1
|
Chakraborty A, Wang C, Hodgson-Garms M, Broughton BRS, Frith JE, Kelly K, Samuel CS. Induced pluripotent stem cell-derived mesenchymal stem cells reverse bleomycin-induced pulmonary fibrosis and related lung stiffness. Biomed Pharmacother 2024; 178:117259. [PMID: 39116786 DOI: 10.1016/j.biopha.2024.117259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/23/2024] [Accepted: 08/02/2024] [Indexed: 08/10/2024] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is characterised by lung scarring and stiffening, for which there is no effective cure. Based on the immunomodulatory and anti-fibrotic effects of induced pluripotent stem cell (iPSC) and mesenchymoangioblast-derived mesenchymal stem cells (iPSCs-MSCs), this study evaluated the therapeutic effects of iPSCs-MSCs in a bleomycin (BLM)-induced model of pulmonary fibrosis. Adult male C57BL/6 mice received a double administration of BLM (0.15 mg/day) 7-days apart and were then maintained for a further 28-days (until day-35), whilst control mice were administered saline 7-days apart and maintained for the same time-period. Sub-groups of BLM-injured mice were intravenously-injected with 1×106 iPSC-MSCs on day-21 alone or on day-21 and day-28 and left until day-35 post-injury. Measures of lung inflammation, fibrosis and compliance were then evaluated. BLM-injured mice presented with lung inflammation characterised by increased immune cell infiltration and increased pro-inflammatory cytokine expression, epithelial damage, lung transforming growth factor (TGF)-β1 activity, myofibroblast differentiation, interstitial collagen fibre deposition and topology (fibrosis), in conjunction with reduced matrix metalloproteinase (MMP)-to-tissue inhibitor of metalloproteinase (TIMP) ratios and dynamic lung compliance. All these measures were ameliorated by a single or once-weekly intravenous-administration of iPSC-MSCs, with the latter reducing dendritic cell infiltration and lung epithelial damage, whilst promoting anti-inflammatory interleukin (IL)-10 levels to a greater extent. Proteomic profiling of the conditioned media of cultured iPSC-MSCs that were stimulated with TNF-α and IFN-γ, revealed that these stem cells secreted protein levels of immunosuppressive factors that contributed to the anti-fibrotic and therapeutic potential of iPSCs-MSCs as a novel treatment option for IPF.
Collapse
Affiliation(s)
- Amlan Chakraborty
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute (BDI) and Department of Pharmacology, Monash University, Clayton, Victoria, Australia; Division of Immunology, Immunity to Infection and Respiratory Medicine, The University of Manchester, Manchester, England, UK
| | - Chao Wang
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute (BDI) and Department of Pharmacology, Monash University, Clayton, Victoria, Australia
| | - Margeaux Hodgson-Garms
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria, Australia
| | - Brad R S Broughton
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute (BDI) and Department of Pharmacology, Monash University, Clayton, Victoria, Australia
| | - Jessica E Frith
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria, Australia
| | - Kilian Kelly
- Cynata Therapeutics Ltd, Cremorne, Victoria, Australia
| | - Chrishan S Samuel
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute (BDI) and Department of Pharmacology, Monash University, Clayton, Victoria, Australia; Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
2
|
Qiu S, Fu X, Shi Y, Zang H, Zhao Y, Qin Z, Lin G, Zhao X. Relaxin-Loaded Inhaled Porous Microspheres Inhibit Idiopathic Pulmonary Fibrosis and Improve Pulmonary Function Post-Bleomycin Challenges. Mol Pharm 2023; 20:3947-3959. [PMID: 37358639 DOI: 10.1021/acs.molpharmaceut.3c00111] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) causes worsening pulmonary function, and no effective treatment for the disease etiology is available now. Recombinant Human Relaxin-2 (RLX), a peptide agent with anti-remodeling and anti-fibrotic effects, is a promising biotherapeutic candidate for musculoskeletal fibrosis. However, due to its short circulating half-life, optimal efficacy requires continuous infusion or repeated injections. Here, we developed the porous microspheres loading RLX (RLX@PMs) and evaluated their therapeutic potential on IPF by aerosol inhalation. RLX@PMs have a large geometric diameter as RLX reservoirs for a long-term drug release, but smaller aerodynamic diameter due to their porous structures, which were beneficial for higher deposition in the deeper lungs. The results showed a prolonged release over 24 days, and the released drug maintained its peptide structure and activity. RLX@PMs protected mice from excessive collagen deposition, architectural distortion, and decreased compliance after a single inhalation administration in the bleomycin-induced pulmonary fibrosis model. Moreover, RLX@PMs showed better safety than frequent gavage administration of pirfenidone. We also found RLX-ameliorated human myofibroblast-induced collagen gel contraction and suppressed macrophage polarization to the M2 type, which may be the reason for reversing fibrosis. Hence, RLX@PMs represent a novel strategy for the treatment of IPF and suggest clinical translational potential.
