
| | - Leila Rezig
- University of Carthage, National Institute of Applied Sciences and Technology, LR11ES26, LIP-MB 'Laboratory of Protein Engineering and Bioactive Molecules', Tunis, Tunisia
- University of Carthage, High Institute of Food Industries, El Khadra City, Tunis, Tunisia
| | - Vivien Pires
- Bio-PeroxIL Laboratory, EA7270, University of Bourgogne & Inserm, Dijon, France
| | - Smail Meziane
- Institut Européen des Antioxydants (IEA), Neuves-Maisons, France
| | - Atanas G Atanasov
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Magdalenka, Poland
| | - Sonia Hammami
- Laboratory of Rangeland Ecosystems and Valorization of Spontaneous Plants and Associated Microorganisms (LR16IRA03), Arid Regions Institute, University of Gabes, Medenine, Tunisia
- University Hospital Fattouma Bourguiba, Monastir, Tunisia
| | - Mohamed Hammami
- Laboratory of Rangeland Ecosystems and Valorization of Spontaneous Plants and Associated Microorganisms (LR16IRA03), Arid Regions Institute, University of Gabes, Medenine, Tunisia
| | - Olfa Masmoudi-Kouki
- Laboratory of Neurophysiology, Cellular Physiopathology and Valorisation of Biomolecules (LR18ES03), Department of Biology, Faculty of Sciences, University Tunis El Manar, Tunis, Tunisia
| | - Oumaima Hamdi
- University Hospital Fattouma Bourguiba, Monastir, Tunisia
- Pôle Personnes Agées, CHU de Dijon, Centre de Champmaillot, Dijon Cedex, France
| | - Pierre Jouanny
- Pôle Personnes Agées, CHU de Dijon, Centre de Champmaillot, Dijon Cedex, France
| | - Mohammad Samadi
- Laboratory of Chemistry and Physics Multi-Scale Approach to Complex Environments, Department of Chemistry, University Lorraine, Metz, France
| | - Anne Vejux
- Bio-PeroxIL Laboratory, EA7270, University of Bourgogne & Inserm, Dijon, France
| | - Taoufik Ghrairi
- Laboratory of Neurophysiology, Cellular Physiopathology and Valorisation of Biomolecules (LR18ES03), Department of Biology, Faculty of Sciences, University Tunis El Manar, Tunis, Tunisia
| | - Gérard Lizard
- Bio-PeroxIL Laboratory, EA7270, University of Bourgogne & Inserm, Dijon, France.
| |
Collapse
|
8
|
Liu M, Wu S, Wu Y, Zhang J, Chen J, Peng X, Yang Q, Tan Z, Zeng Z. Rubus suavissimus S. Lee Extract Alleviates Oxidative Stress and Inflammation in H 2O 2-Treated Retinal Pigment Epithelial Cells and in High-Fat Diet-Fed Mouse Retinas. FRONT BIOSCI-LANDMRK 2023; 28:279. [PMID: 38062823 DOI: 10.31083/j.fbl2811279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 07/15/2023] [Accepted: 07/20/2023] [Indexed: 12/18/2023]
Abstract
BACKGROUND Age-related macular degeneration (AMD) is the most common cause of visual disorders in the aged population and is characterized by the formation of retinal pigment epithelium (RPE) deposits and dysfunction/death of the RPE and photoreceptors. It is supposed that both oxidative stress and inflammation play a critical role in the pathogenesis of AMD. The development of therapeutic strategies against oxidative stress and inflammation in AMD is urgently needed. Rubus suavissimus S. Lee (RS), a medicinal plant growing in the southwest region of China, has been used as an herbal tea and medicine for various diseases. METHODS In this project, we evaluate the therapeutic potential of RS extract for AMD. We prepared RS extracts from dried leaves, which contained the main functional compounds. RESULTS RS extract significantly increased cell viability, upregulated the expression of antioxidant genes, lowered the generation of malondialdehyde and reactive oxygen species, and suppressed inflammation in H2O2-treated human RPE cells. In the in vivo study, treatment with RS extract attenuated body weight gain, lowered cholesterol and triglyceride levels in the liver and serum, increased antioxidant capacity, and alleviated inflammation in the retina and RPE/choroid of mice fed a high-fat diet. CONCLUSIONS Our findings suggest that RS extract offers therapeutic potential for treating AMD patients.
