1
|
Croll JC, Caswell H. Family Matters: Linking Population Growth, Kin Interactions, and African Elephant Social Groups. Am Nat 2025; 205:E1-E15. [PMID: 39718796 DOI: 10.1086/733181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
AbstractIn many species, individuals are embedded in a network of kin with whom they interact. Interactions between kin can affect survival and fertility rates and thus the life history of individuals. These interactions indirectly affect both the network of kin and the dynamics of the population. In this way, a nonlinear feedback between the kin network and individual vital rates emerges. We describe a framework for integrating these kin interactions into a matrix model by linking the individual kin network to a matrix model. We demonstrate the use of this framework for African elephant populations under varying poaching pressure. For this example, we incorporate effects of the maternal presence and matriarchal age on juvenile survival and effects of the presence of a sister on young female fecundity. We find that the feedback resulting from the interactions between family members shifts and reduces the expected kin network. The reduction in family size and structure severely reduces the positive effects of family interactions, leading to an additional decrease in population growth rate on top of the direct decrease due to the additional mortality. Our analysis provides a framework that can be applied to a wide range of social species.
Collapse
|
2
|
Meunier J. The Biology and Social Life of Earwigs (Dermaptera). ANNUAL REVIEW OF ENTOMOLOGY 2024; 69:259-276. [PMID: 37722682 DOI: 10.1146/annurev-ento-013023-015632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
Earwigs are often known for the forceps-like appendage at the end of their abdomen, urban legends about them crawling into human ears, and their roles as pest and biological control agents. However, they are much less known for their social life. This is surprising, as many of the 1,900 species of earwigs show social behaviors toward eggs, juveniles, and adults. These behaviors typically occur during family and group living, which may be obligatory or facultative, last up to several months, and involve only a few to several hundred related or unrelated individuals. Moreover, many individuals can alternate between solitary and group living during their life cycle, an ability that probably prevailed during the emergence of social life. In this review, I detail the diversity of group living and social behavior in earwigs and show how further developing this knowledge in Dermaptera can improve our general understanding of the early evolution of social life in insects.
Collapse
Affiliation(s)
- Joël Meunier
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261, CNRS, University of Tours, Tours, France;
| |
Collapse
|
3
|
Lee JY. The Power of Social Connectedness: a Lesson Learned from Training. ACADEMIC PSYCHIATRY : THE JOURNAL OF THE AMERICAN ASSOCIATION OF DIRECTORS OF PSYCHIATRIC RESIDENCY TRAINING AND THE ASSOCIATION FOR ACADEMIC PSYCHIATRY 2023; 47:630-631. [PMID: 37058204 DOI: 10.1007/s40596-023-01783-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 03/31/2023] [Indexed: 06/19/2023]
|
4
|
Catitti B, Kormann UG, van Bergen VS, Grüebler MU. Turning tables: food availability shapes dynamic aggressive behaviour among asynchronously hatching siblings in red kites Milvus milvus. ROYAL SOCIETY OPEN SCIENCE 2023; 10:230328. [PMID: 37476514 PMCID: PMC10354486 DOI: 10.1098/rsos.230328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/27/2023] [Indexed: 07/22/2023]
Abstract
Aggression represents the backbone of dominance acquisition in several animal societies, where the decision to interact is dictated by its relative cost. Among siblings, such costs are weighted in the light of inclusive fitness, but how this translates to aggression patterns in response to changing external and internal conditions remains unclear. Using a null-model-based approach, we investigate how day-to-day changes in food provisioning affect aggression networks and food allocation in growing red kite (Milvus milvus) nestlings, whose dominance rank is largely dictated by age. We show that older siblings, irrespective of age, change from targeting only close-aged peers (close-competitor pattern) when food provisioning is low, to uniformly attacking all other peers (downward heuristic pattern) as food conditions improve. While food allocation was generally skewed towards the older siblings, the youngest sibling in the nest increased its probability of accessing food as more was provisioned and as downward heuristic patterns became more prominent, suggesting that different aggression patterns allow for catch-up growth after periods of low food. Our results indicate that dynamic aggression patterns within the nest modulate environmental effects on juvenile development by influencing the process of dominance acquisition and potentially impacting the fledging body condition, with far-reaching fitness consequences.
