1
|
Tianxin Z, Zhongyu H, Weishan Z, Can W, Jiahong L, Shuhan W, Runheng Z, Chang Z, Yuxin M. mGluR5 regulates inflammatory pain and pain aversion of CFA mice by mediating ERK/PI3K signaling pathway. Neurosci Lett 2025:138281. [PMID: 40449650 DOI: 10.1016/j.neulet.2025.138281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 05/14/2025] [Accepted: 05/28/2025] [Indexed: 06/03/2025]
Abstract
To investigate whether metabotropic glutamate receptor 5 (mGluR5) in the basolateral amygdala (BLA) regulates inflammatory pain and pain aversion by mediating ERK/PI3K signaling pathway in mice. Two experimental routes were designed. In route 1, 18 male C57BL/6 mice were divided into control, IFA, and CFA groups. In route 2, 18 mice received stereotaxic BLA injections of ACSF, the mGluR5 agonist DHPG, or antagonist MTEP on day 8 following CFA administration. Pain behaviors and aversive emotions were assessed over 14 days. BLA tissues were collected on day 15 for immunofluorescence staining and Western blot analyses of mGluR5, PI3K, p-PI3K, and ERK1/2 expression. The expression levels of p-PI3K, mGluR5 and ERK1/2 in the BLA of CFA mice were significantly increased, suggesting that their activation was associated with inflammatory pain. DHPG increased the expression of p-PI3K and mGluR5 and ERK1/2 in the CFA mouse brain BLA, while MTEP had the opposite effect. Our results show that mGluR5 regulates inflammatory pain and pain aversion of CFA mice by mediating the ERK/PI3K signaling pathway.
Collapse
Affiliation(s)
- Zhuang Tianxin
- School of Health, Guangdong Pharmaceutical University, Yunfun 527325, China
| | - Huang Zhongyu
- School of Health, Guangdong Pharmaceutical University, Yunfun 527325, China
| | - Zhang Weishan
- Department of Anatomy, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, China
| | - Wang Can
- Department of Anatomy, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, China
| | - Lin Jiahong
- Department of Anatomy, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, China
| | - Wang Shuhan
- Department of Anatomy, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, China
| | - Zhang Runheng
- Department of Anatomy, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, China
| | - Zhou Chang
- Department of Anatomy, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, China
| | - Ma Yuxin
- Department of Anatomy, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, China.
| |
Collapse
|
2
|
Zhang Y, Jiang Y, Yu Z, Li Y, Zhang Z, Zheng F, Hu H, Yu G, Guo Z, Wu S, Shao W, Li H. Characterizing microglial heterogeneity in autophagy impairment of Paraquat-induced Parkinson's disease-like neurodegeneration. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 299:118364. [PMID: 40403688 DOI: 10.1016/j.ecoenv.2025.118364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 03/16/2025] [Accepted: 05/18/2025] [Indexed: 05/24/2025]
Abstract
Parkinson's disease (PD) is a prevalent neurodegenerative condition influenced by environmental elements, notably Paraquat (PQ), which is one of the known risk factors. Impaired autophagy is a critical factor in the pathogenesis of PD, yet the cellular heterogeneity related to autophagy in PD has not been thoroughly investigated. Here, we established a PQ-induced PD-like neurodegeneration model and found that PQ impairs autophagy during experimental PD progression. Using single-cell RNA sequencing (scRNA-seq), we elucidated the autophagy-related transcriptomic landscapes in this model, identifying microglia as the central cell type associated with PQ-induced autophagy across all brain cell types. Additionally, microglial subtypes in the PQ-exposed model exhibited significant heterogeneity in gene expression characteristics, biological functions, and roles in autophagic regulation. PQ exposure induced potential genetic transformations between microglial subtypes, which may further disrupt their immune response and energy metabolism regulation functions. Subsequently, we validated the identity transformation of microglia revealed by scRNA-seq in both in vivo and in vitro PQ exposure models. Moreover, we identified a specific microglial subtype primarily responsible for the autophagy-related changes observed in the PQ-exposed model. The expression of the autophagic subtype marker gene Inpp5d may contribute to the regulation of PQ-induced autophagic impairment in BV2 cells. This study generates the first scRNA-seq atlas of autophagy in the context of PQ exposure, highlighting the heterogeneity of microglial subtypes and identifying an autophagy-specific microglial subtype as a central mechanism in the pathology of PQ-induced PD-like neurodegeneration.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Yihua Jiang
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Zhen Yu
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Yinhan Li
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Zhiyu Zhang
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Fuli Zheng
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Hong Hu
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Guangxia Yu
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Zhenkun Guo
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Siying Wu
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou 350122, China.