Collapse
Affiliation(s)
- Shengnan Qiu
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medience, Shandong University, 44 Wenhuaxi Road, Jinan, Shandong Province 250012, China
| | - Xianglei Fu
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medience, Shandong University, 44 Wenhuaxi Road, Jinan, Shandong Province 250012, China
| | - Yanbin Shi
- School of Mechanical & Automotive Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Hengchang Zang
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medience, Shandong University, 44 Wenhuaxi Road, Jinan, Shandong Province 250012, China
- National Medical Products Administration Key Laboratory for Technology Research and Evaluation of Drug Products, Shandong University, Jinan 250012, China
| | - Yunpeng Zhao
- Department of Thoracic Surgery, The Second Hospital of Shandong University, Jinan 250012, China
| | - Zhilong Qin
- School of Mechanical & Automotive Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Guimei Lin
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medience, Shandong University, 44 Wenhuaxi Road, Jinan, Shandong Province 250012, China
- National Medical Products Administration Key Laboratory for Technology Research and Evaluation of Drug Products, Shandong University, Jinan 250012, China
| | - Xiaogang Zhao
- Department of Thoracic Surgery, The Second Hospital of Shandong University, Jinan 250012, China
| |
Collapse
|
3
|
Wei N, Wang J, Hao M, Zhang J, Li T, Hao Y, Zhao Y, Kang C, Zan Y, Xing X. The relationship of superoxide dismutase and malondialdehyde levels with left ventricular geometry and function in patients with primary hypertension. JOURNAL OF CLINICAL ULTRASOUND : JCU 2023; 51:603-609. [PMID: 36444874 DOI: 10.1002/jcu.23408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/26/2022] [Accepted: 11/04/2022] [Indexed: 05/03/2023]
Abstract
INTRODUCTION To investigate the relationship of superoxide dismutase (SOD) and malondialdehyde (MDA) levels with left ventricular geometry (LVG) and function in patients with primary hypertension (PH). METHODS A total of 222 PH patients and 25 healthy control (HC)s were enrolled in this study. All subjects underwent echocardiography and blood biochemical examination. PH patients were divided into four groups based on Ganau classification: normal geometry (NG) group, concentric remodeling (CR) group, eccentric hypertrophy (EH) group, and concentric hypertrophy (CH) group. Pearson correlation analysis and logistic regression analysis were used to analyze the relationship between SOD and MDA with left ventricular structure and function. RESULTS Compared to the HC, NG and CR groups, MDA level was higher while SOD level was lower in the EH and CH groups (all P < 0.001). SOD level was negatively correlated with IVSd, LVDd, LVPW, and global longitudinal strain (GLS), but positively correlated with LVEF. MDA level was positively correlated with IVSd, LVPW, and GLS, while negatively correlated with e'/a' and LVEF. SOD and MDA were independently associated with CR (OR = 0.970, P = 0.003; OR = 1.204, P = 0.043), EH (OR = 0.879, P < 0.001; OR = 2.197, P = 0.001) and CH (OR = 0.796, P < 0.001; OR = 3.669, P < 0.001). CONCLUSION The SOD and MDA levels were correlated with LVG and function in PH patients. SOD and MDA may be important influencing factors of LVG change.