Collapse
Affiliation(s)
- Benedetta Catitti
- Swiss Ornithological Institute, Seerose 1, 6204 Sempach, Switzerland
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Urs G. Kormann
- Swiss Ornithological Institute, Seerose 1, 6204 Sempach, Switzerland
| | | | | |
Collapse
|
5
|
Sahm J, Conrad T, Scheu L, Steiger S. Brood size, food availability, and body size affects male care decisions and offspring performance. Ecol Evol 2023; 13:e10183. [PMID: 37304360 PMCID: PMC10249043 DOI: 10.1002/ece3.10183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/05/2023] [Accepted: 05/22/2023] [Indexed: 06/13/2023] Open
Abstract
Parental care strategies do not only vary greatly across species, but also within species there can be substantial between- and within-individual variation in parental care behavior. To better understand the evolution of care strategies, it is crucial to determine how and when parents modify their behavior in response to internal as well as environmental factors. Here, we investigated the effect of brood size, resource size and an individual's quality on care strategies of uniparental males and examined the downstream consequences on offspring performance in the burying beetle Nicrophorus vespilloides. Burying beetles breed on small vertebrate cadavers and, on average, males invest much less in care than females. Nevertheless, we found that uniparentally caring males were responsive to their social and non-social environment and adjusted the amount as well as the type of care to the size of the brood, the size of the cadaver and their own body size. Additionally, we show that the care strategies affected offspring performance. Specifically, males that cared longer had larger and more surviving larvae. Our results add to our understanding of plastic parenting strategies by showing that even the sex that provides less care can evolve a very flexible care behavior.
Collapse
Affiliation(s)
- Jacqueline Sahm
- Department of Evolutionary Animal EcologyUniversity of BayreuthBayreuthGermany
| | - Taina Conrad
- Department of Evolutionary Animal EcologyUniversity of BayreuthBayreuthGermany
| | - Larissa Scheu
- Department of Evolutionary Animal EcologyUniversity of BayreuthBayreuthGermany
| | - Sandra Steiger
- Department of Evolutionary Animal EcologyUniversity of BayreuthBayreuthGermany
| |
Collapse
|
6
|
Honorio R, Depierrefixe P, Devers S, Rouelle M, Meunier J, Lécureuil C. Effects of cadmium ingestion on reproduction and maternal egg care in the European earwig. Anim Behav 2023. [DOI: 10.1016/j.anbehav.2022.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
7
|
Keppner EM, Laubenthal M, Prang MA, Conrad T, Steiger S. Harsh nutritional environment has positive and negative consequences for family living in a burying beetle. Ecol Evol 2023; 13:e9699. [PMID: 36620421 PMCID: PMC9817192 DOI: 10.1002/ece3.9699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 11/30/2022] [Accepted: 12/13/2022] [Indexed: 01/09/2023] Open
Abstract
Harsh environmental conditions in form of low food availability for both offspring and parents alike can affect breeding behavior and success. There has been evidence that food scarce environments can induce competition between family members, and this might be intensified when parents are caring as a pair and not alone. On the other hand, it is possible that a harsh, food-poor environment could also promote cooperative behaviors within a family, leading, for example, to a higher breeding success of pairs than of single parents. We studied the influence of a harsh nutritional environment on the fitness outcome of family living in the burying beetle Nicrophorus vespilloides. These beetles use vertebrate carcasses for reproduction. We manipulated food availability on two levels: before and during breeding. We then compared the effect of these manipulations in broods with either single females or biparentally breeding males and females. We show that pairs of beetles that experienced a food-poor environment before breeding consumed a higher quantity of the carcass than well-fed pairs or single females. Nevertheless, they were more successful in raising a brood with higher larval survival compared to pairs that did not experience a food shortage before breeding. We also show that food availability during breeding and social condition had independent effects on the mass of the broods raised, with lighter broods in biparental families than in uniparental ones and on smaller carcasses. Our study thus indicates that a harsh nutritional environment can increase both cooperative as well as competitive interactions between family members. Moreover, our results suggest that it can either hamper or drive the formation of a family because parents choose to restrain reproductive investment in a current brood or are encouraged to breed in a food-poor environment, depending on former experiences and their own nutritional status.