| | - Wenya Shao
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou 350122, China.
| | - Huangyuan Li
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350122, China.
| |
Collapse
|
3
|
Wu J, Hu H, Li X. Spinal neuron-glial crosstalk and ion channel dysregulation in diabetic neuropathic pain. Front Immunol 2025; 16:1480534. [PMID: 40264787 PMCID: PMC12011621 DOI: 10.3389/fimmu.2025.1480534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 03/19/2025] [Indexed: 04/24/2025] Open
Abstract
Diabetic neuropathic pain (DNP) is one of the most prevalent complications of diabetes, characterized by a high global prevalence and a substantial affected population with limited effective therapeutic options. Although DNP is closely associated with hyperglycemia, an increasing body of research suggests that elevated blood glucose levels are not the sole inducers of DNP. The pathogenesis of DNP is intricate, involving the release of inflammatory mediators, alterations in synaptic plasticity, demyelination of nerve fibers, and ectopic impulse generation, yet the precise mechanisms remain to be elucidated. The spinal dorsal horn coordinates dynamic interactions between peripheral and central pain pathways, wherein dorsal horn neurons, microglia, and astrocytes synergize with Schwann cell-derived signals to process nociceptive information flow. Abnormally activated neurons can alter signal transduction by modifying the local microenvironment, compromising myelin integrity, and diminishing trophic support, leading to neuronal sensitization and an amplifying effect on peripheral pain signals, which in turn triggers neuropathic pain. Ion channels play a pivotal role in signal conduction, with the modulation of sodium, potassium, and calcium channels being particularly crucial for the regulation of pain signals. In light of the rising incidence of diabetes and the current scarcity of effective DNP treatments, a thorough investigation into the interactions between neurons and glial cells, especially the mechanisms of ion channel function in DNP, is imperative for identifying potential drug targets, developing novel therapeutic strategies, and thereby enhancing the prospects for DNP management.
Collapse
Affiliation(s)
- Jie Wu
- Department of Anesthesiology, The 2 Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, Jiangxi, China
| | - Haijun Hu
- Department of Anesthesiology, The 2 Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, Jiangxi, China
| | - Xi Li
- Department of Anesthesiology, The 2 Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, Jiangxi, China
| |
Collapse
|
4
|
Chen J, Yang L, Shen J, Lu J, Mo X, Huang L, Chen L, Yu C. Distinct Roles of Astrocytes and GABAergic Neurons in the Paraventricular Thalamic Nucleus in Modulating Diabetic Neuropathic Pain. J Neurosci 2025; 45:e1013242024. [PMID: 39622642 PMCID: PMC11841761 DOI: 10.1523/jneurosci.1013-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 11/18/2024] [Accepted: 11/21/2024] [Indexed: 02/21/2025] Open
Abstract
Diabetic neuropathic pain (DNP) is a common chronic complication of diabetes mellitus and a clinically common form of neuropathic pain. The thalamus is an important center for the conduction and modulation of nociceptive signals. The paraventricular thalamic nucleus (PVT) is an important midline nucleus of the thalamus involved in sensory processing, but the specific role of PVT astrocytes and GABAergic neurons in DNP remains unclear. Here, we examined the activity of PVT astrocytes and neurons at various time points during the development of DNP by fluorescence immunohistochemistry and found that the activity of PVT astrocytes was significantly increased while that of PVT neurons was significantly decreased 14 d after streptozotocin injection in male rats. The inhibition of PVT astrocytes by chemogenetic manipulation relieved mechanical allodynia in male DNP model rats, whereas the activation of PVT astrocytes induced mechanical allodynia in normal male rats. Interestingly, chemogenetic activation of GABAergic neurons in the PVT alleviated mechanical allodynia in male DNP model rats, whereas chemogenetic inhibition of GABAergic neurons in the PVT induced mechanical allodynia in normal male rats. These data demonstrate the distinct roles of PVT astrocytes and GABAergic neurons in modulating DNP, revealing the mechanism of DNP pathogenesis and the role of the PVT in pain modulation.