Collapse
Affiliation(s)
- Minzhuo Liu
- College of Biological and Chemical Engineering, Changsha University, 410022 Changsha, Hunan, China
| | - Shuiqing Wu
- Department of Urology, The Second Xiangya Hospital, Central South University, 410011 Changsha, Hunan, China
| | - Yi Wu
- College of Chinese Medicine, Hunan University of Chinese Medicine, 410208 Changsha, Hunan, China
| | - Jie Zhang
- College of Biological and Chemical Engineering, Changsha University, 410022 Changsha, Hunan, China
| | - Jun Chen
- College of Biological and Chemical Engineering, Changsha University, 410022 Changsha, Hunan, China
| | - Xucong Peng
- College of Biological and Chemical Engineering, Changsha University, 410022 Changsha, Hunan, China
| | - Qiusheng Yang
- College of Biological and Chemical Engineering, Changsha University, 410022 Changsha, Hunan, China
| | - Zhoujin Tan
- College of Chinese Medicine, Hunan University of Chinese Medicine, 410208 Changsha, Hunan, China
| | - Zhihong Zeng
- College of Biological and Chemical Engineering, Changsha University, 410022 Changsha, Hunan, China
| |
Collapse
|
9
|
Cao Y, Ibrahim KS, Li X, Wong A, Wu Y, Yu XD, Zhou X, Tan Z, He Z, Craft JA, Shu X. Chinese medicine, Qijudihuang pill, mediates cholesterol metabolism and regulates gut microbiota in high-fat diet-fed mice, implications for age-related macular degeneration. Front Immunol 2023; 14:1274401. [PMID: 37901244 PMCID: PMC10602650 DOI: 10.3389/fimmu.2023.1274401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/21/2023] [Indexed: 10/31/2023] Open
Abstract
BACKGROUND Traditional Chinese Medicines have been used for thousands of years but without any sound empirical basis. One such preparation is the Qijudihuang pill (QP), a mixture of eight herbs, that has been used in China for the treatment of various conditions including age-related macular degeneration (AMD), the most common cause of blindness in the aged population. In order to explain the mechanism behind the effect of QP, we used an AMD model of high-fat diet (HFD) fed mice to investigate cholesterol homeostasis, oxidative stress, inflammation and gut microbiota. METHODS Mice were randomly divided into three groups, one group was fed with control diet (CD), the other two groups were fed with high-fat-diet (HFD). One HFD group was treated with QP, both CD and the other HFD groups were treated with vehicles. Tissue samples were collected after the treatment. Cholesterol levels in retina, retinal pigment epithelium (RPE), liver and serum were determined using a commercial kit. The expression of enzymes involved in cholesterol metabolism, inflammation and oxidative stress was measured with qRT-PCR. Gut microbiota was analyzed using 16S rRNA sequencing. RESULTS In the majority of the lipid determinations, analytes were elevated by HFD but this was reversed by QP. Cholesterol metabolism including the enzymes of bile acid (BA) formation was suppressed by HFD but again this was reversed by QP. BAs play a major role in signaling between host and microbiome and this is disrupted by HFD resulting in major changes in the composition of colonic bacterial communities. Associated with these changes are predictions of the metabolic pathway complexity and abundance of individual pathways. These concerned substrate breakdowns, energy production and the biosynthesis of pro-inflammatory factors but were changed back to control characteristics by QP. CONCLUSION We propose that the ability of QP to reverse these HFD-induced effects is related to mechanisms acting to lower cholesterol level, oxidative stress and inflammation, and to modulate gut microbiota.
