1
|
Ieremias L, Manandhar A, Schultz-Knudsen K, Kaspersen MH, Vrettou CI, Rexen Ulven E, Ulven T. Minimal Structural Variation of GPR84 Full Agonist Causes Functional Switch to Inverse Agonism. J Med Chem 2025; 68:7973-8009. [PMID: 40183744 DOI: 10.1021/acs.jmedchem.4c02335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
GPR84 is an orphan GPCR that is expressed primarily in immune cells such as neutrophils and macrophages, and that modulates immune responses during inflammation. The receptor has appeared as a promising drug target, and accumulating evidence indicates that GPR84 inhibition is a viable approach for treatment of various inflammatory and fibrotic disorders. Herein, we report the discovery of a minor structural modification resulting in functional switch of agonists to inverse agonists. Subsequent SAR explorations led to the identification of low-nanomolar potency inverse agonists and antagonists, as exemplified by TUG-2181 (40g). Representative compounds exhibited good physicochemical properties, selectivity over other free fatty acid receptors, and the ability to fully inhibit GPR84-mediated neutrophil activation.
Collapse
Affiliation(s)
- Loukas Ieremias
- Department of Drug Design and Pharmacology, Faculty of Health, University of Copenhagen, 2100 Copenhagen Ø, Denmark
| | - Asmita Manandhar
- Department of Drug Design and Pharmacology, Faculty of Health, University of Copenhagen, 2100 Copenhagen Ø, Denmark
| | - Katrine Schultz-Knudsen
- Department of Drug Design and Pharmacology, Faculty of Health, University of Copenhagen, 2100 Copenhagen Ø, Denmark
| | - Mads Holmgaard Kaspersen
- Department of Drug Design and Pharmacology, Faculty of Health, University of Copenhagen, 2100 Copenhagen Ø, Denmark
- Department of Physics, Chemistry and Pharmacy, Faculty of Science, University of Southern Denmark, 5230 Odense M, Denmark
| | - Christina Ioanna Vrettou
- Department of Drug Design and Pharmacology, Faculty of Health, University of Copenhagen, 2100 Copenhagen Ø, Denmark
| | - Elisabeth Rexen Ulven
- Department of Drug Design and Pharmacology, Faculty of Health, University of Copenhagen, 2100 Copenhagen Ø, Denmark
| | - Trond Ulven
- Department of Drug Design and Pharmacology, Faculty of Health, University of Copenhagen, 2100 Copenhagen Ø, Denmark
- Department of Physics, Chemistry and Pharmacy, Faculty of Science, University of Southern Denmark, 5230 Odense M, Denmark
| |
Collapse
|
2
|
Hattori T, Taguchi K, Chaya R, Hamamoto S, Okada A, Yasui T. The role of osteopontin in modulating macrophage phagocytosis of calcium oxalate crystals. Urolithiasis 2025; 53:58. [PMID: 40131428 DOI: 10.1007/s00240-025-01732-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Accepted: 03/15/2025] [Indexed: 03/27/2025]
Abstract
In inflammation, osteopontin (OPN) acts as both a stone matrix component for calcium oxalate (CaOx) crystal formation and an inflammatory mediator. While previous studies have demonstrated the individual roles of OPN and macrophages (Mφ) in renal CaOx stone formation during inflammation, their interaction remains poorly understood. This study aimed to elucidate the role of OPN in modulating Mφ function during crystal formation, using an ex vivo model. Bone marrow-derived macrophages (BMDM) were isolated from eight-week-old male C57BL/6J wild-type and OPN knockout mice. BMDMs from OPN-positive (BMDMOPN+) and OPN-negative (BMDMOPN-) mice were co-cultured with fluorescently labeled CaOx monohydrate (COM) crystals for phagocytosis assays and analyzed using the IN Cell Analyzer 6000. We further performed real-time quantitative reverse transcription PCR and RNA sequencing to identify gene expression profiles and clarify the role of OPN in Mφ function. The assay analysis demonstrated that phagocytosis rates were significantly higher in BMDMOPN- than in BMDMOPN+. Inflammatory markers, such as IL-6, TNF, CD44, were upregulated following COM exposure, and IL-6 expression was significantly lower in BMDMOPN- than in BMDMOPN+. RNA sequencing revealed that BMDMOPN- exhibited a less pro-inflammatory and more anti-inflammatory phenotype (Csf2low, Irf5low, Itgaxlow, Csf1high, Cd163high), resembling M2-like Mφs. Further functional analysis indicated that OPN knockdown in Mφs increased the S100 family and CREB signaling, which enhanced the M2-like phenotype shift and phagosome formation. In conclusion, OPN plays a critical role in enhancing pro-inflammatory Mφ function, potentially limiting COM phagocytosis. Modulating OPN expression in circulating Mφs may represent a therapeutic approach for kidney stone disease.
