1
|
Zhang H, Zhao Y, Gong W, Duan C, Xiao Y, Wang Y, Nie X. Ibuprofen exposure interferes with the mitochondrial dynamics processes and affects lipid metabolism in the yellowstripe goby (Mugilogobius chulae). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2025; 284:107372. [PMID: 40294544 DOI: 10.1016/j.aquatox.2025.107372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 04/06/2025] [Accepted: 04/19/2025] [Indexed: 04/30/2025]
Abstract
Ibuprofen (IBU), a prevalent non-steroidal anti-inflammatory drug (NSAID), is extensively utilized in medical practices. Especially since the popularity of COVID-19, its use has become more widespread, coupled with its low degradation rate and high environmental residues. Thus, more focus is warranted on the possible detrimental impacts on non-target organisms, as well as the underlying mechanisms of toxicity. The present study investigated the relationships and molecular mechanisms between hepatic mitochondrial dynamics processes and lipid metabolism in the yellowstripe goby (Mugilogobius chulae) exposed to IBU at concentrations of 0.5, 5, 50, and 500 μg/L over 7 days. The results showed that IBU exposure inhibited mitochondrial biogenesis and fusion but promoted mitochondrial fission by interfering with the SESN/PGC/ULK signaling pathway, causing an imbalance in mitochondrial dynamics. Thus, high concentration of IBU exposure caused mitochondrial dysfunction and oxidative stress. Molecular biological evidences suggested that IBU caused a decrease in ATP production and lipogenesis, leading to an energetic crisis in M. chulae. Hepatic tissue also showed a significant decrease in relative weight, an increase in mitochondrial damage and adipocyte degeneration. Correspondingly, the exposed organism attempted to mitigate these crises by promoting mitophagy and lipophagy via the Pink-Parkin pathway. Overall, IBU exposure interfered with mitochondrial dynamics processes and caused abnormalities in hepatic lipid metabolism in M. chulae. The present study highlighted the discovery of mitochondrial dynamics imbalance to lipid dysregulation cascade mechanism. We emphasized the negative effects of NSAIDs such as IBU on aquatic non-target organisms at different levels. It provided valuable insights into the ecological risk assessment of IBU in aquatic environments.
Collapse
Affiliation(s)
- Huiyu Zhang
- Department of Ecology, Jinan University, Guangzhou, 510632, PR China
| | - Yufei Zhao
- Department of Ecology, Jinan University, Guangzhou, 510632, PR China
| | - Weibo Gong
- Department of Ecology, Jinan University, Guangzhou, 510632, PR China
| | - Chunni Duan
- Department of Ecology, Jinan University, Guangzhou, 510632, PR China
| | - Yuanyuan Xiao
- Department of Ecology, Jinan University, Guangzhou, 510632, PR China
| | - Yimeng Wang
- Department of Ecology, Jinan University, Guangzhou, 510632, PR China
| | - Xiangping Nie
- Department of Ecology, Jinan University, Guangzhou, 510632, PR China.
| |
Collapse
|
2
|
Xian X, Zhao X, Zhou X, Liu H, Li C, Wu X, Chen Y, Ye K, Yang H, Li M, Yan J, Zhang X. Honokiol attenuates oxidative stress and vascular calcification via the upregulation of heme oxygenase-1 in chronic kidney disease. Toxicol Appl Pharmacol 2025; 499:117318. [PMID: 40194744 DOI: 10.1016/j.taap.2025.117318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/27/2025] [Accepted: 03/31/2025] [Indexed: 04/09/2025]
Abstract
Vascular calcification (VC) is a common complication of chronic kidney disease (CKD), with oxidative stress identified as a key contributor to VC progression. Honokiol (HKL), a biphenolic compound derived from plants, has been found to be effective in treating various models of cardiovascular disease through the mitigation of oxidative stress. However, its effects on VC remain unexplored. To elucidate the effects of HKL on VC, a CKD rat model, a vitamin D3-overload-induced mouse model of vascular calcification, and a high-phosphate-induced human vascular smooth muscle cell (VSMC) calcification model were established. Calcification levels were assessed using alizarin red staining, calcium quantification, and western blotting of osteogenic markers. Oxidative stress was assessed by measuring reactive oxygen species. Furthermore, transcriptome sequencing was employed to identify molecules and pathways affected by HKL. HKL was found to significantly reduce calcification in both in vivo and in vitro models. It also mitigated oxidative stress induced by high phosphate in human VSMCs. Mechanistically, HKL upregulated heme oxygenase-1 (HMOX-1), thereby inhibiting oxidative stress and reducing calcification. Pharmacological inhibition of HMOX-1 counteracted the protective effect of HKL against vascular calcification. In summary, the findings suggest that HKL ameliorates VC by upregulating HMOX-1 and decreasing oxidative stress.