Collapse
Affiliation(s)
- Na Wei
- Department of Ultrasound, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Jian Wang
- Department of Ultrasound, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Meifang Hao
- Department of Ultrasound, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Jingxuan Zhang
- Department of Ultrasound, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Tingting Li
- Department of Ultrasound, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Yaohong Hao
- Department of Ultrasound, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Yufang Zhao
- Department of Ultrasound, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Caihong Kang
- Department of Ultrasound, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Yu Zan
- Department of Ultrasound, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Xueqing Xing
- Department of Ultrasound, First Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
4
|
Alam F, Gaspari TA, Kemp-Harper BK, Low E, Aw A, Ferens D, Spizzo I, Jefferis AM, Praveen P, Widdop RE, Bathgate RAD, Hossain MA, Samuel CS. The single-chain relaxin mimetic, B7-33, maintains the cardioprotective effects of relaxin and more rapidly reduces left ventricular fibrosis compared to perindopril in an experimental model of cardiomyopathy. Biomed Pharmacother 2023; 160:114370. [PMID: 36753958 DOI: 10.1016/j.biopha.2023.114370] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/30/2023] [Accepted: 02/03/2023] [Indexed: 02/09/2023] Open
Abstract
The hormone, relaxin (RLX), exerts various organ-protective effects independently of etiology. However, its complex two-chain and three disulphide bonded structure is a limitation to its preparation and affordability. Hence, a single chain-derivative of RLX, B7-33, was developed and shown to retain the anti-fibrotic effects of RLX in vitro and in vivo. Here, we determined whether B7-33 could retain the other cardioprotective effects of RLX, and also compared its therapeutic efficacy to the ACE inhibitor, perindopril. Adult male 129sv mice were subjected to isoprenaline (ISO; 25 mg/kg/day, s.c)-induced cardiomyopathy, then s.c-treated with either RLX (0.5 mg/kg/day), B7-33 (0.25 mg/kg/day; equivalent dose corrected for MW) or perindopril (1 mg/kg/day) from days 7-14 post-injury. Control mice received saline instead of ISO. Changes in animal body weight (BW) and systolic blood pressure (SBP) were measured weekly, whilst cardiomyocyte hypertrophy and measures of vascular dysfunction and rarefaction, left ventricular (LV) inflammation and fibrosis were assessed at day 14 post-injury. ISO-injured mice had significantly increased LV inflammation, cardiomyocyte hypertrophy, fibrosis, vascular rarefaction and aortic contractility in the absence of any changes in BW or SBP at day 14 post-injury. Both B7-33 and RLX equivalently reduced LV fibrosis and normalised the ISO-induced LV inflammation and cardiomyocyte hypertrophy, whilst restoring blood vessel density and aortic contractility. Comparatively, perindopril lowered SBP and the ISO-induced LV inflammation and vascular rarefaction, but not fibrosis or hypertrophy. As B7-33 retained the cardioprotective effects of RLX and provided rapid-occurring anti-fibrotic effects compared to perindopril, it could be considered as a cost-effective cardioprotective therapy.
Collapse
Affiliation(s)
- Fariha Alam
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, Victoria, Australia
| | - Tracey A Gaspari
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, Victoria, Australia
| | - Barbara K Kemp-Harper
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, Victoria, Australia
| | - Edward Low
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, Victoria, Australia
| | - Aaron Aw
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, Victoria, Australia
| | - Dorota Ferens
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, Victoria, Australia
| | - Iresha Spizzo
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, Victoria, Australia
| | - Ann-Maree Jefferis
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, Victoria, Australia
| | - Praveen Praveen
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Robert E Widdop
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, Victoria, Australia
| | - Ross A D Bathgate
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia; Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, Victoria, Australia
| | - Mohammed Akhter Hossain
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia; School of Chemistry, The University of Melbourne, Parkville, Victoria, Australia.
