1
|
Conley JM, Jochim A, Evans-Molina C, Watts VJ, Ren H. G Protein-Coupled Receptor 17 Inhibits Glucagon-like Peptide-1 Secretion via a Gi/o-Dependent Mechanism in Enteroendocrine Cells. Biomolecules 2024; 15:9. [PMID: 39858405 PMCID: PMC11762167 DOI: 10.3390/biom15010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/22/2024] [Accepted: 12/23/2024] [Indexed: 01/27/2025] Open
Abstract
Gut peptides, including glucagon-like peptide-1 (GLP-1), regulate metabolic homeostasis and have emerged as the basis for multiple state-of-the-art diabetes and obesity therapies. We previously showed that G protein-coupled receptor 17 (GPR17) is expressed in intestinal enteroendocrine cells (EECs) and modulates nutrient-induced GLP-1 secretion. However, the GPR17-mediated molecular signaling pathways in EECs have yet to be fully deciphered. Here, we expressed the human GPR17 long isoform (hGPR17L) in GLUTag cells, a murine EEC line, and we used the GPR17 synthetic agonist MDL29,951 together with pharmacological probes and genetic approaches to quantitatively assess the contribution of GPR17 signaling to GLP-1 secretion. Constitutive hGPR17L activity inhibited GLP-1 secretion, and MDL29,951 treatment further inhibited this secretion, which was attenuated by treatment with the GPR17 antagonist HAMI3379. MDL29,951 promoted both Gi/o and Gq protein coupling to mediate cyclic AMP (cAMP) and calcium signaling. hGPR17L regulation of GLP-1 secretion appeared to be Gq-independent and dependent upon Gi/o signaling, but was not correlated with MDL29,951-induced whole-cell cAMP signaling. Our studies revealed key signaling mechanisms underlying the role of GPR17 in regulating GLP-1 secretion and suggest future opportunities for pharmacologically targeting GPR17 with inverse agonists to maximize GLP-1 secretion.
Collapse
Affiliation(s)
- Jason M. Conley
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (J.M.C.); (A.J.); (C.E.-M.)
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Alexander Jochim
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (J.M.C.); (A.J.); (C.E.-M.)
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Carmella Evans-Molina
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (J.M.C.); (A.J.); (C.E.-M.)
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Roudebush VA Medical Center, Indianapolis, IN 46202, USA
| | - Val J. Watts
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA;
| | - Hongxia Ren
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (J.M.C.); (A.J.); (C.E.-M.)
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
2
|
Boshta NM, Lewash M, Köse M, Namasivayam V, Sarkar S, Voss JH, Liedtke AJ, Junker A, Tian M, Stößel A, Rashed M, Mahal A, Merten N, Pegurier C, Hockemeyer J, Kostenis E, Müller CE. Discovery of Anthranilic Acid Derivatives as Antagonists of the Pro-Inflammatory Orphan G Protein-Coupled Receptor GPR17. J Med Chem 2024; 67:19365-19394. [PMID: 39484825 DOI: 10.1021/acs.jmedchem.4c01755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
The G protein-coupled receptor 17 (GPR17) is an orphan receptor involved in inflammatory diseases. GPR17 antagonists have been proposed for the treatment of multiple sclerosis due to their potential to induce remyelination. Potent, selective antagonists are required to enable target validation. In the present study, we describe the discovery of a novel class of GPR17 antagonists based on an anthranilic acid scaffold. The compounds' potencies were evaluated in calcium mobilization and radioligand binding assays, and structure-activity relationships were analyzed. Selected antagonists were additionally studied in cAMP and G protein activation assays. The most potent antagonists were 5-methoxy-2-(5-(3'-methoxy-[1,1'-biphenyl]-2-yl)furan-2-carboxamido)benzoic acid (52, PSB-22269, Ki 8.91 nM) and its 3'-trifluoromethyl analog (54, PSB-24040, Ki 83.2 nM). Receptor-ligand docking studies revealed that the compounds' binding site is characterized by positively charged arginine residues and a lipophilic pocket. These findings yield valuable insights into this poorly characterized receptor providing a basis for future drug development.