Collapse
MESH Headings
- Oxidative Stress/drug effects
- Animals
- Vascular Calcification/drug therapy
- Vascular Calcification/enzymology
- Vascular Calcification/prevention & control
- Vascular Calcification/pathology
- Renal Insufficiency, Chronic/drug therapy
- Renal Insufficiency, Chronic/enzymology
- Biphenyl Compounds/pharmacology
- Biphenyl Compounds/therapeutic use
- Heme Oxygenase-1/metabolism
- Heme Oxygenase-1/genetics
- Lignans/pharmacology
- Lignans/therapeutic use
- Humans
- Male
- Up-Regulation/drug effects
- Mice
- Rats
- Mice, Inbred C57BL
- Rats, Sprague-Dawley
- Disease Models, Animal
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/enzymology
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/enzymology
- Myocytes, Smooth Muscle/pathology
- Antioxidants/pharmacology
- Cells, Cultured
- Allyl Compounds
- Phenols
Collapse
Affiliation(s)
- Xuemin Xian
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Zhujiang Hospital, Southern Medical University, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, China
| | - Xin Zhao
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Zhujiang Hospital, Southern Medical University, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, China
| | - Xingchen Zhou
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Zhujiang Hospital, Southern Medical University, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, China
| | - Hanfang Liu
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Zhujiang Hospital, Southern Medical University, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, China
| | - Changxi Li
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Zhujiang Hospital, Southern Medical University, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, China
| | - Xinquan Wu
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Zhujiang Hospital, Southern Medical University, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, China
| | - Yuhang Chen
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Zhujiang Hospital, Southern Medical University, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, China
| | - Keyue Ye
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Zhujiang Hospital, Southern Medical University, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, China
| | - Hongwei Yang
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Zhujiang Hospital, Southern Medical University, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, China
| | - Mingxi Li
- Department of Pathophysiology, Zhongshan Medical School, Sun Yat-Sen University, Guangzhou, China
| | - Jianyun Yan
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Zhujiang Hospital, Southern Medical University, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, China.
| | - Xiuli Zhang
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Zhujiang Hospital, Southern Medical University, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, China.
| |
Collapse
|
3
|
Tang H, Zhou Y, Ma L, Ye Y, Xiao QX, Tang JQ, Xu Y. SIRT3 alleviates mitochondrial dysfunction and senescence in diabetes-associated periodontitis by deacetylating LRPPRC. Free Radic Biol Med 2025; 227:407-419. [PMID: 39557134 DOI: 10.1016/j.freeradbiomed.2024.11.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 11/06/2024] [Accepted: 11/16/2024] [Indexed: 11/20/2024]
Abstract
Diabetes-associated periodontitis (DP) is recognized as an inflammatory disease that can lead to teeth loss. Uncontrolled chronic low-grade inflammation-induced senescence impairs the stemness of human periodontal stem cells (hPDLSCs). Sirtuin 3 (SIRT3), an NAD+-dependent deacetylase, is pivotal in various biological processes and is closely linked to aging and aging-related diseases. This study aims to explore the mechanism of SIRT3-related senescence and osteogenic differentiation of hPDLSCs under DP and explored the novelty therapeutic targets. Our study revealed that SIRT3 expression was markedly inhibited in periodontal ligament stem cells (PDLSCs) stimulated by high glucose and lipopolysaccharide. Both in vitro and in vivo, reduced SIRT3 expression accelerated cell senescence and impaired osteogenic differentiation of hPDLSCs. We demonstrated that SIRT3 binds to and deacetylates leucine-rich pentatricopeptide repeat-containing protein (LRPPRC), thereby modulating senescence. Additionally, we found that LRPPRC regulates senescence by modulating oxidative phosphorylation and oxidative stress. The activation of SIRT3 by honokiol significantly delayed senescence and promoted alveolar bone regeneration in mice after DP. Our findings indicate that the activation of SIRT3 negatively regulates hPDLSCs senescence by deacetylating LRPPRC, suggesting SIRT3 as a promising therapeutic target for DP.
