1
|
Rodríguez-Martín M, Pérez-Sanz F, Zambrano C, Luján J, Ryden M, Scheer FAJL, Garaulet M. Circadian transcriptome oscillations in human adipose tissue depend on napping status and link to metabolic and inflammatory pathways. Sleep 2024; 47:zsae160. [PMID: 38995117 PMCID: PMC11543616 DOI: 10.1093/sleep/zsae160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/26/2024] [Indexed: 07/13/2024] Open
Abstract
STUDY OBJECTIVES Napping is a common habit in many countries. Nevertheless, studies about the chronic effects of napping on obesity are contradictory, and the molecular link between napping and metabolic alterations has yet to be studied. We aim to identify molecular mechanisms in adipose tissue (AT) that may connect napping and abdominal obesity. METHODS In this cross-sectional study, we extracted the RNA repeatedly across 24 hours from cultured AT explants and performed RNA sequencing. Circadian rhythms were analyzed using six consecutive time points across 24 hours. We also assessed global gene expression in each group (nappers vs. non-nappers). RESULTS With napping, there was an 88% decrease in the number of rhythmic genes compared to that in non-nappers, a reduction in rhythm amplitudes of 29%, and significant phase changes from a coherent unimodal acrophase in non-nappers, towards a scattered and bimodal acrophase in nappers. Those genes that lost rhythmicity with napping were mainly involved in pathways of glucose and lipid metabolism, and of the circadian clock. Additionally, we found differential global gene expression between nappers and non-nappers with 34 genes down- and 32 genes upregulated in nappers. The top upregulated gene (IER3) and top down-regulated pseudogene (VDAC2P2) in nappers have been previously shown to be involved in inflammation. CONCLUSIONS These new findings have implications for our understanding of napping's relationship with obesity and metabolic disorders.
Collapse
Affiliation(s)
- María Rodríguez-Martín
- Department of Physiology, Regional Campus of International Excellence, University of Murcia, Murcia, Spain
- Biomedical Research Institute of Murcia, Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca-Universidad de Murcia (UMU), University Clinical Hospital, Murcia, Spain
| | - Fernando Pérez-Sanz
- Biomedical Research Institute of Murcia, Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca-Universidad de Murcia (UMU), University Clinical Hospital, Murcia, Spain
| | - Carolina Zambrano
- Department of Physiology, Regional Campus of International Excellence, University of Murcia, Murcia, Spain
- Biomedical Research Institute of Murcia, Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca-Universidad de Murcia (UMU), University Clinical Hospital, Murcia, Spain
| | - Juan Luján
- General Surgery Service, Hospital Quirón salud, Murcia, Spain
| | - Mikael Ryden
- Endocrinology Unit, Department of Medicine Huddinge (H7), Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Frank A J L Scheer
- Medical Chronobiology Program, Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Boston, MA, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
| | - Marta Garaulet
- Department of Physiology, Regional Campus of International Excellence, University of Murcia, Murcia, Spain
- Biomedical Research Institute of Murcia, Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca-Universidad de Murcia (UMU), University Clinical Hospital, Murcia, Spain
- Endocrinology Unit, Department of Medicine Huddinge (H7), Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
- Medical Chronobiology Program, Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Boston, MA, USA
| |
Collapse
|
2
|
Liu J, Xia Z, Peng S, Xia J, Xu R, Wang X, Li F, Zhu W. The Important Role of Aquaglyceroporin 7 in Health and Disease. Biomolecules 2024; 14:1228. [PMID: 39456161 PMCID: PMC11505742 DOI: 10.3390/biom14101228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 09/20/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024] Open
Abstract
Aquaporins (AQPs) are highly conserved small transmembrane proteins that facilitate the transport of water and small solutes across cell membranes. Aquaglyceroporin 7 (AQP7), a significant member of the AQP family, is widely distributed throughout the body. For years, AQP7 was predominantly recognized for its role as a small-molecule transporter, facilitating the passage of small molecular substances. However, growing studies have revealed that AQP7 is also involved in the regulation of lipid synthesis, gluconeogenesis, and energy homeostasis, and it is intimately linked to a variety of diseases, such as obesity, type 2 diabetes mellitus, cardiovascular diseases, cancer, and inflammatory bowel disease. This article presents a comprehensive overview of the structure of AQP7, its regulatory mechanisms, its vital roles in both healthy and diseased states, and potential therapeutic advancements. We hope that these studies will serve as a valuable reference for the development of future treatments and diagnostic protocols targeting AQP7.