Collapse
Affiliation(s)
- Tatsuya Hattori
- Department of Nephro-urology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Kazumi Taguchi
- Department of Nephro-urology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan.
| | - Ryosuke Chaya
- Department of Nephro-urology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Shuzo Hamamoto
- Department of Nephro-urology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Atsushi Okada
- Department of Nephro-urology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Takahiro Yasui
- Department of Nephro-urology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| |
Collapse
|
3
|
Wu Z, Wang Z, Chen T, Wang D, Zhou F, Zhang G, Wei S, Wu Y. Dermal white adipose tissue: A new modulator in wound healing and regeneration. Regen Ther 2025; 28:115-125. [PMID: 39717110 PMCID: PMC11665542 DOI: 10.1016/j.reth.2024.11.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 11/06/2024] [Accepted: 11/20/2024] [Indexed: 12/25/2024] Open
Abstract
Dermal white adipose tissue (dWAT), distinguished by its origin from cells within the dermis and independence from subcutaneous fat tissue, has garnered significant attention for its non-metabolic functions. Characterized by strong communication with other components of the skin, dWAT mediates the proliferation and recruitment of various cell types by releasing adipogenic and inflammatory factors. Here, we focus on the modulatory role of dWAT at different stages during wound healing, highlighting its ability to mediate the adipocyte-to-myofibroblast transition which plays a pivotal role in the physiology and pathology processes of skin fibrosis, scarring, and aging. This review highlights the regulatory potential of dWAT in modulating wound healing processes and presents it as a target for developing therapeutic strategies aimed at reducing scarring and enhancing regenerative outcomes in skin-related disorders.
Collapse
Affiliation(s)
- Zhongyu Wu
- Department of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, PR China
| | - Zhanqi Wang
- Department of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, PR China
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, National Clinical Research Center for Oral Diseases, Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing 100081, PR China
| | - Tao Chen
- Department of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, PR China
| | - Dongyang Wang
- Department of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, PR China
| | - Feng Zhou
- Department of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, PR China
| | - Guorui Zhang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, PR China
| | - Shan Wei
- Huizhou Health Sciences Polytechnic, Huizhou 516025, Guangdong, PR China
| | - Yingying Wu
- Department of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, PR China
| |
Collapse
|
4
|
Wumaier R, Zhang K, Zhou J, Wen Z, Chen Z, Luo G, Wang H, Qin J, Du B, Ren H, Song Y, Gao Q, Yan B. Mycobacteria Exploit Host GPR84 to Dampen Pro-Inflammatory Responses and Promote Infection in Macrophages. Microorganisms 2025; 13:110. [PMID: 39858878 PMCID: PMC11767743 DOI: 10.3390/microorganisms13010110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/24/2024] [Accepted: 12/31/2024] [Indexed: 01/27/2025] Open
Abstract
Tuberculosis (TB) remains the major cause of mortality and morbidity, causing approximately 1.3 million deaths annually. As a highly successful pathogen, Mycobacterium tuberculosis (Mtb) has evolved numerous strategies to evade host immune responses, making it essential to understand the interactions between Mtb and host cells. G-protein-coupled receptor 84 (GPR84), a member of the G-protein-coupled receptor family, contributes to the regulation of pro-inflammatory reactions and the migration of innate immune cells, such as macrophages. Its role in mycobacterial infection, however, has not yet been explored. We found that GPR84 is induced in whole blood samples from tuberculosis patients and Mycobacterium marinum (Mm)-infected macrophage models. Using a Mm-wasabi infection model in mouse tails, we found that GPR84 is an important determinant of the extent of tissue damage. Furthermore, from our studies in an in vitro macrophage Mm infection model, it appears that GPR84 inhibits pro-inflammatory cytokines expression and increases intracellular lipid droplet (LD) accumulation, thereby promoting intracellular bacterial survival. Our findings suggest that GPR84 could be a potential therapeutic target for host-directed anti-TB therapeutics.