| | - Chrishan S Samuel
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, Victoria, Australia; Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
5
|
Li Y, Zheng G, Salimova E, Broughton BRS, Ricardo SD, de Veer M, Samuel CS. Simultaneous late-gadolinium enhancement and T1 mapping of fibrosis and a novel cell-based combination therapy in hypertensive mice. Biomed Pharmacother 2023; 158:114069. [PMID: 36502754 DOI: 10.1016/j.biopha.2022.114069] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022] Open
Abstract
Fibrosis is a hallmark of chronic hypertension and disrupts the viability of human bone marrow-derived mesenchymal stromal cells (BM-MSCs) post-transplantation. This study thus, determined whether the anti-fibrotic drug, serelaxin (RLX), could enhance the therapeutic effects of BM-MSCs or BM-MSC-derived exosomes (BM-MSC-EXO) in hypertensive mice. Left ventricular (LV) fibrosis in particular was assessed using conventional histological staining and non-invasive cardiac magnetic resonance imaging (CMRI). CMRI was employed using a novel magnetisation prepared 2 rapid acquisition gradient echo (MP2RAGE) sequence to simultaneously perform late gadolinium enhancement imaging and T1 mapping. Adult male C57BL/6 mice were uninephrectomised, received deoxycorticosterone acetate and saline to drink (1 K/DOCA/salt) for 21 days, whilst control mice were given normal drinking water for the same time-period. On day 14 post-injury, subgroups of 1 K/DOCA/salt-hypertensive mice were treated with RLX alone or in combination with BM-MSCs or BM-MSC-EXO; or the mineralocorticoid receptor antagonist, spironolactone. At day 21 post-injury, LV and kidney histopathology was assessed, whilst LV fibrosis and function were additionally analysed by CMRI and echocardiography. 1 K/DOCA/salt-hypertensive mice developed kidney tubular injury, inflammation, fibrosis, and more moderate LV hypertrophy, fibrosis and diastolic dysfunction. RLX and BM-MSCs combined provided optimal protection against these pathologies and significantly reduced picrosirius red-stained organ fibrosis and MP2RAGE analysis of LV fibrosis. A significant correlation between MP2RAGE analysis and histologically-stained interstitial LV fibrosis was detected. It was concluded that the MP2RAGE sequence enhanced the non-invasive CMRI detection of LV fibrosis. Furthermore, combining RLX and BM-MSCs may represent a promising treatment option for hypertensive cardiorenal syndrome.
Collapse
Affiliation(s)
- Yifang Li
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute (BDI) and Department of Pharmacology, Monash University, Clayton, Victoria, Australia
| | - Gang Zheng
- Monash Biomedical Imaging, Monash University, Clayton, Victoria, Australia
| | - Ekaterina Salimova
- Monash Biomedical Imaging, Monash University, Clayton, Victoria, Australia
| | - Brad R S Broughton
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute (BDI) and Department of Pharmacology, Monash University, Clayton, Victoria, Australia
| | - Sharon D Ricardo
- Stem Cells and Development Program, Monash Biomedicine Discovery Institute (BDI) and Department of Pharmacology, Monash University, Clayton, Victoria, Australia
| | - Michael de Veer
- Monash Biomedical Imaging, Monash University, Clayton, Victoria, Australia
| | - Chrishan S Samuel