Collapse
Affiliation(s)
- Yanqun Cao
- Pu Ai Medical School, Shaoyang University, Shaoyang, Hunan, China
| | - Khalid S. Ibrahim
- Department of Biological and Biomedical Sciences , Glasgow Caledonian University, Glasgow, United Kingdom
- Department of Biology, Faculty of Science, University of Zakho, Zakho, Iraq
| | - Xing Li
- Pu Ai Medical School, Shaoyang University, Shaoyang, Hunan, China
| | - Aileen Wong
- Department of Biological and Biomedical Sciences , Glasgow Caledonian University, Glasgow, United Kingdom
| | - Yi Wu
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Xu-Dong Yu
- Pu Ai Medical School, Shaoyang University, Shaoyang, Hunan, China
| | - Xinzhi Zhou
- Department of Biological and Biomedical Sciences , Glasgow Caledonian University, Glasgow, United Kingdom
| | - Zhoujin Tan
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Zhiming He
- Pu Ai Medical School, Shaoyang University, Shaoyang, Hunan, China
| | - John A. Craft
- Department of Biological and Biomedical Sciences , Glasgow Caledonian University, Glasgow, United Kingdom
| | - Xinhua Shu
- Pu Ai Medical School, Shaoyang University, Shaoyang, Hunan, China
- Department of Biological and Biomedical Sciences , Glasgow Caledonian University, Glasgow, United Kingdom
- Department of Vision Science , Glasgow Caledonian University, Glasgow, United Kingdom
| |
Collapse
|
10
|
Pikuleva IA. Challenges and Opportunities in P450 Research on the Eye. Drug Metab Dispos 2023; 51:1295-1307. [PMID: 36914277 PMCID: PMC10506698 DOI: 10.1124/dmd.122.001072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 02/14/2023] [Accepted: 03/06/2023] [Indexed: 03/15/2023] Open
Abstract
Of the 57 cytochrome P450 enzymes found in humans, at least 30 have ocular tissues as an expression site. Yet knowledge of the roles of these P450s in the eye is limited, in part because only very few P450 laboratories expanded their research interests to studies of the eye. Hence the goal of this review is to bring attention of the P450 community to the eye and encourage more ocular studies. This review is also intended to be educational for eye researchers and encourage their collaborations with P450 experts. The review starts with a description of the eye, a fascinating sensory organ, and is followed by sections on ocular P450 localizations, specifics of drug delivery to the eye, and individual P450s, which are grouped and presented based on their substrate preferences. In sections describing individual P450s, available eye-relevant information is summarized and concluded by the suggestions on the opportunities in ocular studies of the discussed enzymes. Potential challenges are addressed as well. The conclusion section outlines several practical suggestions on how to initiate eye-related research. SIGNIFICANCE STATEMENT: This review focuses on the cytochrome P450 enzymes in the eye to encourage their ocular investigations and collaborations between P450 and eye researchers.
Collapse
Affiliation(s)
- Irina A Pikuleva
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
11
|
Akiyama Y, Katsuki S, Matoba T, Nakano Y, Takase S, Nakashiro S, Yamamoto M, Mukai Y, Inoue S, Oi K, Higo T, Takemoto M, Suematsu N, Eshima K, Miyata K, Usui M, Sadamatsu K, Kadokami T, Hironaga K, Ichi I, Todaka K, Kishimoto J, Tsutsui H. Association of Serum Oxysterols with Cholesterol Metabolism Markers and Clinical Factors in Patients with Coronary Artery Disease: A Covariance Structure Analysis. Nutrients 2023; 15:2997. [PMID: 37447327 DOI: 10.3390/nu15132997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Oxysterols have been implicated in the pathogenesis of cardiovascular diseases. Serum levels of oxysterols could be positively correlated with cholesterol absorption and synthesis. However, physiological regulation of various serum oxysterols is largely unknown. The aim of this study was to investigate the relationship between clinical factors and cholesterol metabolism markers, and identify oxysterols associated with cholesterol absorption and synthesis in patients with coronary artery disease. Subjects (n = 207) who underwent coronary stenting between 2011 and 2013 were studied cross-sectionally. We measured lipid profiles including serum oxysterols. As for the serum biomarkers of cholesterol synthesis and absorption, oxysterol levels were positively correlated with campesterol and lathosterol. Covariance structure analysis revealed that dyslipidemia and statin usage had a positive correlation with "cholesterol absorption". Statin usage also had a positive correlation with "cholesterol synthesis". Several oxysterols associated with cholesterol absorption and/or synthesis. In conclusion, we elucidated the potential clinical factors that may affect cholesterol metabolism, and the associations between various oxysterols with cholesterol absorption and/or synthesis in patients with coronary artery disease.