Collapse
Affiliation(s)
- Reziya Wumaier
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Shanghai Public Health Clinical Center, Fudan University, Shanghai 200433, China;
| | - Ke Zhang
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200032, China;
| | - Jing Zhou
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China; (J.Z.); (Z.W.); (Z.C.); (G.L.); (H.W.); (Y.S.)
| | - Zilu Wen
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China; (J.Z.); (Z.W.); (Z.C.); (G.L.); (H.W.); (Y.S.)
| | - Zihan Chen
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China; (J.Z.); (Z.W.); (Z.C.); (G.L.); (H.W.); (Y.S.)
- Pathology Department, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen 518035, China
| | - Geyang Luo
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China; (J.Z.); (Z.W.); (Z.C.); (G.L.); (H.W.); (Y.S.)
| | - Hao Wang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China; (J.Z.); (Z.W.); (Z.C.); (G.L.); (H.W.); (Y.S.)
| | - Juliang Qin
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences, East China Normal University, Shanghai 200241, China; (J.Q.); (B.D.); (H.R.)
| | - Bing Du
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences, East China Normal University, Shanghai 200241, China; (J.Q.); (B.D.); (H.R.)
| | - Hua Ren
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences, East China Normal University, Shanghai 200241, China; (J.Q.); (B.D.); (H.R.)
| | - Yanzheng Song
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China; (J.Z.); (Z.W.); (Z.C.); (G.L.); (H.W.); (Y.S.)
| | - Qian Gao
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Shanghai Public Health Clinical Center, Fudan University, Shanghai 200433, China;
| | - Bo Yan
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China; (J.Z.); (Z.W.); (Z.C.); (G.L.); (H.W.); (Y.S.)
| |
Collapse
|
5
|
Dovrolis N, Spathakis M, Collins AR, Pandey VK, Uddin MI, Anderson DD, Kaminska T, Paspaliaris V, Kolios G. Pan-Cancer Insights: A Study of Microbial Metabolite Receptors in Malignancy Dynamics. Cancers (Basel) 2024; 16:4178. [PMID: 39766077 PMCID: PMC11674037 DOI: 10.3390/cancers16244178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/03/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND/OBJECTIVES The role of the gut microbiome in cancer biology has become an increasingly prominent area of research, particularly regarding the role of microbial metabolites and their receptors (MMRs). These metabolites, through the various gut-organ axes, have been proven to influence several pathogenetic mechanisms. This study conducted a comprehensive pan-cancer analysis of MMR transcriptomic profiles across twenty-three cancer types, exploring the mechanisms through which they can influence cancer development and progression. METHODS Utilizing both cancer cell lines from CCLE (Cancer Cell Line Encyclopedia) and human tumor samples from TCGA (The Cancer Gene Atlas), we analyzed 107 MMRs interacting with microbial metabolites such as short-chain fatty acids, bile acids, indole derivatives, and others while studying their interactions with key known cancer genes. RESULTS Our results revealed that certain MMRs, such as GPR84 and serotonin receptors, are consistently upregulated in various malignancies, while others, like ADRA1A, are frequently downregulated, suggesting diverse roles in cancer pathophysiology. Furthermore, we identified significant correlations between MMR expression and cancer hallmark genes and pathways, including immune evasion, proliferation, and metastasis. CONCLUSIONS These findings suggest that the interactions between microbial metabolites and MMRs may serve as potential biomarkers for cancer diagnosis, prognosis, and therapy, highlighting their therapeutic potential. This study underscores the significance of the microbiota-cancer axis and provides novel insights into microbiome-based strategies for cancer treatment.