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute (BDI) and Department of Pharmacology, Monash University, Clayton, Victoria, Australia; Stem Cells and Development Program, Monash Biomedicine Discovery Institute (BDI) and Department of Pharmacology, Monash University, Clayton, Victoria, Australia; Department of Biochemistry and Molecular Biology, The University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
6
|
Truong SHT, Bonnici B, Rupasinghe S, Kemp-Harper BK, Samuel CS, Broughton BRS. Post-stroke administration of H2 relaxin reduces functional deficits, neuronal apoptosis and immune cell infiltration into the mouse brain. Pharmacol Res 2023; 187:106611. [PMID: 36526079 DOI: 10.1016/j.phrs.2022.106611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 12/11/2022] [Accepted: 12/11/2022] [Indexed: 12/15/2022]
Abstract
Brain inflammation and apoptosis contribute to neuronal damage and loss following ischaemic stroke, leading to cognitive and functional disability. It is well-documented that the human gene-2 (H2)-relaxin hormone exhibits pleiotropic properties via its cognate receptor, Relaxin Family Peptide Receptor 1 (RXFP1), including anti-inflammatory and anti-apoptotic effects, thus making it a potential therapeutic for stroke. Hence, the current study investigated whether post-stroke H2-relaxin administration could improve functional and histological outcomes. 8-12-week-old male C57BL/6 mice were subjected to sham operation or photothrombotic stroke and intravenously-administered with either saline (vehicle) or 0.02, 0.2 or 2 mg/kg doses of recombinant H2-relaxin at 6, 24 and 48 h post-stroke. Motor function was assessed using the hanging wire and cylinder test pre-surgery, and at 24 and 72 h post-stroke. Brains were removed after 72 h and infarct volume was assessed via thionin staining, and RXFP1 expression, leukocyte infiltration and apoptosis were determined by immunofluorescence. RXFP1 was identified on neurons, astrocytes and macrophages, and increased post-stroke. Whilst H2-relaxin did not alter infarct volume, it did cause a dose-dependent improvement in motor function at 24 and 72 h post-stroke. Moreover, 2 mg/kg H2-relaxin significantly decreased the number of apoptotic cells as well as macrophages and neutrophils within the ischaemic hemisphere, but did not alter T or B cells numbers. The anti-inflammatory and anti-apoptotic effects of H2-relaxin when administered at 6 h post-cerebral ischaemia may provide a novel therapeutic option for patients following ischaemic stroke.
Collapse
Affiliation(s)
- Shirley H T Truong
- Cardiovascular & Pulmonary Pharmacology Group, Department of Pharmacology and Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Benjamin Bonnici
- Cardiovascular & Pulmonary Pharmacology Group, Department of Pharmacology and Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Samoda Rupasinghe
- Cardiovascular & Pulmonary Pharmacology Group, Department of Pharmacology and Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Barbara K Kemp-Harper
- Cardiovascular & Pulmonary Pharmacology Group, Department of Pharmacology and Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Chrishan S Samuel
- Fibrosis Group, Department of Pharmacology and Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia; Department of Biochemistry and Molecular Biology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Brad R S Broughton
- Cardiovascular & Pulmonary Pharmacology Group, Department of Pharmacology and Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia.