Collapse
Affiliation(s)
- Eva M. Keppner
- Institute of Evolutionary Ecology and Conservation GenomicsUlm UniversityUlmGermany
| | - Melina Laubenthal
- Department of Evolutionary Animal EcologyUniversity of BayreuthBayreuthGermany
| | - Madlen A. Prang
- Department of Evolutionary Animal EcologyUniversity of BayreuthBayreuthGermany
| | - Taina Conrad
- Department of Evolutionary Animal EcologyUniversity of BayreuthBayreuthGermany
| | - Sandra Steiger
- Department of Evolutionary Animal EcologyUniversity of BayreuthBayreuthGermany
| |
Collapse
|
8
|
Mikula O, Macholán M, Ďureje Ľ, Hiadlovská Z, Daniszová K, Janotová K, Vošlajerová Bímová B. House mouse subspecies do differ in their social structure. Ecol Evol 2022; 12:e9683. [PMID: 36590341 PMCID: PMC9797468 DOI: 10.1002/ece3.9683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 10/17/2022] [Accepted: 12/08/2022] [Indexed: 12/31/2022] Open
Abstract
It is widely acknowledged that population structure can have a substantial impact on evolutionary trajectories. In social animals, this structure is strongly influenced by relationships among the population members, so studies of differences in social structure between diverging populations or nascent species are of prime interest. Ideal models for such a study are two house mouse subspecies, Mus musculus musculus and M. m. domesticus, meeting in Europe along a secondary contact zone. Though the latter subspecies has usually been supposed to form tighter and more isolated social units than the former, the evidence is still inconclusive. Here, we carried out a series of radiofrequency identification experiments in semi-natural enclosures to gather large longitudinal data sets on individual mouse movements. The data were summarized in the form of uni- and multi-layer social networks. Within them, we could delimit and describe the social units ("modules"). While the number of estimated units was similar in both subspecies, domesticus revealed a more "modular" structure. This subspecies also showed more intramodular social interactions, higher spatial module separation, higher intramodular persistence of parent-offspring contacts, and lower multiple paternity, suggesting more effective control of dominant males over reproduction. We also demonstrate that long-lasting modules can be identified with basic reproductive units or demes. We thus provide the first robust evidence that the two subspecies differ in their social structure and dynamics of the structure formation.
Collapse
Affiliation(s)
- Ondřej Mikula
- Laboratory of Mammalian Evolutionary Genetics, Institute of Animal Physiology and GeneticsCzech Academy of SciencesBrnoCzech Republic
- Institute of Vertebrate BiologyCzech Academy of SciencesResearch Facility StudenecBrnoCzech Republic
| | - Miloš Macholán
- Laboratory of Mammalian Evolutionary Genetics, Institute of Animal Physiology and GeneticsCzech Academy of SciencesBrnoCzech Republic
- Department of Botany and Zoology, Faculty of ScienceMasaryk UniversityBrnoCzech Republic
| | - Ľudovít Ďureje
- Institute of Vertebrate BiologyCzech Academy of SciencesResearch Facility StudenecBrnoCzech Republic
| | - Zuzana Hiadlovská
- Laboratory of Mammalian Evolutionary Genetics, Institute of Animal Physiology and GeneticsCzech Academy of SciencesBrnoCzech Republic
| | - Kristina Daniszová
- Laboratory of Mammalian Evolutionary Genetics, Institute of Animal Physiology and GeneticsCzech Academy of SciencesBrnoCzech Republic
| | - Kateřina Janotová
- Institute of Vertebrate BiologyCzech Academy of SciencesResearch Facility StudenecBrnoCzech Republic
| | - Barbora Vošlajerová Bímová
- Laboratory of Mammalian Evolutionary Genetics, Institute of Animal Physiology and GeneticsCzech Academy of SciencesBrnoCzech Republic
| |
Collapse
|
9
|
Costs and benefits of isolation from siblings during family life in adult earwigs. Anim Behav 2022. [DOI: 10.1016/j.anbehav.2022.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
10
|
Chouvenc T. Eusociality and the transition from biparental to alloparental care in termites. Funct Ecol 2022. [DOI: 10.1111/1365-2435.14183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Thomas Chouvenc
- Entomology and Nematology Department, Ft Lauderdale Research and Education Center University of Florida Institute of Food and Agricultural Sciences, 3205 College Ave, Ft Lauderdale, FL 33314 USA
| |
Collapse
|
11
|
Yu CN, Kuo CY, Lin HC, Su YC. Foraging Payoffs Change With Group Size in Kin and Non-kin Groups of an Argyrodinae Kleptoparasitic Spider, Argyrodes miniaceus. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.813777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Evolutionary transitions from solitary to group-living are ubiquitous in animal systems. While the fitness consequences of group size changes are often investigated, the long-standing debate on whether kinship is a prerequisite of sociality is still ongoing. In the current study, we used kleptoparasitic spiders Argyrodes miniaceus (subfamily Argyrodinae, Theridiidae) as a model system to assess the role of group size on the foraging payoffs of kin and non-kin groups. We set up laboratory-manipulated kin and non-kin foraging groups and used feeding occurrence and duration as proxies for foraging benefits and feeding latency and the number of host attacks as estimates of foraging costs. Compared to solitary individuals, feeding durations of successfully fed individuals in groups was not significantly different from that of solitary foragers in both kin and non-kin groups. The occurrences of feeding decreased significantly in group sizes two and above, in non-kin groups, and in group sizes three and above, in kin groups. In kin groups, groups size two had significantly shorter feeding latencies compared to other group sizes, even though feeding duration did not change systematically with group size. Similarly, the number of attacks from the hosts were highest in non-kin groups with more than two individuals and in kin groups with more than three individuals. The juxtaposition of kin and non-kin group showed that A. miniaceus enjoyed the highest foraging payoffs when being solitary or in small groups (group size two). However, host attacks appeared to hamper feeding occurrences in kin groups, which was not observed in non-kin groups. Our results contrast sharply with the feeding benefits of kinship recorded in kin-based groups of sub-social species present in related subfamilies in the Theridiidae.