Collapse
Affiliation(s)
- Nikolas Dovrolis
- Laboratory of Pharmacology, Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (M.S.); (G.K.)
| | - Michail Spathakis
- Laboratory of Pharmacology, Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (M.S.); (G.K.)
| | - Alexandra R. Collins
- Paspa Pharmaceuticals Pty Ltd., Hawthorn East, VIC 3145, Australia; (A.R.C.); (V.K.P.); (M.I.U.); (T.K.); (V.P.)
| | - Varun Kumar Pandey
- Paspa Pharmaceuticals Pty Ltd., Hawthorn East, VIC 3145, Australia; (A.R.C.); (V.K.P.); (M.I.U.); (T.K.); (V.P.)
| | - Muhammad Ikhtear Uddin
- Paspa Pharmaceuticals Pty Ltd., Hawthorn East, VIC 3145, Australia; (A.R.C.); (V.K.P.); (M.I.U.); (T.K.); (V.P.)
| | | | - Tetiana Kaminska
- Paspa Pharmaceuticals Pty Ltd., Hawthorn East, VIC 3145, Australia; (A.R.C.); (V.K.P.); (M.I.U.); (T.K.); (V.P.)
| | - Vasilis Paspaliaris
- Paspa Pharmaceuticals Pty Ltd., Hawthorn East, VIC 3145, Australia; (A.R.C.); (V.K.P.); (M.I.U.); (T.K.); (V.P.)
- BioGut Technologies Inc., Fort Worth, TX 76104, USA;
- Tithon Biotech, Inc., San Diego, CA 92127, USA
| | - George Kolios
- Laboratory of Pharmacology, Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (M.S.); (G.K.)
| |
Collapse
|
6
|
Nishida A, Ohue‐Kitano R, Masujima Y, Nonaka H, Igarashi M, Ikeda T, Kimura I. Medium-chain fatty acid receptor GPR84 deficiency leads to metabolic homeostasis dysfunction in mice fed high-fat diet. FASEB Bioadv 2024; 6:526-538. [PMID: 39512839 PMCID: PMC11539033 DOI: 10.1096/fba.2024-00075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/17/2024] [Accepted: 07/23/2024] [Indexed: 11/15/2024] Open
Abstract
Overconsumption of food, especially dietary fat, leads to metabolic disorders such as obesity and type 2 diabetes. Long-chain fatty acids, such as palmitoleate are recognized as the risk factors for these disorders owing to their high-energy content and lipotoxicity. In contrast, medium-chain fatty acids (MCFAs) metabolic benefits; however, their underlying molecular mechanisms remain unclear. GPR84 is an MCFA receptor, particularly for C10:0. Although evidence from in vitro experiments and oral administration of C10:0 in mice suggests that GPR84 is related to the metabolic benefits of MCFAs via glucose metabolism, its precise roles in vivo remain unclear. Therefore, the present study investigated whether GPR84 affects glucose metabolism and metabolic function using Gpr84-deficient mice. Although Gpr84-deficient mice were lean and had increased endogenous MCFAs under high-fat diet feeding conditions, they exhibited hyperglycemia and hyperlipidemia along with lower plasma insulin and glucagon-like peptide-1 (GLP-1) levels compared with wild-type mice. Medium-chain triglyceride (C10:0) intake suppressed obesity, and improved plasma glucose and lipid levels, and increased plasma GLP-1 levels in wild-type mice; however, these effects were partially attenuated in Gpr84-deficient mice. Our results indicate that long-term MCFA-mediated GPR84 activation improves the dysfunction of glucose and lipid homeostasis. Our findings may be instrumental for future studies on drug development with GPR84 as a potential target, thereby offering new avenues for the treatment of metabolic disorders like obesity and type 2 diabetes.