Collapse
Affiliation(s)
- Jian Chen
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Lan Yang
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Jinhuang Shen
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Jingshan Lu
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
- Fujian Center for Safety Evaluation of New Drug, Fujian Medical University, Fuzhou 350122, China
| | - Xiaona Mo
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Linyi Huang
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Li Chen
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Changxi Yu
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| |
Collapse
|
5
|
Waltrick APF, Radulski DR, de Oliveira KM, Acco A, Verri WA, da Cunha JM, Zanoveli JM. Early evidence of beneficial and protective effects of Protectin DX treatment on behavior responses and type-1 diabetes mellitus related-parameters: A non-clinical approach. Prog Neuropsychopharmacol Biol Psychiatry 2024; 133:111028. [PMID: 38754696 DOI: 10.1016/j.pnpbp.2024.111028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/24/2024] [Accepted: 05/12/2024] [Indexed: 05/18/2024]
Abstract
Protectin DX (PDX), a specialized pro-resolving lipid mediator, presents potential therapeutic applications across various medical conditions due to its anti-inflammatory and antioxidant properties. Since type-1 diabetes mellitus (T1DM) is a disease with an inflammatory and oxidative profile, exploring the use of PDX in addressing T1DM and its associated comorbidities, including diabetic neuropathic pain, depression, and anxiety becomes urgent. Thus, in the current study, after 2 weeks of T1DM induction with streptozotocin (60 mg/kg) in Wistar rats, PDX (1, 3, and 10 ng/animal; i.p. injection of 200 μl/animal) was administered specifically on days 14, 15, 18, 21, 24, and 27 after T1DM induction. We investigated the PDX's effectiveness in alleviating neuropathic pain (mechanical allodynia; experiment 1), anxiety-like and depressive-like behaviors (experiment 2). Also, we studied whether the PDX treatment would induce antioxidant effects in the blood plasma, hippocampus, and prefrontal cortex (experiment 3), brain areas involved in the modulation of emotions. For evaluating mechanical allodynia, animals were repeatedly submitted to the Von Frey test; while for studying anxiety-like responses, animals were submitted to the elevated plus maze (day 26) and open field (day 28) tests. To analyze depressive-like behaviors, the animals were tested in the modified forced swimming test (day 28) immediately after the open field test. Our data demonstrated that PDX consistently increased the mechanical threshold throughout the study at the two highest doses, indicative of antinociceptive effect. Concerning depressive-like and anxiety-like behavior, all PDX doses effectively prevented these behaviors when compared to vehicle-treated T1DM rats. The PDX treatment significantly protected against the increased oxidative stress parameters in blood plasma and in hippocampus and prefrontal cortex. Interestingly, treated animals presented improvement on diabetes-related parameters by promoting weight gain and reducing hyperglycemia in T1DM rats. These findings suggest that PDX improved diabetic neuropathic pain, and induced antidepressant-like and anxiolytic-like effects, in addition to improving parameters related to the diabetic condition. It is worth noting that PDX also presented a protective action demonstrated by its antioxidant effects. To conclude, our findings suggest PDX treatment may be a promising candidate for improving the diabetic condition per se along with highly disabling comorbidities such as diabetic neuropathic pain and emotional disturbances associated with T1DM.