Collapse
Affiliation(s)
- Nader M Boshta
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, Bonn D-53121, Germany
| | - Michael Lewash
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, Bonn D-53121, Germany
| | - Meryem Köse
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, Bonn D-53121, Germany
| | - Vigneshwaran Namasivayam
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, Bonn D-53121, Germany
| | - Soumya Sarkar
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, Bonn D-53121, Germany
| | - Jan H Voss
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, Bonn D-53121, Germany
| | - Andy J Liedtke
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, Bonn D-53121, Germany
| | - Anna Junker
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, Bonn D-53121, Germany
| | - Maoqun Tian
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, Bonn D-53121, Germany
| | - Anne Stößel
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, Bonn D-53121, Germany
| | - Mahmoud Rashed
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, Bonn D-53121, Germany
| | - Ahmed Mahal
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, Bonn D-53121, Germany
| | - Nicole Merten
- Pharmaceutical Biology, University of Bonn, Nußallee 6, Bonn D-53115, Germany
| | | | - Jörg Hockemeyer
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, Bonn D-53121, Germany
| | - Evi Kostenis
- Pharmaceutical Biology, University of Bonn, Nußallee 6, Bonn D-53115, Germany
| | - Christa E Müller
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, Bonn D-53121, Germany
| |
Collapse
|
3
|
Conley JM, Jochim A, Evans-Molina C, Watts VJ, Ren H. G protein-coupled receptor 17 inhibits glucagon-like peptide-1 secretion via a Gi/o-dependent mechanism in enteroendocrine cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.13.623413. [PMID: 39605686 PMCID: PMC11601441 DOI: 10.1101/2024.11.13.623413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Gut peptides, including glucagon-like peptide-1 (GLP-1), regulate metabolic homeostasis and have emerged as the basis for multiple state-of-the-art diabetes and obesity therapies. We previously showed that G protein-coupled receptor 17 (GPR17) is expressed in intestinal enteroendocrine cells (EECs) and modulates nutrient-induced GLP-1 secretion. However, the GPR17-mediated molecular signaling pathways in EECs have yet to be fully deciphered. Here, we expressed the human GPR17 long isoform (hGPR17L) in GLUTag cells, a murine EEC line, and we used the GPR17 synthetic agonist MDL29,951 together with pharmacological probes and genetic approaches to quantitatively assess the contribution of GPR17 signaling to GLP-1 secretion. Constitutive hGPR17L activity inhibited GLP-1 secretion, and MDL29,951 treatment further inhibited this secretion, which was attenuated by treatment with the GPR17 antagonist HAMI3379. MDL29,951 promoted both Gi/o and Gq protein coupling to mediate cyclic AMP (cAMP) and calcium signaling. hGPR17L regulation of GLP-1 secretion was Gq-independent and dependent upon Gi/o signaling, but was not correlated with MDL29,951-induced whole-cell cAMP signaling. Our studies revealed key signaling mechanisms underlying the role of GPR17 in regulating GLP-1 secretion and suggest future opportunities for pharmacologically targeting GPR17 with inverse agonists to maximize GLP-1 secretion.