Collapse
Affiliation(s)
- Akari Nishida
- Department of Molecular Endocrinology, Graduate School of Pharmaceutical SciencesKyoto UniversityKyotoJapan
| | - Ryuji Ohue‐Kitano
- Department of Biological & Environmental ChemistryKindai UniversityIizukaJapan
| | - Yuki Masujima
- Laboratory of Molecular Neurobiology, Graduate School of BiostudiesKyoto UniversityKyotoJapan
| | - Hazuki Nonaka
- Department of Applied Biological Science, Graduate School of AgricultureTokyo University of Agriculture and TechnologyFuchuTokyoJapan
| | - Miki Igarashi
- Department of Applied Biological Science, Graduate School of AgricultureTokyo University of Agriculture and TechnologyFuchuTokyoJapan
| | - Takako Ikeda
- Department of Molecular Endocrinology, Graduate School of Pharmaceutical SciencesKyoto UniversityKyotoJapan
- Laboratory of Molecular Neurobiology, Graduate School of BiostudiesKyoto UniversityKyotoJapan
| | - Ikuo Kimura
- Department of Molecular Endocrinology, Graduate School of Pharmaceutical SciencesKyoto UniversityKyotoJapan
- Laboratory of Molecular Neurobiology, Graduate School of BiostudiesKyoto UniversityKyotoJapan
| |
Collapse
|
7
|
Ma H, Ge Y, Di C, Wang X, Qin B, Wang A, Hu W, Lai Z, Xiong X, Qi R. GQ262 Attenuates Pathological Cardiac Remodeling by Downregulating the Akt/mTOR Signaling Pathway. Int J Mol Sci 2024; 25:10297. [PMID: 39408627 PMCID: PMC11476524 DOI: 10.3390/ijms251910297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/13/2024] [Accepted: 09/19/2024] [Indexed: 10/20/2024] Open
Abstract
Cardiac remodeling, a critical process that can lead to heart failure, is primarily characterized by cardiac hypertrophy. Studies have shown that transgenic mice with Gαq receptor blockade exhibit reduced hypertrophy under induced pressure overload. GQ262, a novel Gαq/11 inhibitor, has demonstrated good biocompatibility and specific inhibitory effects on Gαq/11 compared to other inhibitors. However, its role in cardiac remodeling remains unclear. This study aims to explore the anti-cardiac remodeling effects and mechanisms of GQ262 both in vitro and in vivo, providing data and theoretical support for its potential use in treating cardiac remodeling diseases. Cardiac hypertrophy was induced in mice via transverse aortic constriction (TAC) for 4 weeks and in H9C2 cells through phenylephrine (PE) induction, confirmed with WGA and H&E staining. We found that GQ262 improved cardiac function, inhibited the protein and mRNA expression of hypertrophy markers, and reduced the levels of apoptosis and fibrosis. Furthermore, GQ262 inhibited the Akt/mTOR signaling pathway activation induced by TAC or PE, with its therapeutic effects disappearing upon the addition of the Akt inhibitor ARQ092. These findings reveal that GQ262 inhibits cardiomyocyte hypertrophy and apoptosis through the Akt/mTOR signaling pathway, thereby reducing fibrosis levels and mitigating cardiac remodeling.
Collapse
Affiliation(s)
- Haoyue Ma
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing 100191, China; (H.M.)
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
- NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Peking University, Beijing 100191, China
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China
| | - Yang Ge
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Chang Di
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing 100191, China; (H.M.)
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
- NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Peking University, Beijing 100191, China
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China
| | - Xin Wang
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing 100191, China; (H.M.)
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
- NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Peking University, Beijing 100191, China
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China
| | - Boyang Qin
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing 100191, China; (H.M.)
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
- NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Peking University, Beijing 100191, China
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China
| | - Anhui Wang
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing 100191, China; (H.M.)
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
- NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Peking University, Beijing 100191, China
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China
| | - Weipeng Hu
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing 100191, China; (H.M.)