Collapse
Affiliation(s)
- Ana Paula Farias Waltrick
- Department of Pharmacology, Biological Sciences Building, Federal University of Paraná, Street Coronel Francisco H dos Santos S/N, P.O. Box 19031, Curitiba, PR 81540-990, Brazil
| | - Débora Rasec Radulski
- Department of Pharmacology, Biological Sciences Building, Federal University of Paraná, Street Coronel Francisco H dos Santos S/N, P.O. Box 19031, Curitiba, PR 81540-990, Brazil
| | - Kauê Marcel de Oliveira
- Department of Pharmacology, Biological Sciences Building, Federal University of Paraná, Street Coronel Francisco H dos Santos S/N, P.O. Box 19031, Curitiba, PR 81540-990, Brazil
| | - Alexandra Acco
- Department of Pharmacology, Biological Sciences Building, Federal University of Paraná, Street Coronel Francisco H dos Santos S/N, P.O. Box 19031, Curitiba, PR 81540-990, Brazil
| | | | - Joice Maria da Cunha
- Department of Pharmacology, Biological Sciences Building, Federal University of Paraná, Street Coronel Francisco H dos Santos S/N, P.O. Box 19031, Curitiba, PR 81540-990, Brazil
| | - Janaina Menezes Zanoveli
- Department of Pharmacology, Biological Sciences Building, Federal University of Paraná, Street Coronel Francisco H dos Santos S/N, P.O. Box 19031, Curitiba, PR 81540-990, Brazil.
| |
Collapse
|
6
|
Guo Y, Zeng J, Zhuang Y, Jiang C, Xie W. MiR-503-5p alleviates peripheral neuropathy-induced neuropathic pain in T2DM mice by regulating SEPT9 to inhibit astrocyte activation. Sci Rep 2024; 14:14361. [PMID: 38906977 PMCID: PMC11192719 DOI: 10.1038/s41598-024-65096-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 06/17/2024] [Indexed: 06/23/2024] Open
Abstract
Diabetic peripheral neuropathy (DPN) is a common complication of type 2 diabetes mellitus (T2DM) that causes peripheral and autonomic nervous system dysfunction. Dysregulation of miRNAs plays a crucial role in DPN development. However, the role of miR-503-5p in DPN remains unknown. Herein, T2DM mice (db/db) were used as a DPN model in vivo, and astrocytes isolated from db/db mice were induced with high glucose levels as a DPN model in vitro. MiR-503-5p expression was analyzed using qRT-PCR. GFAP, MCP-1, and SEPT9 protein levels were analyzed using western blotting and immunofluorescence. Luciferase assays were performed to investigate the interaction between miR-503-5p and SEPT9. We found that miR-503-5p expression decreased in the spinal cord of DPN model mice and astrocytes treated with high glucose (HG). The db/db mice displayed higher body weight and blood glucose, lower mechanical withdrawal threshold and thermal withdrawal latency, and higher GFAP and MCP-1 protein levels than db/m mice. However, tail vein injection of agomiR-503-5p remarkably reversed these parameters, whereas antigomiR-503-5p enhanced them. HG markedly facilitated GFAP and MCP-1 protein expression in astrocytes, whereas miR-503-5p mimic or inhibitor transfection markedly blocked or elevated GFAP and MCP-1 protein expression, respectively, in astrocytes with HG. SEPT9 was a target of miR-503-5p. In addition, SEPT9 protein levels were found to be elevated in db/db mice and astrocytes treated with HG. Treatment with agomiR-503-5p and miR-503-5p mimic was able to reduce SEPT9 protein levels, whereas treatment with antigomiR-503-5p and miR-503-5p inhibitor led to inhibition of the protein. Furthermore, SEPT9 overexpression suppressed the depressing effect of miR-503-5p overexpression in astrocytes subjected to HG doses. In conclusion, miR-503-5p was found to alleviate peripheral neuropathy-induced neuropathic pain in T2DM mice by regulating SEPT9 expression.