Collapse
Affiliation(s)
- Hui Tang
- Department of Periodontology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China; State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, Nanjing, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Yi Zhou
- Department of Periodontology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China; State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, Nanjing, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Lu Ma
- Department of Periodontology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China; State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, Nanjing, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Yu Ye
- Department of Periodontology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China; State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, Nanjing, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Qian-Xuan Xiao
- Department of Periodontology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China; State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, Nanjing, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Jing-Qi Tang
- Department of Periodontology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China; State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, Nanjing, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Yan Xu
- Department of Periodontology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China; State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, Nanjing, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China.
| |
Collapse
|
4
|
Mazumder S, Bindu S, Debsharma S, Bandyopadhyay U. Induction of mitochondrial toxicity by non-steroidal anti-inflammatory drugs (NSAIDs): The ultimate trade-off governing the therapeutic merits and demerits of these wonder drugs. Biochem Pharmacol 2024; 228:116283. [PMID: 38750902 DOI: 10.1016/j.bcp.2024.116283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 05/08/2024] [Accepted: 05/11/2024] [Indexed: 05/20/2024]
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) are most extensively used over-the-counter FDA-approved analgesic medicines for treating inflammation, musculoskeletal pain, arthritis, pyrexia and menstrual cramps. Moreover, aspirin is widely used against cardiovascular complications. Owing to their non-addictive nature, NSAIDs are also commissioned as safer opioid-sparing alternatives in acute trauma and post-surgical treatments. In fact, therapeutic spectrum of NSAIDs is expanding. These "wonder-drugs" are now repurposed against lung diseases, diabetes, neurodegenerative disorders, fungal infections and most notably cancer, due to their efficacy against chemoresistance, radio-resistance and cancer stem cells. However, prolonged NSAID treatment accompany several adverse effects. Mechanistically, apart from cyclooxygenase inhibition, NSAIDs directly target mitochondria to induce cell death. Interestingly, there are also incidences of dose-dependent effects where NSAIDs are found to improve mitochondrial health thereby suggesting plausible mitohormesis. While mitochondria-targeted effects of NSAIDs are discretely studied, a comprehensive account emphasizing the multiple dimensions in which NSAIDs affect mitochondrial structure-function integrity, leading to cell death, is lacking. This review discusses the current understanding of NSAID-mitochondria interactions in the pathophysiological background. This is essential for assessing the risk-benefit trade-offs of NSAIDs for judiciously strategizing NSAID-based approaches to manage pain and inflammation as well as formulating effective anti-cancer strategies. We also discuss recent developments constituting selective mitochondria-targeted NSAIDs including theranostics, mitocans, chimeric small molecules, prodrugs and nanomedicines that rationally optimize safer application of NSAIDs. Thus, we present a comprehensive understanding of therapeutic merits and demerits of NSAIDs with mitochondria at its cross roads. This would help in NSAID-based disease management research and drug development.
Collapse
Affiliation(s)
- Somnath Mazumder
- Department of Zoology, Raja Peary Mohan College, 1 Acharya Dhruba Pal Road, Uttarpara, West Bengal 712258, India
| | - Samik Bindu
- Department of Zoology, Cooch Behar Panchanan Barma University, Cooch Behar, West Bengal 736101, India
| | - Subhashis Debsharma
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata 700032, West Bengal, India
| | - Uday Bandyopadhyay
- Department of Biological Sciences, Bose Institute, Unified Academic Campus, EN 80, Sector V, Bidhan Nagar, Kolkata 700091, West Bengal, India.