Collapse
|
12
|
Sun S, Narayan VP. Digest: Deprivation of parental care reveals the value of sibling cooperation in burying beetles. Evolution 2022; 76:826-828. [PMID: 35170036 PMCID: PMC9306728 DOI: 10.1111/evo.14451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 02/04/2022] [Indexed: 01/21/2023]
Abstract
What conditions favor cooperation in sibling interactions? In burying beetles of the genus Nicrophorus, Prang et al. found that dependence on parental care cannot solely explain the degree of offspring cooperation. While only larvae of independent species cooperated when receiving pre-hatching care, both independent and dependent species cooperated in the absence of pre-hatching care. This finding suggests that offspring cooperation has persisted from an early ancestor of the genus Nicrophorus to the present species, highlighting the evolution from facultative to obligatory social behavior.
Collapse
Affiliation(s)
- Syuan‐Jyun Sun
- Department of Ecology & Evolutionary BiologyUniversity of MichiganAnn ArborMI48109USA,International Degree Program in Climate Change and Sustainable DevelopmentNational Taiwan UniversityTaipei10617Taiwan
| | - Vikram P. Narayan
- The School of Biological SciencesThe University of QueenslandSt. LuciaQld4072Australia,College of Life and Environmental SciencesUniversity of ExeterPenrynUK
| |
Collapse
|
13
|
Prang MA, Zywucki L, Körner M, Steiger S. Differences in sibling cooperation in presence and absence of parental care in a genus with interspecific variation in offspring dependence. Evolution 2022; 76:320-331. [PMID: 34875109 DOI: 10.1111/evo.14414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 08/25/2021] [Accepted: 11/04/2021] [Indexed: 01/21/2023]
Abstract
The widely spread evolutionary strategy of parental care is considered an important driver of social evolution. Although offspring were long thought to primarily interact competitively, recent studies revealed the potential importance of sibling cooperation. Theories suggest that the degree of cooperation in offspring interactions depends on the degree of offspring dependence on parental care: offspring unable to forage on their own should compete more, whereas more independent juveniles may increase the degree of cooperation. In this study, we tested the occurrence of sibling cooperation in the absence of posthatching care in several burying beetle species exhibiting varying degrees of offspring dependence. To this end, we measured larval growth rate and survival in the presence and absence of prehatching care using different brood sizes. We found that sibling cooperation cannot be exclusively explained by offspring dependence on parental care. Although only species with more independent larvae cooperated when receiving prehatching care, larval cooperation occurred across species in the absence of care. The latter result suggests that sibling cooperation was already present in an early ancestor of the genus Nicrophorus. Overall, these findings give important insights into the transition from facultative to obligate family life.