Collapse
Affiliation(s)
- Jing Liu
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330004, China; (J.L.); (Z.X.); (J.X.); (R.X.); (X.W.)
| | - Ziwei Xia
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330004, China; (J.L.); (Z.X.); (J.X.); (R.X.); (X.W.)
| | - Shuhong Peng
- Research Center for Differentiation and Development of Traditional Chinese Medicine Basic Theory, Jiangxi University of Chinese Medicine, Nanchang 330004, China;
| | - Juanjuan Xia
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330004, China; (J.L.); (Z.X.); (J.X.); (R.X.); (X.W.)
| | - Ruixiang Xu
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330004, China; (J.L.); (Z.X.); (J.X.); (R.X.); (X.W.)
| | - Xin Wang
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330004, China; (J.L.); (Z.X.); (J.X.); (R.X.); (X.W.)
| | - Fei Li
- Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Weifeng Zhu
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330004, China; (J.L.); (Z.X.); (J.X.); (R.X.); (X.W.)
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| |
Collapse
|
3
|
Radziszewska M, Ostrowska L, Smarkusz-Zarzecka J. The Impact of Gastrointestinal Hormones on Human Adipose Tissue Function. Nutrients 2024; 16:3245. [PMID: 39408213 PMCID: PMC11479152 DOI: 10.3390/nu16193245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/20/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
BACKGROUND Obesity is a global issue, the development of which depends on many interacting factors. Among these, hormones secreted in the gastrointestinal tract play an important role. The aim of this review was to assess the impact of these hormones on the functions of adipose tissue. METHODS The analysis was based on the latest research concerning both adipose tissue and gastrointestinal hormones. RESULTS It was found that these hormones can significantly affect adipose tissue, both directly and indirectly. Some hormones, when secreted in excess, can stimulate adipose tissue formation processes, while others can inhibit them. The impact of hormones depends on the location and type of adipose tissue as well as the physiological state of the body. It should also be noted that no hormone acts in isolation but in close cooperation with other factors. CONCLUSIONS The relationship between gastrointestinal hormones and adipose tissue, and their role in obesity, is a complex and evolving field of study. Further research is necessary, particularly into the interactions between hormones and other factors, as well as their mutual interactions.
Collapse
Affiliation(s)
- Marcelina Radziszewska
- Department of Dietetics and Clinical Nutrition, Medical University of Bialystok, ul. Mieszka I 4B, 15-054 Bialystok, Poland; (L.O.); (J.S.-Z.)
| | | | | |
Collapse
|
4
|
Yu M, Shi Y, Gao Y, Luo Y, Jin Y, Liang X, Tao Z, Zhu G, Lin H, Li H, Qin J, Cao Z, Zhong M. Targeting AQP9 enhanced the anti-TNF therapy response in Crohn's disease by inhibiting LPA-hippo pathway. Pharmacol Res 2024; 203:107172. [PMID: 38583685 DOI: 10.1016/j.phrs.2024.107172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/15/2024] [Accepted: 04/02/2024] [Indexed: 04/09/2024]
Abstract
Although anti-TNF antibodies are extensively used to treat Crohn's disease (CD), a significant proportion of patients, up to 40%, exhibit an inadequate response to this therapy. Our objective was to identify potential targets that could improve the effectiveness of anti-TNF therapy in CD. Through the integration and analysis of transcriptomic data from various CD databases, we found that the expression of AQP9 was significantly increased in anti-TNF therapy-resistant specimens. The response to anti-TNF therapy in the CD mouse model was significantly enhanced by specifically inhibiting AQP9. Further experiments found that the blockade of AQP9, which is dominantly expressed in macrophages, decreased inflamed macrophage functions and cytokine expression. Mechanistic studies revealed that AQP9 transported glycerol into macrophages, where it was metabolized to LPA, which was further metabolized to LPA, resulting in the activation of the LPAR2 receptor and downstream hippo pathway, finally promoting the expression of cytokines, especially IL23 and IL1β⊡ Taken together, the expansion of AQP9+ macrophages is associated with resistance to anti-TNF therapy in Crohn's disease. These findings indicated that AQP9 could be a potential target for enhancing anti-TNF therapy in Crohn's disease.
Collapse
Affiliation(s)
- Minhao Yu
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yuan Shi
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yuan Gao
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yang Luo
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yihua Jin
- School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Xiaoyi Liang
- School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Zhuoran Tao
- School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Guojun Zhu
- School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Haiping Lin
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Hao Li
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Jun Qin
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| | - Zhijun Cao
- Division of Gastroenterology and Hepatology; Shanghai Institute of Digestive Disease; NHC Key Laboratory of Digestive Diseases;Renji Hospital, School of Medicine Shanghai Jiao Tong University, Shanghai, 200127, China.
| | - Ming Zhong
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| |
Collapse
|