| |
Collapse
|
5
|
Ghosh S, Goswami D, Dutta R, Ghatak D, De R. A Comprehensive Pan-Cancer Analysis of Cytochrome C Oxidase Assembly Factor 1 (COA1) Reveals Instrumental Role of Mitochondrial Protein Assembly in Cancer that Modulates Disease Progression and Prognostic Outcome. Cell Biochem Biophys 2024; 82:2533-2555. [PMID: 38907941 DOI: 10.1007/s12013-024-01366-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2024] [Indexed: 06/24/2024]
Abstract
Cytochrome c oxidase assembly factor 1 (COA1), a mitochondrial respiratory chain complex assembly factor protein of inner mitochondrial membrane (IMM), is involved in translating many mitochondrial components and assembling nuclear-encoded components within mitochondria. Given the lack of extensive research on COA1 in cancer, this study undertakes a comprehensive pan-cancer analysis of COA1, which is overexpressed across various cancer types, shedding light on its multifaceted role in tumorigenesis, prognosis, and tumor microenvironment (TME) modulation. Leveraging bioinformatics tools and public databases, we elucidated its potential as a diagnostic cancer biomarker as well as a target for novel anti-cancer therapeutics. Gene expression analysis using "TIMER2.0", "UALCAN" and "GEPIA2" platforms, supported by protein expression data, revealed a significant correlation between COA1 upregulation and poor prognosis in Kaplan-Meir analysis, underscoring its clinical relevance. Additionally, genetic mutation analysis of COA1 with the help of "cBioPortal" warrants further exploration into its functional significance. Moreover, our investigation of the tumor microenvironment unveiled the interplay of COA1 with fibroblast and T cell infiltration implicating the role of COA1 in the tumor immune microenvironment. Furthermore, COA1-related gene enrichment study in "GeneMANIA" and pathway cross-talk analysis with Gene Ontology (GO) gene sets established comprehensive clarifications about the molecular pathways and protein networks associated with COA1 deregulation. Overall, this study lays a sturdy foundation to support future research endeavors targeting COA1, unraveling the molecular mechanisms underlying COA1 deregulation, and exploring its therapeutic potential in cancer.
Collapse
Affiliation(s)
- Sayak Ghosh
- Amity Institute of Biotechnology, Amity University Kolkata, Plot No: 36, 37 & 38, Major Arterial Road, Action Area II, Kadampukur Village, Newtown, Kolkata, 700135, West Bengal, India
| | - Devyani Goswami
- Amity Institute of Biotechnology, Amity University Kolkata, Plot No: 36, 37 & 38, Major Arterial Road, Action Area II, Kadampukur Village, Newtown, Kolkata, 700135, West Bengal, India
| | - Rittick Dutta
- Swami Vivekananda University, Kolkata, 700121, West Bengal, India
| | - Debapriya Ghatak
- Indian Association for the Cultivation of Science, Jadavpur, Kolkata, 700032, West Bengal, India
| | - Rudranil De
- Amity Institute of Biotechnology, Amity University Kolkata, Plot No: 36, 37 & 38, Major Arterial Road, Action Area II, Kadampukur Village, Newtown, Kolkata, 700135, West Bengal, India.
| |
Collapse
|
6
|
Ghosh S, Ghatak D, Dutta R, Goswami D, De R. PINK1 insufficiency can be exploited as a specific target for drug combinations inducing mitochondrial pathology-mediated cell death in gastric adenocarcinoma. Arch Biochem Biophys 2024; 759:110110. [PMID: 39103009 DOI: 10.1016/j.abb.2024.110110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 07/23/2024] [Accepted: 08/02/2024] [Indexed: 08/07/2024]
Abstract
There exist very limited non-hazardous therapeutic strategies except for surgical resection and lymphadenectomy against gastric cancer (GC) despite being the third leading cause of cancer deaths worldwide. This study proposes an innovative treatment approach against GC using a drug combination strategy that manipulates mitochondrial dynamics in conjunction with the induction of mitochondrial pathology-mediated cell death. Comparative analysis was done with gastric adenocarcinoma and normal cells by qPCR, western blot, microscopic immunocytochemistry, and live cell imaging. In this study, impairment of dynamin-related protein 1 (Drp1)-mediated mitochondrial fission by Mdivi-1 created an imbalance in mitochondrial structural dynamics in indomethacin-treated AGS cells in which mitophagy-regulator protein PINK1 is downregulated. These drug combinations with the individual sub-lethal doses ultimately led to the activation of cell death machinery upregulating pro-apoptotic proteins like Bax, Puma, and Noxa. Interestingly, this combinatorial therapy did not affect normal gastric epithelial cells significantly and also no significant upregulation of death markers was observed. Moreover, the drug combination strategy also retarded cell migration and reduced stemness in GC cells. In summary, this study offers a pioneering specific therapeutic strategy for GC treatment, sparing normal cells providing opportunities for minimal drug-mediated toxicity utilizing mitochondria as a viable and specific target for anti-cancer therapy in gastric cancer.