Collapse
Affiliation(s)
- Madlen A Prang
- Department of Evolutionary Animal Ecology, University of Bayreuth, Bayreuth, DE-95440, Germany
| | - Lena Zywucki
- Department of Evolutionary Animal Ecology, University of Bayreuth, Bayreuth, DE-95440, Germany
| | - Maximilian Körner
- Department of Evolutionary Animal Ecology, University of Bayreuth, Bayreuth, DE-95440, Germany
| | - Sandra Steiger
- Department of Evolutionary Animal Ecology, University of Bayreuth, Bayreuth, DE-95440, Germany
| |
Collapse
|
14
|
Riley JL, Noble DWA, Stow AJ, Bolton PE, While GM, Dennison S, Byrne RW, Whiting MJ. Socioecology of the Australian Tree Skink (Egernia striolata). Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.722455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
There is great diversity in social behavior across the animal kingdom. Understanding the factors responsible for this diversity can help inform theory about how sociality evolves and is maintained. The Australian Tree Skink (Egernia striolata) exhibits inter- and intra-population variability in sociality and is therefore a good system for informing models of social evolution. Here, we conducted a multi-year study of a Tree Skink population to describe intra-population variation in the social organization and mating system of this species. Skinks aggregated in small groups of 2–5 individuals, and these aggregations were typically associated with shared shelter sites (crevices and hollows within rocks and trees). Aggregations were typically made up of one or more adult females and, often, one male and/or juvenile(s). Social network and spatial overlap analyses showed that social associations were strongly biased toward kin. Tree skinks also exhibited high site fidelity regardless of age or sex. There were high levels of genetic monogamy observed with most females (87%) and males (68%) only breeding with a single partner. Our results indicate that Tree Skinks reside in small family groups and are monogamous, which corresponds with existing research across populations. Similar to previous work, our study area consisted of discrete habitat patches (i.e., rock outcrops, trees, or both), which likely limits offspring dispersal and promotes social tolerance between parents and their offspring. Our study clearly demonstrates that there is intra-population variability in Tree Skink social behavior, but it also provides evidence that there is a high degree of inter-population consistency in sociality across their geographic range. We also highlight promising possible avenues for future research, specifically discussing the importance of studying the nature and extent of Tree Skink parental care and quantifying the fitness outcomes of kin-based sociality in this species, which are topics that will further our understanding of the mechanisms underlying variation in vertebrate social behavior.
Collapse
|
15
|
Evans JC, Hodgson DJ, Boogert NJ, Silk MJ. Group size and modularity interact to shape the spread of infection and information through animal societies. Behav Ecol Sociobiol 2021; 75:163. [PMID: 34866760 PMCID: PMC8626757 DOI: 10.1007/s00265-021-03102-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 11/23/2022]
Abstract
Social interactions between animals can provide many benefits, including the ability to gain useful environmental information through social learning. However, these social contacts can also facilitate the transmission of infectious diseases through a population. Animals engaging in social interactions therefore face a trade-off between the potential informational benefits and the risk of acquiring disease. Theoretical models have suggested that modular social networks, associated with the formation of groups or sub-groups, can slow spread of infection by trapping it within particular groups. However, these social structures will not necessarily impact the spread of information in the same way if its transmission follows a "complex contagion", e.g. through individuals disproportionally copying the majority (conformist learning). Here we use simulation models to demonstrate that modular networks can promote the spread of information relative to the spread of infection, but only when the network is fragmented and group sizes are small. We show that the difference in transmission between information and disease is maximised for more well-connected social networks when the likelihood of transmission is intermediate. Our results have important implications for understanding the selective pressures operating on the social structure of animal societies, revealing that highly fragmented networks such as those formed in fission-fusion social groups and multilevel societies can be effective in modulating the infection-information trade-off for individuals within them. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s00265-021-03102-4.
Collapse
Affiliation(s)
- Julian C. Evans
- Deparment of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - David J. Hodgson
- Centre for Ecology and Conservation, University of Exeter Penryn Campus, Penryn, UK
| | - Neeltje J. Boogert
- Centre for Ecology and Conservation, University of Exeter Penryn Campus, Penryn, UK
| | - Matthew J. Silk
- Centre for Ecology and Conservation, University of Exeter Penryn Campus, Penryn, UK
- National Institute of Mathematical and Biological Synthesis (NIMBioS), University of Tennessee, Knoxville, TN USA
| |
Collapse
|
16
|
Evans JC, Lindholm AK, König B. Family dynamics reveal that female house mice preferentially breed in their maternal community. Behav Ecol 2021. [DOI: 10.1093/beheco/arab128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Abstract
Whether females breed in their natal group is an important factor in the evolution of extended families in animal sociality. Breeding in natal groups comes with costs and benefits, depending on group size and presence of older relatives, including mothers. Studying the consequences of breeding in the natal versus another group provides insight into the decisions and trade-offs governing the formation and structure of family groups. We investigated the family dynamics of a population of free-ranging commensal house mice. Using dynamic community detection on long-term datasets, we determined which females first bred in their natal group. We then looked at how this influenced breeding success. We found most females (77%) exhibited strong philopatry, breeding in their natal groups. Breeding elsewhere was only somewhat predictable at very large and very small group sizes. Despite their philopatric preference, breeding elsewhere made no difference in how quickly and successfully a female bred. However, presence of their mother did lead females to breed sooner when born during high breeding activity, when competition over reproduction is high. Based on these results, potential loss of reproductive success from leaving the natal group does not seem to be the main driver of philopatry in female house mice. The effect of the presence of mothers suggests that benefiting from established social connections promotes breeding in the natal group. Mothers providing benefits also implies a lack of conflict between generations, which will be important for the development of stable social groups.