| |
Collapse
|
7
|
Tapia Cáceres F, Gaspari TA, Hossain MA, Samuel CS. Relaxin Inhibits the Cardiac Myofibroblast NLRP3 Inflammasome as Part of Its Anti-Fibrotic Actions via the Angiotensin Type 2 and ATP (P2X7) Receptors. Int J Mol Sci 2022; 23:ijms23137074. [PMID: 35806076 PMCID: PMC9266307 DOI: 10.3390/ijms23137074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/22/2022] [Accepted: 06/24/2022] [Indexed: 12/18/2022] Open
Abstract
Chronic NLRP3 inflammasome activation can promote fibrosis through its production of interleukin (IL)-1β and IL-18. Conversely, recombinant human relaxin (RLX) can inhibit the pro-fibrotic interactions between IL-1β, IL-18 and transforming growth factor (TGF)-β1. Here, the broader extent by which RLX targeted the myofibroblast NLRP3 inflammasome to mediate its anti-fibrotic effects was elucidated. Primary human cardiac fibroblasts (HCFs), stimulated with TGF-β1 (to promote myofibroblast (HCMF) differentiation), LPS (to prime the NLRP3 inflammasome) and ATP (to activate the NLRP3 inflammasome) (T+L+A) or benzoylbenzoyl-ATP (to activate the ATP receptor; P2X7R) (T+L+Bz), co-expressed relaxin family peptide receptor-1 (RXFP1), the angiotensin II type 2 receptor (AT2R) and P2X7R, and underwent increased protein expression of toll-like receptor (TLR)-4, NLRP3, caspase-1, IL-1β and IL-18. Whilst RLX co-administration to HCMFs significantly prevented the T+L+A- or T+L+Bz-stimulated increase in these end points, the inhibitory effects of RLX were annulled by the pharmacological antagonism of either RXFP1, AT2R, P2X7R, TLR-4, reactive oxygen species (ROS) or caspase-1. The RLX-induced amelioration of left ventricular inflammation, cardiomyocyte hypertrophy and fibrosis in isoproterenol (ISO)-injured mice, was also attenuated by P2X7R antagonism. Thus, the ability of RLX to ameliorate the myofibroblast NLRP3 inflammasome as part of its anti-fibrotic effects, appeared to involve RXFP1, AT2R, P2X7R and the inhibition of TLR-4, ROS and caspase-1.
Collapse
Affiliation(s)
- Felipe Tapia Cáceres
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Melbourne, VIC 3800, Australia; (F.T.C.); (T.A.G.)
| | - Tracey A. Gaspari
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Melbourne, VIC 3800, Australia; (F.T.C.); (T.A.G.)
| | - Mohammed Akhter Hossain
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC 3010, Australia;
| | - Chrishan S. Samuel
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Melbourne, VIC 3800, Australia; (F.T.C.); (T.A.G.)
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Melbourne, VIC 3010, Australia
- Correspondence:
| |
Collapse
|
8
|
Chen Y, An N, Zhou X, Mei L, Sui Y, Chen G, Chen H, He S, Jin C, Hu Z, Li W, Wang Y, Lin Z, Chen P, Jin L, Guan X, Wang X. Fibroblast growth factor 20 attenuates pathological cardiac hypertrophy by activating the SIRT1 signaling pathway. Cell Death Dis 2022; 13:276. [PMID: 35351862 PMCID: PMC8964679 DOI: 10.1038/s41419-022-04724-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 02/17/2022] [Accepted: 03/11/2022] [Indexed: 11/08/2022]
Abstract
Cardiac hypertrophy occurs initially in response to an increased cardiac load as a compensatory mechanism to maintain cardiac output. However, sustained pathological hypertrophy can develop into heart failure and cause sudden death. Fibroblast growth factor 20 (FGF20) is a member of the fibroblast growth factor family, which involved in apoptosis, aging, inflammation, and autophagy. The precise function of FGF20 in pathological cardiac hypertrophy is unclear. In this study, we demonstrated that FGF20 was significantly decreased in response to hypertrophic stimulation. In contrast, overexpression of FGF20 protected against pressure overload-induced cardiac hypertrophy. Mechanistically, we found that FGF20 upregulates SIRT1 expression, causing deacetylation of FOXO1; this effect promotes the transcription of downstream antioxidant genes, thus inhibits oxidative stress. In content, the anti-hypertrophic effect of FGF20 was largely counteracted in SIRT1-knockout mice, accompanied by an increase in oxidative stress. In summary, our findings reveal a previously unknown protective effect of FGF20 on pathological cardiac hypertrophy by reducing oxidative stress through activation of the SIRT1 signaling pathway. FGF20 is a potential novel molecular target for preventing and treating pressure overload-induced myocardial injury.