Collapse
Affiliation(s)
- Yuqing Guo
- Department of Anesthesiology, Quanzhou First Hospital Affiliated to Fujian Medical University, No. 250, East Street, Licheng District, Quanzhou, 362800, Fujian, China
| | - Jingyang Zeng
- Department of Anesthesiology, Quanzhou First Hospital Affiliated to Fujian Medical University, No. 250, East Street, Licheng District, Quanzhou, 362800, Fujian, China
| | - Yuanzhao Zhuang
- Department of Anesthesiology, Quanzhou First Hospital Affiliated to Fujian Medical University, No. 250, East Street, Licheng District, Quanzhou, 362800, Fujian, China
| | - Changcheng Jiang
- Department of Anesthesiology, Quanzhou First Hospital Affiliated to Fujian Medical University, No. 250, East Street, Licheng District, Quanzhou, 362800, Fujian, China
| | - Wenqin Xie
- Department of Anesthesiology, Quanzhou First Hospital Affiliated to Fujian Medical University, No. 250, East Street, Licheng District, Quanzhou, 362800, Fujian, China.
| |
Collapse
|
7
|
Xu X, Yu Y, Wang Z, Zhou H, Zhang L, Wang H, Liu D, Liu Y, Wang J, Zhao Y, Liang X. Design, semi-synthesis and bioevaluation of koumine-like derivatives as potential antitumor agents in vitro and in vivo. Future Med Chem 2024; 16:1413-1428. [PMID: 39190473 PMCID: PMC11352711 DOI: 10.1080/17568919.2024.2350878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 04/23/2024] [Indexed: 08/28/2024] Open
Abstract
Aims: Five series of novel koumine-like compounds were designed, semi-synthesized and systematically evaluated for antitumor activities.Methods: All compounds were evaluated for antiproliferative activity against four human cancer cell lines, including HT-29, HCT-116, HCT-15 and Caco-2.Results: Most compounds exhibited much higher antiproliferation activities (IC50 <10 μM) than koumine. Two selected compounds A4 and C5 showed comparable antitumor effects to 5-FU in vivo, as well as better safety profiles. Further studies suggested that A4 and C5 could arrest HT-29 cell cycle in G2 phase and raise reactive oxygen species level, thus inducing cell apoptosis related to Erk MAPK and NF-κB signaling pathways inhibition.Conclusion: These results will greatly promote the druggability study of these koumine-like compounds.
Collapse
Affiliation(s)
- Xingjun Xu
- Key Laboratory of Phytochemistry and Natural Medicines, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116034,China
- Ganjiang Chinese Medicine Innovation Center, Nanchang, 330000, China
| | - Yan Yu
- Key Laboratory of Phytochemistry and Natural Medicines, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116034,China
| | - Zhiwei Wang
- Key Laboratory of Phytochemistry and Natural Medicines, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116034,China
- Ganjiang Chinese Medicine Innovation Center, Nanchang, 330000, China
| | - Han Zhou
- Key Laboratory of Phytochemistry and Natural Medicines, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116034,China
- Ganjiang Chinese Medicine Innovation Center, Nanchang, 330000, China
| | - Ling Zhang
- Ganjiang Chinese Medicine Innovation Center, Nanchang, 330000, China
| | - Hao Wang
- Ganjiang Chinese Medicine Innovation Center, Nanchang, 330000, China
| | - Dian Liu
- Key Laboratory of Phytochemistry and Natural Medicines, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116034,China
- Ganjiang Chinese Medicine Innovation Center, Nanchang, 330000, China
| | - Yanfang Liu
- Key Laboratory of Phytochemistry and Natural Medicines, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116034,China
- Ganjiang Chinese Medicine Innovation Center, Nanchang, 330000, China
| | - Jixia Wang
- Key Laboratory of Phytochemistry and Natural Medicines, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116034,China
- Ganjiang Chinese Medicine Innovation Center, Nanchang, 330000, China
| | - Yaopeng Zhao
- Key Laboratory of Phytochemistry and Natural Medicines, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116034,China