Collapse
Affiliation(s)
- Yusuke Akiyama
- Department of Cardiovascular, Respiratory and Geriatric Medicine, Kyushu University Beppu Hospital, Oita 874-0838, Japan
| | - Shunsuke Katsuki
- Department of Cardiovascular Medicine, Kyushu University Hospital, Fukuoka 812-8582, Japan
| | - Tetsuya Matoba
- Department of Cardiovascular Medicine, Kyushu University Hospital, Fukuoka 812-8582, Japan
| | - Yasuhiro Nakano
- Department of Cardiovascular Medicine, Kyushu University Hospital, Fukuoka 812-8582, Japan
| | - Susumu Takase
- Department of Cardiovascular Medicine, Kyushu University Hospital, Fukuoka 812-8582, Japan
| | - Soichi Nakashiro
- Department of Cardiovascular Medicine, Saiseikai Fukuoka General Hospital, Fukuoka 810-0001, Japan
| | - Mitsutaka Yamamoto
- Department of Cardiovascular Medicine, Harasanshin Hospital, Fukuoka 812-0033, Japan
| | - Yasushi Mukai
- Department of Cardiovascular Medicine, Japanese Red Cross Fukuoka Hospital, Fukuoka 815-0082, Japan
| | - Shujiro Inoue
- Department of Cardiovascular Medicine, National Hospital Organization Kyushu Medical Centre, Fukuoka 810-0065, Japan
| | - Keiji Oi
- Department of Cardiovascular Medicine, Harasanshin Hospital, Fukuoka 812-0033, Japan
| | - Taiki Higo
- Wakaba Heart Clinic, Fukuoka 810-0073, Japan
| | - Masao Takemoto
- Cardiovascular Center, Steel Memorial Yahata Hospital, Fukuoka 805-8508, Japan
| | - Nobuhiro Suematsu
- Department of Cardiovascular Medicine, Harasanshin Hospital, Fukuoka 812-0033, Japan
| | - Kenichi Eshima
- Matsuguchi Internal Medicine and Cardiology Clinic, Fukuoka 814-0133, Japan
| | - Kenji Miyata
- Department of Cardiovascular Medicine, Japan Community Health Care Organization, Kyushu Hospital, Fukuoka 806-8501, Japan
| | - Makoto Usui
- Department of Cardiovascular Medicine, Hamanomachi Hospital, Fukuoka 810-0072, Japan
| | - Kenji Sadamatsu
- Department of Cardiovascular Medicine, Omuta City Hospital, Fukuoka 836-0861, Japan
| | - Toshiaki Kadokami
- Department of Cardiovascular Medicine, Saiseikai Futsukaichi Hospital, Fukuoka 818-8516, Japan
| | - Kiyoshi Hironaga
- Department of Cardiovascular Medicine, Fukuoka City Hospital, Fukuoka 812-0046, Japan
| | - Ikuyo Ichi
- Graduate School of Humanities and Science, Ochanomizu University, Tokyo 112-8610, Japan
| | - Koji Todaka
- Center for Clinical and Translational Research, Kyushu University Hospital, Fukuoka 812-8582, Japan
| | - Junji Kishimoto
- Center for Clinical and Translational Research, Kyushu University Hospital, Fukuoka 812-8582, Japan
| | - Hiroyuki Tsutsui
- School of Medicine and Graduate School, International University of Health and Welfare, Fukuoka 831-8501, Japan
| |
Collapse
|
12
|
Cao Y, Li XY, Tchivelekete GM, Li X, Zhou X, He Z, Reilly J, Tan Z, Shu X. Bioinformatical and Biochemical Analyses on the Protective Role of Traditional Chinese Medicine against Age-Related Macular Degeneration. Curr Eye Res 2022; 47:1450-1462. [PMID: 35947018 DOI: 10.1080/02713683.2022.2108456] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/22/2022] [Accepted: 07/27/2022] [Indexed: 11/03/2022]
Abstract
PURPOSE Age-related macular degeneration (AMD) is the commonest cause of permanent vision loss in the elderly. Traditional Chinese medicine (TCM) has long been used to treat AMD, although the underlying functional mechanisms are not understood. This study aims to predict the active ingredients through screening the chemical ingredients of anti-AMD decoction and to elucidate the underlying mechanisms. METHODS We collected the prescriptions for effective AMD treatment with traditional Chinese medicine and screened several Chinese medicines that were used most frequently in order to compose "anti-AMD decoction." The pharmacologically active ingredients and corresponding targets in this anti-AMD decoction were mined using the Traditional Chinese Medicine Systems Pharmacology (TCMSP) database. Subsequently, the AMD-related targets were identified through the GeneCards database. Network pharmacology was performed to construct the visual network of anti-AMD decoction-AMD protein-protein interaction (PPI). Further, the Autodock software was adopted for molecular docking on the core active ingredients and core targets. The function of core ingredients against oxidative stress and inflammation in retinal pigment epithelial cells was assessed using biochemical assays. RESULTS We screened out 268 active ingredients in anti-AMD decoction corresponding to 258 ingredient targets, combined with 2160 disease targets in AMD, and obtained 129 drug-disease common targets. The key core proteins were predominantly involved in inflammation. Furthermore, molecular docking showed that four potential active ingredients (Quercetin, luteolin, naringenin and hederagenin) had good affinity with the core proteins, IL-6, TNF, VEGFA and MAPK3. Quercetin, luteolin and naringenin demonstrated capacities against oxidative stress and inflammation in human retinal pigment epithelial cells. CONCLUSIONS The data suggests that anti-AMD decoction has multiple functional components and targets in treating AMD, possibly mediated by suppression of oxidative stress and inflammation.
Collapse
Affiliation(s)
- Yanqun Cao
- School of Basic Medical Sciences, Shaoyang University, Shaoyang, P.R. China
| | - Xiao-Ya Li
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, P.R. China
| | - Gabriel Mbuta Tchivelekete
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow, UK
- Department of Marine Biology, Faculty of Natural Science, University of Namibe, Angola
| | - Xing Li
- School of Basic Medical Sciences, Shaoyang University, Shaoyang, P.R. China
| | - Xinzhi Zhou
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow, UK
| | - Zhiming He
- School of Basic Medical Sciences, Shaoyang University, Shaoyang, P.R. China
| | - James Reilly
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow, UK
| | - Zhoujin Tan
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, P.R. China
| | - Xinhua Shu
- School of Basic Medical Sciences, Shaoyang University, Shaoyang, P.R. China
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow, UK
| |
Collapse
|
13
|
Passarelli MN, McDonald JG, Thompson BM, Arega EA, Palys TJ, Rees JR, Barry EL, Baron JA. Association of demographic and health characteristics with circulating oxysterol concentrations. J Clin Lipidol 2022; 16:345-355. [PMID: 35461764 PMCID: PMC10882644 DOI: 10.1016/j.jacl.2022.03.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 03/21/2022] [Accepted: 03/28/2022] [Indexed: 11/22/2022]
Abstract
BACKGOUND Circulating oxysterols, cholesterol metabolites with important signaling functions, are increasingly being recognized as candidate biomarkers for several diseases, but associations with demographic and health characteristics remain poorly described. OBJECTIVE This study aims to characterize associations of major circulating oxysterols with sex, age, race/ethnicity, body mass index (BMI), lifestyle factors, and use of common medications. METHODS We measured plasma concentrations of 27-hydroxycholesterol (27-OHC), 25-hydroxycholesterol (25-OHC), 24(S)-hydroxycholesterol (24(S)-OHC), 7ɑ-hydroxycholesterol (7ɑ-OHC), and 4β-hydroxycholesterol (4β-OHC) from 1,440 participants of a completed clinical trial for the chemoprevention of colorectal adenomas. Adjusted percent difference in means were calculated using linear regression. RESULTS Women had 18% (95% CI, 14%, 22%) lower 27-OHC and 21% (15%, 27%) higher 4β-OHC than men. Blacks had 15% (7%, 23%) higher 4β-OHC than Non-Hispanic Whites, and Asian or Pacific Islanders had 19% (2%, 35%) higher 7ɑ-OHC than Non-Hispanic Whites. Individuals of BMI ≥35 kg/m2 had 33% (25%, 41%) lower 4β-OHC than those <25 kg/m2. Current smokers had 15% (5%, 24%) higher 7ɑ-OHC than never smokers, and daily alcohol drinkers had 17% (10%, 24%) higher 7ɑ-OHC than never drinkers. Statin use was associated with lower concentrations of all 5 oxysterols. Differences in mean <15% were found for characteristics such as age, total dietary energy intake, physical activity, diabetes, and anti-inflammatory drug use. CONCLUSION Circulating oxysterols are uniquely associated with multiple demographic and health characteristics.