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
- NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Peking University, Beijing 100191, China
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China
| | - Zirui Lai
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing 100191, China; (H.M.)
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
- NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Peking University, Beijing 100191, China
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China
| | - Xiaofeng Xiong
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Rong Qi
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing 100191, China; (H.M.)
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
- NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Peking University, Beijing 100191, China
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China
| |
Collapse
|
8
|
Milligan G. Editorial for GPR84 pharmacology. Br J Pharmacol 2024; 181:1497-1499. [PMID: 38456201 DOI: 10.1111/bph.16340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024] Open
Abstract
LINKED ARTICLES This article is part of a themed issue GPR84 Pharmacology. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v181.10/issuetoc.
Collapse
Affiliation(s)
- Graeme Milligan
- Centre for Translational Pharmacology, School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
9
|
Yao MX, Yu HX, Mo HL, Zhang ZH, Song QC, Liu Q, Yang QY, Wang LX, Li Y. Structural and pharmacological characterization of a medium-chain fatty acid receptor GPR84 in common carp (Cyprinus carpio). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 153:105126. [PMID: 38160872 DOI: 10.1016/j.dci.2023.105126] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 12/23/2023] [Accepted: 12/24/2023] [Indexed: 01/03/2024]
Abstract
The medium-chain fatty acid receptor GPR84, a member of the G protein-coupled receptor family, is mainly expressed in macrophages and microglia, and is involved in the regulation of inflammatory responses and retinal development in mammals and amphibians. However, structure, tissue distribution, and pharmacology of this receptor have rarely been reported in fish. In this study, we cloned the coding sequence (CDS) of common carp GPR84 (ccGPR84), examined its tissue distribution, and explored its cellular signaling function. The results showed that the CDS of ccGPR84 is 1191 bp and encodes a putative protein with 396 amino acids. Phylogenetic and chromosomal synteny analyses revealed that ccGPR84 was evolutionarily conserved with Cyprinids. Real-time quantitative PCR (qPCR) indicated that ccGPR84 was predominantly expressed in the intestine and spleen. Luciferase reporter assay demonstrated that nonanoic acid, capric acid (decanoic acid), undecanoic acid and lauric acid could inhibit cAMP signaling pathway and activate MAPK/ERK signaling pathway, while the potencies of these four fatty acids on the two signaling pathways were different. Lauric acid has the highest inhibitory potency on cAMP signaling pathway, followed by undecanoic acid, nonanoic acid, and capric acid. While for MAPK/ERK signaling pathway, nonanoic acid has the highest activation potency, followed by undecanoic acid, capric acid, and lauric acid. These findings lay the foundation for revealing the roles of different medium-chain fatty acids in the inflammatory response of common carp.
Collapse
Affiliation(s)
- Ming-Xing Yao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Hui-Xia Yu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Hao-Lin Mo
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zhi-Hao Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Qing-Chuan Song
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Qiao Liu
- Department of Pathology, The Second Affiliated Hospital of Air Force Medical University, Xi'an, Shaanxi, 710038, China
| | - Qi-Yuan Yang
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts, Medical School, Worcester, MA, 01605, USA
| | - Li-Xin Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yang Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
10
|
Kalita M, Park JH, Kuo RC, Hayee S, Marsango S, Straniero V, Alam IS, Rivera-Rodriguez A, Pandrala M, Carlson ML, Reyes ST, Jackson IM, Suigo L, Luo A, Nagy SC, Valoti E, Milligan G, Habte F, Shen B, James ML. PET Imaging of Innate Immune Activation Using 11C Radiotracers Targeting GPR84. JACS AU 2023; 3:3297-3310. [PMID: 38155640 PMCID: PMC10751761 DOI: 10.1021/jacsau.3c00435] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/02/2023] [Accepted: 11/06/2023] [Indexed: 12/30/2023]