- Ganjiang Chinese Medicine Innovation Center, Nanchang, 330000, China
| | - Xinmiao Liang
- Key Laboratory of Phytochemistry and Natural Medicines, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116034,China
- Ganjiang Chinese Medicine Innovation Center, Nanchang, 330000, China
| |
Collapse
|
8
|
Kong X, Ning C, Liang Z, Yang C, Wu Y, Li Y, Wu A, Wang Y, Wang S, Fan H, Xiao W, Wu J, Sun Z, Yuan Z. Koumine inhibits IL-1β-induced chondrocyte inflammation and ameliorates extracellular matrix degradation in osteoarthritic cartilage through activation of PINK1/Parkin-mediated mitochondrial autophagy. Biomed Pharmacother 2024; 173:116273. [PMID: 38412715 DOI: 10.1016/j.biopha.2024.116273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/08/2024] [Accepted: 02/13/2024] [Indexed: 02/29/2024] Open
Abstract
Osteoarthritis (OA) is a degenerative joint disease, Increasingly, mitochondrial autophagy has been found to play an important regulatory role in the prevention and treatment of osteoarthritis. Koumine is a bioactive alkaloid extracted from the plant Gelsemium elegans. In previous research, Koumine was found to have potential in improving the progression of OA in rats. However, the specific mechanism of its action has not been fully explained. Therefore, the aim of this study was to investigate whether Koumine can alleviate OA in rats by influencing mitochondrial autophagy. In the in vitro study, rat chondrocytes (RCCS-1) were induced with IL-1β (10 ng/mL) to induce inflammation, and Koumine (50 μg/mL) was co-treated. In the in vivo study, a rat OA model was established by intra-articular injection of 2% papain, and Koumine was administered orally (1 mg/kg, once daily for two weeks). It was found that Koumine effectively reduced cartilage erosion in rats with osteoarthritis. Additionally, it decreased the levels of inflammatory factors such as IL-1β, IL-6, and extracellular matrix (ECM) components MMP13 and ADAMTS5 in chondrocytes and articular cartilage tissue, while increasing the level of Collagen II.Koumine inhibited the production of reactive oxygen species (ROS) in cartilage tissue and increased the number of autophagosomes in chondrocytes and articular cartilage tissue. Additionally, it upregulated the expression of mitochondrial autophagy proteins LC3Ⅱ/Ⅰ, PINK1, Parkin, and Drp1. The administration of Mdivi-1 (50 μM) reversed the enhanced effect of Koumine on mitochondrial autophagy, as well as its anti-inflammatory and anti-ECM degradation effects in rats with OA. These findings suggest that Koumine can alleviate chondrocyte inflammation and improve the progression of OA in rats by activating PINK1/Parkin-mediated mitochondrial autophagy.
Collapse
Affiliation(s)
- Xiangyi Kong
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, PR China
| | - Can Ning
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, PR China
| | - Zengenni Liang
- Department of Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410128, PR China
| | - Chenglin Yang
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, PR China
| | - You Wu
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, PR China
| | - Yuanyuan Li
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, PR China
| | - Aoao Wu
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, PR China
| | - Yongkang Wang
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, PR China
| | - Siqi Wang
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, PR China
| | - Hui Fan
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, PR China
| | - Wenguang Xiao
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, PR China
| | - Jing Wu
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, PR China
| | - Zhiliang Sun
- Hunan Engineering Research Center of Veterinary Drugs, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, PR China.
| | - Zhihang Yuan
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, PR China.