Collapse
Affiliation(s)
- Jason M. Conley
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Alexander Jochim
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Carmella Evans-Molina
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN 46202
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202
- Roudebush VA Medical Center, Indianapolis, IN 46202
| | - Val J. Watts
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907
| | - Hongxia Ren
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN 46202
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN 46202
| |
Collapse
|
4
|
Mast N, Butts M, Pikuleva IA. Unbiased insights into the multiplicity of the CYP46A1 brain effects in 5XFAD mice treated with low dose-efavirenz. J Lipid Res 2024; 65:100555. [PMID: 38719151 PMCID: PMC11176809 DOI: 10.1016/j.jlr.2024.100555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/12/2024] [Accepted: 05/01/2024] [Indexed: 05/30/2024] Open
Abstract
Cytochrome P450 46A1 (CYP46A1) is the CNS-specific cholesterol 24-hydroxylase that controls cholesterol elimination and turnover in the brain. In mouse models, pharmacologic CYP46A1 activation with low-dose efavirenz or by gene therapy mitigates the manifestations of various brain disorders, neurologic, and nonneurologic, by affecting numerous, apparently unlinked biological processes. Accordingly, CYP46A1 is emerging as a promising therapeutic target; however, the mechanisms underlying the multiplicity of the brain CYP46A1 activity effects are currently not understood. We proposed the chain reaction hypothesis, according to which CYP46A1 is important for the three primary (unifying) processes in the brain (sterol flux through the plasma membranes, acetyl-CoA, and isoprenoid production), which in turn affect a variety of secondary processes. We already identified several processes secondary to changes in sterol flux and herein undertook a multiomics approach to compare the brain proteome, acetylproteome, and metabolome of 5XFAD mice (an Alzheimer's disease model), control and treated with low-dose efavirenz. We found that the latter had increased production of phospholipids from the corresponding lysophospholipids and a globally increased protein acetylation (including histone acetylation). Apparently, these effects were secondary to increased acetyl-CoA production. Signaling of small GTPases due to their altered abundance or abundance of their regulators could be affected as well, potentially via isoprenoid biosynthesis. In addition, the omics data related differentially abundant molecules to other biological processes either reported previously or new. Thus, we obtained unbiased mechanistic insights and identified potential players mediating the multiplicity of the CYP46A1 brain effects and further detailed our chain reaction hypothesis.
Collapse
Affiliation(s)
- Natalia Mast
- Department of Ophthalmology and Visual Science, Case Western Reserve University, Cleveland, OH, USA
| | - Makaya Butts
- Department of Ophthalmology and Visual Science, Case Western Reserve University, Cleveland, OH, USA
| | - Irina A Pikuleva
- Department of Ophthalmology and Visual Science, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
5
|
Liang Y, Kang X, Zhang H, Xu H, Wu X. Knockdown and inhibition of hippocampal GPR17 attenuates lipopolysaccharide-induced cognitive impairment in mice. J Neuroinflammation 2023; 20:271. [PMID: 37990234 PMCID: PMC10662506 DOI: 10.1186/s12974-023-02958-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 11/13/2023] [Indexed: 11/23/2023] Open
Abstract
BACKGROUND Previously we reported that inhibition of GPR17 prevents amyloid β 1-42 (Aβ1-42)-induced cognitive impairment in mice. However, the role of GPR17 on cognition is still largely unknown. METHODS Herein, we used a mouse model of cognitive impairment induced by lipopolysaccharide (LPS) to further investigate the role of GPR17 in cognition and its potential mechanism. The mice were pretreated with GPR17 shRNA lentivirus and cangrelor by microinjection into the dentate gyrus (DG) region of the hippocampus. After 21 days, LPS (0.25 mg/kg, i.p.) was administered for 7 days. Animal behavioral tests as well as pathological and biochemical assays were performed to evaluate the cognitive function in mice. RESULTS LPS exposure resulted in a significant increase in GPR17 expression at both protein and mRNA levels in the hippocampus. Gene reduction and pharmacological blockade of GPR17 improved cognitive impairment in both the Morris water maze and novel object recognition tests. Knockdown and inhibition of GPR17 inhibited Aβ production, decreased the expression of NF-κB p65, increased CREB phosphorylation and elevated BDNF expression, suppressed the accumulation of pro-inflammatory cytokines, inhibited Glial cells (microglia and astrocytes) activation, and increased Bcl-2, PSD-95, and SYN expression, reduced Bax expression as well as decreased caspase-3 activity and TUNEL-positive cells in the hippocampus of LPS-treated mice. Notably, knockdown and inhibition of GPR17 not only provided protective effects against cholinergic dysfunction but also facilitated the regulation of oxidative stress. In addition, cangrelor pretreatment can effectively inhibit the expression of inflammatory cytokines by suppressing NF-κB/CREB/BDNF signaling in BV-2 cells stimulated by LPS. However, activation of hippocampal GPR17 with MDL-29951 induced cognitive impairment in normal mice. CONCLUSIONS These observations indicate that GPR17 may possess a neuroprotective effect against LPS-induced cognition deficits, and neuroinflammation by modulation of NF-κB/CREB/BDNF signaling in mice, indicating that GPR17 may be a promising new target for the prevention and treatment of AD.