Abstract
Chronic innate immune activation is a key hallmark of many neurological diseases and is known to result in the upregulation of GPR84 in myeloid cells (macrophages, microglia, and monocytes). As such, GPR84 can potentially serve as a sensor of proinflammatory innate immune responses. To assess the utility of GPR84 as an imaging biomarker, we synthesized 11C-MGX-10S and 11C-MGX-11Svia carbon-11 alkylation for use as positron emission tomography (PET) tracers targeting this receptor. In vitro experiments demonstrated significantly higher binding of both radiotracers to hGPR84-HEK293 cells than that of parental control HEK293 cells. Co-incubation with the GPR84 antagonist GLPG1205 reduced the binding of both radiotracers by >90%, demonstrating their high specificity for GPR84 in vitro. In vivo assessment of each radiotracer via PET imaging of healthy mice illustrated the superior brain uptake and pharmacokinetics of 11C-MGX-10S compared to 11C-MGX-11S. Subsequent use of 11C-MGX-10S to image a well-established mouse model of systemic and neuro-inflammation revealed a high PET signal in affected tissues, including the brain, liver, lung, and spleen. In vivo specificity of 11C-MGX-10S for GPR84 was confirmed by the administration of GLPG1205 followed by radiotracer injection. When compared with 11C-DPA-713-an existing radiotracer used to image innate immune activation in clinical research studies-11C-MGX-10S has multiple advantages, including its higher binding signal in inflamed tissues in the CNS and periphery and low background signal in healthy saline-treated subjects. The pronounced uptake of 11C-MGX-10S during inflammation, its high specificity for GPR84, and suitable pharmacokinetics strongly support further investigation of 11C-MGX-10S for imaging GPR84-positive myeloid cells associated with innate immune activation in animal models of inflammatory diseases and human neuropathology.
Collapse
Affiliation(s)
- Mausam Kalita
- Department
of Radiology, Stanford University, Stanford, California 94305, United States
| | - Jun Hyung Park
- Department
of Radiology, Stanford University, Stanford, California 94305, United States
| | - Renesmee Chenting Kuo
- Department
of Electrical Engineering, Stanford University, Stanford, California 94305, United States
| | - Samira Hayee
- Department
of Radiology, Stanford University, Stanford, California 94305, United States
| | - Sara Marsango
- Centre
for Translational Pharmacology, School of Molecular Biosciences, College
of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland,
U.K.
| | - Valentina Straniero
- Department
of Pharmaceutical Sciences, University of
Milan, via Luigi Mangiagalli
25, 20133 Milano, Italy
| | - Israt S. Alam
- Department
of Radiology, Stanford University, Stanford, California 94305, United States
| | | | - Mallesh Pandrala
- Department
of Radiology, Stanford University, Stanford, California 94305, United States
| | - Mackenzie L. Carlson
- Department
of Neurology and Neurological Sciences, Stanford University, Stanford, California 94305, United States
| | - Samantha T. Reyes
- Department
of Radiology, Stanford University, Stanford, California 94305, United States
| | - Isaac M. Jackson
- Department
of Radiology, Stanford University, Stanford, California 94305, United States
| | - Lorenzo Suigo
- Department
of Pharmaceutical Sciences, University of
Milan, via Luigi Mangiagalli
25, 20133 Milano, Italy
| | - Audrey Luo
- Department
of Radiology, Stanford University, Stanford, California 94305, United States
| | - Sydney C. Nagy
- Department
of Radiology, Stanford University, Stanford, California 94305, United States
| | - Ermanno Valoti
- Department
of Pharmaceutical Sciences, University of
Milan, via Luigi Mangiagalli
25, 20133 Milano, Italy
| | - Graeme Milligan
- Centre
for Translational Pharmacology, School of Molecular Biosciences, College
of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland,
U.K.
| | - Frezghi Habte
- Department
of Radiology, Stanford University, Stanford, California 94305, United States
| | - Bin Shen
- Department
of Radiology, Stanford University, Stanford, California 94305, United States
| | - Michelle L. James
- Department
of Radiology, Stanford University, Stanford, California 94305, United States
- Department
of Neurology and Neurological Sciences, Stanford University, Stanford, California 94305, United States
| |
Collapse
|