| |
Collapse
|
9
|
Kc E, Islam J, Kim HK, Park YS. GFAP-NpHR mediated optogenetic inhibition of trigeminal nucleus caudalis attenuates hypersensitive behaviors and thalamic discharge attributed to infraorbital nerve constriction injury. J Headache Pain 2023; 24:137. [PMID: 37821818 PMCID: PMC10566148 DOI: 10.1186/s10194-023-01669-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 09/21/2023] [Indexed: 10/13/2023] Open
Abstract
The significance of hyperactive astrocytes in neuropathic pain is crucial. However, the association between medullary astrocytes and trigeminal neuralgia (TN)-related pain processing is unclear. Here, we examined how optogenetic inhibition of medullary astrocytes in the trigeminal nucleus caudalis (TNC) regulates pain hypersensitivity in an infraorbital nerve (ION) constricted TN model. We used adult Sprague Dawley rats subjected to infraorbital nerve (ION) constriction to mimic TN symptoms, with naive and sham rats serving as controls. For in vivo optogenetic manipulations, rats stereotaxically received AAV8-GFAP-eNpHR3.0-mCherry or AAV8-GFAP-mCherry at the trigeminal nucleus caudalis (TNC). Open field, von Frey, air puff, and acetone tests measured pain behavioral flexibility. In vivo thalamic recordings were obtained simultaneously with optogenetic manipulation in the TNC. Orofacial hyperalgesia and thalamic hyperexcitability were both accompanied by medullary astrocyte hyperactivity, marked by upregulated GFAP. The yellow laser-driven inhibition of TNC astrocytes markedly improved behavioral responses and regulated thalamic neuronal responses. Halorhodopsin-mediated inhibition in medullary astrocytes may modify the nociceptive input transmitted through the trigeminothalamic tract and pain perception. Taken together, these findings imply that this subpopulation in the TNC and its thalamic connections play a significant role in regulating the trigeminal pain circuitry, which might aid in the identification of new therapeutic measures in TN management.
Collapse
Affiliation(s)
- Elina Kc
- Program in Neuroscience, Department of Medicine, College of Medicine, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Jaisan Islam
- Program in Neuroscience, Department of Medicine, College of Medicine, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Hyong Kyu Kim
- Department of Medicine and Microbiology, College of Medicine, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Young Seok Park
- Program in Neuroscience, Department of Medicine, College of Medicine, Chungbuk National University, Cheongju, 28644, Republic of Korea.
- Department of Neurosurgery, Chungbuk National University Hospital, Cheongju, 28644, Republic of Korea.
| |
Collapse
|
10
|
Smith PA. Neuropathic pain; what we know and what we should do about it. FRONTIERS IN PAIN RESEARCH 2023; 4:1220034. [PMID: 37810432 PMCID: PMC10559888 DOI: 10.3389/fpain.2023.1220034] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 09/05/2023] [Indexed: 10/10/2023] Open
Abstract
Neuropathic pain can result from injury to, or disease of the nervous system. It is notoriously difficult to treat. Peripheral nerve injury promotes Schwann cell activation and invasion of immunocompetent cells into the site of injury, spinal cord and higher sensory structures such as thalamus and cingulate and sensory cortices. Various cytokines, chemokines, growth factors, monoamines and neuropeptides effect two-way signalling between neurons, glia and immune cells. This promotes sustained hyperexcitability and spontaneous activity in primary afferents that is crucial for onset and persistence of pain as well as misprocessing of sensory information in the spinal cord and supraspinal structures. Much of the current understanding of pain aetiology and identification of drug targets derives from studies of the consequences of peripheral nerve injury in rodent models. Although a vast amount of information has been forthcoming, the translation of this information into the clinical arena has been minimal. Few, if any, major therapeutic approaches have appeared since the mid 1990's. This may reflect failure to recognise differences in pain processing in males vs. females, differences in cellular responses to different types of injury and differences in pain processing in humans vs. animals. Basic science and clinical approaches which seek to bridge this knowledge gap include better assessment of pain in animal models, use of pain models which better emulate human disease, and stratification of human pain phenotypes according to quantitative assessment of signs and symptoms of disease. This can lead to more personalized and effective treatments for individual patients. Significance statement: There is an urgent need to find new treatments for neuropathic pain. Although classical animal models have revealed essential features of pain aetiology such as peripheral and central sensitization and some of the molecular and cellular mechanisms involved, they do not adequately model the multiplicity of disease states or injuries that may bring forth neuropathic pain in the clinic. This review seeks to integrate information from the multiplicity of disciplines that seek to understand neuropathic pain; including immunology, cell biology, electrophysiology and biophysics, anatomy, cell biology, neurology, molecular biology, pharmacology and behavioral science. Beyond this, it underlines ongoing refinements in basic science and clinical practice that will engender improved approaches to pain management.
Collapse
Affiliation(s)
- Peter A. Smith
- Neuroscience and Mental Health Institute and Department of Pharmacology, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|