Collapse
Affiliation(s)
- Sayak Ghosh
- Amity Institute of Biotechnology, Amity University Kolkata, Plot No: 36, 37 & 38, Major Arterial Road, Action Area II, Kadampukur Village, Newtown, Kolkata, 700135, West Bengal, India
| | - Debapriya Ghatak
- Indian Association for the Cultivation of Science, Jadavpur, Kolkata, 700032, West Bengal, India
| | - Rittick Dutta
- Swami Vivekananda University, Kolkata, 700121, West Bengal, India
| | - Devyani Goswami
- Amity Institute of Biotechnology, Amity University Kolkata, Plot No: 36, 37 & 38, Major Arterial Road, Action Area II, Kadampukur Village, Newtown, Kolkata, 700135, West Bengal, India
| | - Rudranil De
- Amity Institute of Biotechnology, Amity University Kolkata, Plot No: 36, 37 & 38, Major Arterial Road, Action Area II, Kadampukur Village, Newtown, Kolkata, 700135, West Bengal, India.
| |
Collapse
|
7
|
Yao H, Zhao H, Du Y, Zhang Y, Li Y, Zhu H. Sex-related differences in SIRT3-mediated mitochondrial dynamics in renal ischemia/reperfusion injury. Transl Res 2024; 270:1-12. [PMID: 38556109 DOI: 10.1016/j.trsl.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 03/05/2024] [Accepted: 03/14/2024] [Indexed: 04/02/2024]
Abstract
The prevalence of renal ischemia/reperfusion injury (IRI) in premenopausal women is considerably lower than that in age-matched men. This suggests that sex-related differences in mitochondrial function and homeostasis may contribute to sexual dimorphism in renal injury, though the mechanism remains unclear. Mouse model of unilateral left renal IRI with contralateral kidney enucleation, Ovariectomy in female mice, and a human embryonic kidney (HEK) cell model of hypoxia-reoxygenation were used to study how estrogen affects the sexual dimorphism of renal IRI through SIRT3 in vitro and in vivo, respectively. Here, we demonstrate differential expression of renal SIRT3 may induce sexual dimorphism in IRI using the renal IRI model. Higher SIRT3 level in female mice was associated with E2-induced protection of renal tubular epithelium, reduced mitochondrial reactive oxygen species (ROS), and IRI resistance. In hypoxia-reoxygenated HEK cells, SIRT3 knockdown increased oxidative stress, shifted the interconnected mitochondrial network toward fission, exacerbated hypoxia/reoxygenation-induced endoplasmic reticulum stress (ERS), and abolished the protective effects of E2 on IRI. Mechanistically, the SIRT3 level is E2-dependent and that E2 increases the SIRT3 protein level via estrogen receptor. SIRT3 targeted an i-AAA protease, yeast mitochondrial AAA metalloprotease (YME1L1), and hydrolyzed long optic atrophy 1 (L-OPA) to short-OPA1 (S-OPA1) by deacetylating YME1L1, regulating mitochondrial dynamics toward fusion to reduce oxidative stress and ERS. These findings explored the mechanism by how estrogen alleviates renal IRI and providing a basis for potential therapeutic interventions targeting SIRT3.
Collapse
Affiliation(s)
- Hanlin Yao
- Zhongnan Hospital, Wuhan University, Wuhan 430060, Hubei, China
| | - Hongchao Zhao
- Department of Urology, Renmin Hospital, Wuhan University, Wuhan 430060, Hubei, China
| | - Yang Du
- Department of Urology, Renmin Hospital, Wuhan University, Wuhan 430060, Hubei, China
| | - Ye Zhang
- Department of Urology, Renmin Hospital, Wuhan University, Wuhan 430060, Hubei, China
| | - Yanze Li
- Department of Urology, Renmin Hospital, Wuhan University, Wuhan 430060, Hubei, China
| | - Hengcheng Zhu
- Department of Urology, Renmin Hospital, Wuhan University, Wuhan 430060, Hubei, China; Institute of Urologic Disease, Renmin Hospital, Wuhan University, Wuhan 430060, Hubei, China.