Collapse
Affiliation(s)
- Yusheng Liang
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei, 230032, China
| | - Xu Kang
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei, 230032, China
| | - Haiwang Zhang
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei, 230032, China
| | - Heng Xu
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei, 230032, China
| | - Xian Wu
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China.
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei, 230032, China.
| |
Collapse
|
6
|
Nicholas RA. Commentary on 'Identification and characterization of select oxysterols as ligands for GPR17'. Br J Pharmacol 2023; 180:1186-1187. [PMID: 36669769 DOI: 10.1111/bph.16026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/22/2022] [Accepted: 12/31/2022] [Indexed: 01/22/2023] Open
Affiliation(s)
- Robert A Nicholas
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
7
|
Konda Mani S, Thiyagarajan R, Yli-Harja O, Kandhavelu M, Murugesan A. Structural analysis of human G-protein-coupled receptor 17 ligand binding sites. J Cell Biochem 2023; 124:533-544. [PMID: 36791278 DOI: 10.1002/jcb.30388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/17/2023] [Accepted: 02/03/2023] [Indexed: 02/17/2023]
Abstract
The human G protein coupled membrane receptor (GPR17), the sensor of brain damage, is identified as a biomarker for many neurological diseases. In human brain tissue, GPR17 exist in two isoforms, long and short. While cryo-electron microscopy technology has provided the structure of the long isoform of GPR17 with Gi complex, the structure of the short isoform and its activation mechanism remains unclear. Recently, we theoretically modeled the structure of the short isoform of GPR17 with Gi signaling protein and identified novel ligands. In the present work, we demonstrated the presence of two distinct ligand binding sites in the short isoform of GPR17. The molecular docking of GPR17 with endogenous (UDP) and synthetic ligands (T0510.3657, MDL29950) found the presence of two distinct binding pockets. Our observations revealed that endogenous ligand UDP can bind stronger in two different binding pockets as evidenced by glide and autodock vina scores, whereas the other two ligand's binding with GPR17 has less docking score. The analysis of receptor-UDP interactions shows complexes' stability in the lipid environment by 100 ns atomic molecular dynamics simulations. The amino acid residues VAL83, ARG87, and PHE111 constitute ligand binding site 1, whereas site 2 constitutes ASN67, ARG129, and LYS232. Root mean square fluctuation analysis showed the residues 83, 87, and 232 with higher fluctuations during molecular dynamics simulation in both binding pockets. Our findings imply that the residues of GPR17's two binding sites are crucial, and their interaction with UDP reveals the protein's hidden signaling and communication properties. Furthermore, this finding may assist in the development of targeted therapies for the treatment of neurological diseases.
Collapse
Affiliation(s)
- Saravanan Konda Mani
- Department of Biotechnology, Bharath Institute of Higher Education & Research, Chennai, Tamilnadu, India
| | - Ramesh Thiyagarajan
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Olli Yli-Harja
- Computaional Systems Biology Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,Institute for Systems Biology, Seattle, Washington, USA
| | - Meenakshisundaram Kandhavelu
- Molecular Signaling Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,BioMeditech and Tays Cancer Center, Tampere University Hospital, Tampere, Finland
| | - Akshaya Murugesan
- BioMeditech and Tays Cancer Center, Tampere University Hospital, Tampere, Finland.,Department of Biotechnology, Lady Doak College, Madurai Kamaraj University, Madurai, India
| |
Collapse
|