Collapse
Affiliation(s)
- Michael N Passarelli
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA.
| | - Jeffrey G McDonald
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA; Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Bonne M Thompson
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA; Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Enat A Arega
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA; David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
| | - Thomas J Palys
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Judy R Rees
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Elizabeth L Barry
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - John A Baron
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA; Department of Medicine, School of Medicine, University of North Carolina, Chapel Hill, NC, USA; Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
14
|
Markitantova YV, Simirskii VN. The Role of the Purinergic Signaling System in the Control of Histogenesis, Homeostasis, and Pathogenesis of the Vertebrate Retina. Russ J Dev Biol 2021. [DOI: 10.1134/s1062360421060084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Farhan F, Almarhoun M, Wong A, Findlay AS, Bartholomew C, Williams MTS, Hurd TW, Shu X. Deletion of TSPO Causes Dysregulation of Cholesterol Metabolism in Mouse Retina. Cells 2021; 10:3066. [PMID: 34831289 PMCID: PMC8621976 DOI: 10.3390/cells10113066] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/03/2021] [Accepted: 11/04/2021] [Indexed: 12/22/2022] Open
Abstract
Cholesterol dysregulation has been implicated in age-related macular degeneration (AMD), the most common cause of visual impairment in the elderly. The 18 KDa translocator protein (TSPO) is a mitochondrial outer membrane protein responsible for transporting cholesterol from the mitochondrial outer membrane to the inner membrane. TSPO is highly expressed in retinal pigment epithelial (RPE) cells, and TSPO ligands have shown therapeutic potential for the treatment of AMD. Here, we characterized retinal pathology of Tspo knockout (KO) mice using histological, immunohistochemical, biochemical and molecular biological approaches. We found that Tspo KO mice had normal retinal morphology (by light microscopy) but showed elevated levels of cholesterol, triglycerides and phospholipids with perturbed cholesterol efflux in the RPE cells of Tspo KO mice. Expression of cholesterol-associated genes (Nr1h3, Abca1, Abcg1, Cyp27a1 and Cyp46a1) was significantly downregulated, and production of pro-inflammatory cytokines was markedly increased in Tspo KO retinas. Furthermore, microglial activation was also observed in Tspo KO mouse retinas. These findings provide new insights into the function of TSPO in the retina and may aid in the design of new therapeutic strategies for the treatment of AMD.
Collapse
Affiliation(s)
- Fahad Farhan
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow G4 0BA, UK; (F.F.); (M.A.); (A.W.); (C.B.); (M.T.S.W.)
| | - Mohammad Almarhoun
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow G4 0BA, UK; (F.F.); (M.A.); (A.W.); (C.B.); (M.T.S.W.)
| | - Aileen Wong
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow G4 0BA, UK; (F.F.); (M.A.); (A.W.); (C.B.); (M.T.S.W.)
| | - Amy S. Findlay
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK; (A.S.F.); (T.W.H.)
| | - Chris Bartholomew
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow G4 0BA, UK; (F.F.); (M.A.); (A.W.); (C.B.); (M.T.S.W.)
| | - Mark T. S. Williams
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow G4 0BA, UK; (F.F.); (M.A.); (A.W.); (C.B.); (M.T.S.W.)
| | - Toby W. Hurd
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK; (A.S.F.); (T.W.H.)
| | - Xinhua Shu
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow G4 0BA, UK; (F.F.); (M.A.); (A.W.); (C.B.); (M.T.S.W.)