| |
Collapse
|
8
|
Sun N, Zhi Z, Xiao T, Deng X, He T, Dong W, Feng S, Chen S, Wong WL, Yuan W. The study of honokiol as a natural product-based antimicrobial agent and its potential interaction with FtsZ protein. Front Microbiol 2024; 15:1361508. [PMID: 39104591 PMCID: PMC11298477 DOI: 10.3389/fmicb.2024.1361508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 07/10/2024] [Indexed: 08/07/2024] Open
Abstract
Multidrug resistant bacteria have been a global health threat currently and frontline clinical treatments for these infections are very limited. To develop potent antibacterial agents with new bactericidal mechanisms is thus needed urgently to address this critical antibiotic resistance challenge. Natural products are a treasure of small molecules with high bioactive and low toxicity. In the present study, we demonstrated that a natural compound, honokiol, showed potent antibacterial activity against a number of Gram-positive bacteria including MRSA and VRE. Moreover, honokiol in combination with clinically used β-lactam antibiotics exhibits strong synergistic antimicrobial effects against drug-resistant S. aureus strains. Biochemical studies further reveal that honokiol may disrupt the GTPase activity, FtsZ polymerization, cell division. These biological impacts induced by honokiol may ultimately cause bacterial cell death. The in vivo antibacterial activity of honokiol against S. aureus infection was also verified with a biological model of G. mellonella larvae. The in vivo results support that honokiol is low toxic against the larvae and effectively increases the survival rate of the larvae infected with S. aureus. These findings demonstrate the potential of honokiol for further structural advancement as a new class of antibacterial agents with high potency against multidrug-resistant bacteria.
Collapse
Affiliation(s)
- Ning Sun
- Guangzhou 11th People's Hospital, Guangzhou Cadre and Talent Health Management Center, Guangzhou, China
| | - Ziling Zhi
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, King Med School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, China
| | - Ting Xiao
- Guangzhou 11th People's Hospital, Guangzhou Cadre and Talent Health Management Center, Guangzhou, China
| | - Xin Deng
- Guangzhou 11th People's Hospital, Guangzhou Cadre and Talent Health Management Center, Guangzhou, China
| | - Tenghui He
- Guangzhou 11th People's Hospital, Guangzhou Cadre and Talent Health Management Center, Guangzhou, China
| | - Wanyang Dong
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, King Med School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, China
| | - Shuyi Feng
- Guangzhou 11th People's Hospital, Guangzhou Cadre and Talent Health Management Center, Guangzhou, China
| | - Sisi Chen
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, King Med School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, China
| | - Wing-Leung Wong
- State Key Laboratory of Chemical Biology and Drug Discovery, and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Wenchang Yuan
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, King Med School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
9
|
Gou YP, Huang Y, Chen L, Zheng W, Zheng YH. Analysis and monitoring of drug therapy in a patient with peptic ulcer complicated by infection: A case report. World J Clin Cases 2024; 12:1530-1535. [PMID: 38576803 PMCID: PMC10989448 DOI: 10.12998/wjcc.v12.i8.1530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/07/2024] [Accepted: 02/21/2024] [Indexed: 03/12/2024] Open
Abstract
BACKGROUND The role of primary-level medical pharmacists in medical institutions in China is limited; therefore, it is necessary to explore the role of pharmacists in the process of drug treatment. CASE SUMMARY A Chinese pharmacist participated in the complete treatment of a patient with a duodenal ulcer. The rationale for drug treatment was evaluated, and adjustments were made to the antacid and anti-infective regimen, as well as the dose and frequency of administration. Body temperature, routine blood examination, and adverse drug reactions were strictly monitored. During treatment, the pharmacist recommended anti-infective therapy with ampicillin-sulbactam, which effectively controlled the infection. Additionally, the pharmacist suggested changing famotidine to lansoprazole for acid suppression and gastroprotective treatment, combined with Chinese patent medicine such as Kangfuxin Liquid. This is the first case report of a pharmacist in primary-level medical institutions adjusting drug use for patients with duodenal ulcer and pulmonary infection. CONCLUSION A pharmacist participated in the treatment process, provided individualized medication adjustment, and achieved good clinical results.
Collapse
Affiliation(s)
- Yan-Ping Gou
- The Second People’s Hospital of Meishan City & Renshou County People’s Hospital, Meishan 620500, Sichuan Province, China
| | - Yue Huang
- Quality Evaluation and Medical Record Management, The Affiliated Hospital of Southwest Jiaotong University & The Third People's Hospital of Chengdu, Chengdu 610000, Sichuan Province, China
| | - Li Chen
- Quality Evaluation and Medical Record Management, The Affiliated Hospital of Southwest Jiaotong University & The Third People's Hospital of Chengdu, Chengdu 610000, Sichuan Province, China
| | - Wei Zheng
- Patriotic Health Campaign, Qionglai City Health Bureau, Chengdu 610000, Sichuan Province, China
| | - Yun-Hua Zheng
- Quality Evaluation and Medical Record Management, The Affiliated Hospital of Southwest Jiaotong University & The Third People's Hospital of Chengdu, Chengdu 610000, Sichuan Province, China
| |
Collapse
|