Collapse
Affiliation(s)
- Yunjie Chen
- School of Pharmaceutical Science, Wenzhou Medical University, 325000, Wenzhou, PR China
- Department of Pharmacy, Ningbo first Hospital, 315010, Ningbo, PR China
| | - Ning An
- Department of Pharmacy, Ningbo Medical Center Lihuili Hospital, 315041, Ningbo, PR China
| | - Xuan Zhou
- Department of Pharmacy, Ningbo first Hospital, 315010, Ningbo, PR China
| | - Lin Mei
- School of Pharmaceutical Science, Wenzhou Medical University, 325000, Wenzhou, PR China
| | - Yanru Sui
- School of Pharmaceutical Science, Wenzhou Medical University, 325000, Wenzhou, PR China
| | - Gen Chen
- School of Pharmaceutical Science, Wenzhou Medical University, 325000, Wenzhou, PR China
| | - Huinan Chen
- School of Pharmaceutical Science, Wenzhou Medical University, 325000, Wenzhou, PR China
| | - Shengqu He
- School of Pharmaceutical Science, Wenzhou Medical University, 325000, Wenzhou, PR China
| | - Cheng Jin
- School of Pharmaceutical Science, Wenzhou Medical University, 325000, Wenzhou, PR China
| | - Zhicheng Hu
- School of Pharmaceutical Science, Wenzhou Medical University, 325000, Wenzhou, PR China
| | - Wanqian Li
- School of Pharmaceutical Science, Wenzhou Medical University, 325000, Wenzhou, PR China
| | - Yang Wang
- School of Pharmaceutical Science, Wenzhou Medical University, 325000, Wenzhou, PR China
| | - Zhu Lin
- Department of Pharmacy, Ningbo first Hospital, 315010, Ningbo, PR China
| | - Peng Chen
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325000, Wenzhou, PR China
| | - Litai Jin
- School of Pharmaceutical Science, Wenzhou Medical University, 325000, Wenzhou, PR China.
| | - Xueqiang Guan
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325000, Wenzhou, PR China.
| | - Xu Wang
- School of Pharmaceutical Science, Wenzhou Medical University, 325000, Wenzhou, PR China.
| |
Collapse
|
9
|
Samuel CS, Bennett RG. Relaxin as an anti-fibrotic treatment: Perspectives, challenges and future directions. Biochem Pharmacol 2021; 197:114884. [PMID: 34968489 DOI: 10.1016/j.bcp.2021.114884] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 02/07/2023]
Abstract
Fibrosis refers to the scarring and hardening of tissues, which results from a failed immune system-coordinated wound healing response to chronic organ injury and which manifests from the aberrant accumulation of various extracellular matrix components (ECM), primarily collagen. Despite being a hallmark of prolonged tissue damage and related dysfunction, and commonly associated with high morbidity and mortality, there are currently no effective cures for its regression. An emerging therapy that meets several criteria of an effective anti-fibrotic treatment, is the recombinant drug-based form of the human hormone, relaxin (also referred to as serelaxin, which is bioactive in several other species). This review outlines the broad anti-fibrotic and related organ-protective roles of relaxin, mainly from studies conducted in preclinical models of ageing and fibrotic disease, including its ability to ameliorate several aspects of fibrosis progression and maturation, from immune cell infiltration, pro-inflammatory and pro-fibrotic cytokine secretion, oxidative stress, organ hypertrophy, cell apoptosis, myofibroblast differentiation and ECM production, to its ability to facilitate established ECM degradation. Studies that have compared and/or combined these therapeutic effects of relaxin with current standard of care medication have also been discussed, along with the main challenges that have hindered the translation of the anti-fibrotic efficacy of relaxin to the clinic. The review then outlines the future directions as to where scientists and several pharmaceutical companies that have recognized the therapeutic potential of relaxin are working towards, to progress its development as a treatment for human patients suffering from various fibrotic diseases.
Collapse
Affiliation(s)
- Chrishan S Samuel
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, Victoria 3800, Australia; Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria 3052, Australia.
| | - Robert G Bennett
- Research Service, Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA; Department of Internal Medicine, Division of Diabetes, Endocrinology & Metabolism, University of Nebraska Medical Center, Omaha, NE 68198-4130, USA.
| |
Collapse
|