- School of Basic Medical Sciences, Shaoyang University, Shaoyang 422000, China
- Department of Vision Science, Glasgow Caledonian University, Glasgow G4 0BA, UK
| |
Collapse
|
16
|
Affiliation(s)
- Mark Nixon
- University/British Heart Foundation Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Ruth Andrew
- University/British Heart Foundation Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
17
|
Nury T, Yammine A, Ghzaiel I, Sassi K, Zarrouk A, Brahmi F, Samadi M, Rup-Jacques S, Vervandier-Fasseur D, Pais de Barros J, Bergas V, Ghosh S, Majeed M, Pande A, Atanasov A, Hammami S, Hammami M, Mackrill J, Nasser B, Andreoletti P, Cherkaoui-Malki M, Vejux A, Lizard G. Attenuation of 7-ketocholesterol- and 7β-hydroxycholesterol-induced oxiapoptophagy by nutrients, synthetic molecules and oils: Potential for the prevention of age-related diseases. Ageing Res Rev 2021; 68:101324. [PMID: 33774195 DOI: 10.1016/j.arr.2021.101324] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/10/2021] [Accepted: 03/12/2021] [Indexed: 12/18/2022]
Abstract
Age-related diseases for which there are no effective treatments include cardiovascular diseases; neurodegenerative diseases such as Alzheimer's disease; eye disorders such as cataract and age-related macular degeneration; and, more recently, Severe Acute Respiratory Syndrome (SARS-CoV-2). These diseases are associated with plasma and/or tissue increases in cholesterol derivatives mainly formed by auto-oxidation: 7-ketocholesterol, also known as 7-oxo-cholesterol, and 7β-hydroxycholesterol. The formation of these oxysterols can be considered as a consequence of mitochondrial and peroxisomal dysfunction, leading to increased in oxidative stress, which is accentuated with age. 7-ketocholesterol and 7β-hydroxycholesterol cause a specific form of cytotoxic activity defined as oxiapoptophagy, including oxidative stress and induction of death by apoptosis associated with autophagic criteria. Oxiaptophagy is associated with organelle dysfunction and in particular with mitochondrial and peroxisomal alterations involved in the induction of cell death and in the rupture of redox balance. As the criteria characterizing 7-ketocholesterol- and 7β-hydroxycholesterol-induced cytotoxicity are often simultaneously observed in major age-related diseases (cardiovascular diseases, age-related macular degeneration, Alzheimer's disease) the involvement of these oxysterols in the pathophysiology of the latter seems increasingly likely. It is therefore important to better understand the signalling pathways associated with the toxicity of 7-ketocholesterol and 7β-hydroxycholesterol in order to identify pharmacological targets, nutrients and synthetic molecules attenuating or inhibiting the cytotoxic activities of these oxysterols. Numerous natural cytoprotective compounds have been identified: vitamins, fatty acids, polyphenols, terpenes, vegetal pigments, antioxidants, mixtures of compounds (oils, plant extracts) and bacterial enzymes. However, few synthetic molecules are able to prevent 7-ketocholesterol- and/or 7β-hydroxycholesterol-induced cytotoxicity: dimethyl fumarate, monomethyl fumarate, the tyrosine kinase inhibitor AG126, memantine, simvastatine, Trolox, dimethylsufoxide, mangafodipir and mitochondrial permeability transition pore (MPTP) inhibitors. The effectiveness of these compounds, several of which are already in use in humans, makes it possible to consider using them for the treatment of certain age-related diseases associated with increased plasma and/or tissue levels of 7-ketocholesterol and/or 7β-hydroxycholesterol.
Collapse
|