Collapse
Affiliation(s)
- Julian C Evans
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Anna K Lindholm
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Barbara König
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| |
Collapse
|
17
|
Cunningham CB, Khana D, Carter A, McKinney EC, Moore AJ. Survey of neurotransmitter receptor gene expression into and out of parental care in the burying beetle Nicrophorus vespilloides. Ecol Evol 2021; 11:14282-14292. [PMID: 34707854 PMCID: PMC8525115 DOI: 10.1002/ece3.8144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/01/2021] [Accepted: 09/06/2021] [Indexed: 12/31/2022] Open
Abstract
Understanding the genetic influences of traits of nonmodel organisms is crucial to understanding how novel traits arise. Do new traits require new genes or are old genes repurposed? How predictable is this process? Here, we examine this question for gene expression influencing parenting behavior in a beetle, Nicrophorus vespilloides. Parental care, produced from many individual behaviors, should be influenced by changes of expression of multiple genes, and one suggestion is that the genes can be predicted based on knowledge of behavior expected to be precursors to parental care, such as aggression, resource defense, and mating on a resource. Thus, testing gene expression during parental care allows us to test expectations of this "precursor hypothesis" for multiple genes and traits. We tested for changes of the expression of serotonin, octopamine/tyramine, and dopamine receptors, as well as one glutamate receptor, predicting that these gene families would be differentially expressed during social interactions with offspring and associated resource defense. We found that serotonin receptors were strongly associated with social and aggression behavioral transitions. Octopamine receptors produced a complex picture of gene expression over a reproductive cycle. Dopamine was not associated with the behavioral transitions sampled here, while the glutamate receptor was most consistent with a behavioral change of resource defense/aggression. Our results generate new hypotheses, refine candidate lists for further studies, and inform the genetic mechanisms that are co-opted during the evolution of parent-offspring interactions, a likely evolutionary path for many lineages that become fully social. The precursor hypothesis, while not perfect, does provide a starting point for identifying candidate genes.
Collapse
Affiliation(s)
| | - Daven Khana
- Department of GeneticsUniversity of GeorgiaAthensGeorgiaUSA
| | - Annika Carter
- Department of GeneticsUniversity of GeorgiaAthensGeorgiaUSA
| | | | - Allen J. Moore
- Department of EntomologyUniversity of GeorgiaAthensGeorgiaUSA
| |
Collapse
|
18
|
Keppner EM, Steiger S. Males benefit personally from family life: evidence from a wild burying beetle population. Behav Ecol 2021. [DOI: 10.1093/beheco/arab067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Abstract
Family life in animals is often considered as beneficial for offspring but costly for parents. However, parents might also profit from remaining aggregated within a family unit, especially if a nutrient-rich resource is used for reproduction. We aimed to reveal the potential personal benefits of breeding within a family environment for male Nicrophorus vespilloides, a species of burying beetles that use small vertebrate cadavers to raise their larvae. We previously hypothesized that males obtain an advantage from remaining with their family, because they themselves can feed from the cadaver. This, in turn, enables them to produce more sex pheromone, thereby making them more attractive to females after leaving their brood. However, whether such personal benefits arise under natural conditions is currently unclear because we have no knowledge of the nutritional condition of wild beetles. If carrion is abundant anyways, feeding from a vertebrate cadaver during breeding might not have a noticeable positive effect on the males’ body condition. In the current study, we caught wild males with a natural feeding history and compared their body mass and attractiveness before and after participating in family life. We show that wild males gain weight during breeding and attract more and larger females afterwards. Our study suggests that access to a highly nutrient-rich meal can be a driver of the evolution of family life and eventually biparental care. Males benefit indirectly from defending the resource and offspring against competitors and benefit personally by a higher chance of mating again after breeding.
Collapse
Affiliation(s)
- Eva M Keppner
- Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Albert-Einstein-Allee, Ulm, Germany
| | - Sandra Steiger
- Department of Evolutionary Animal Ecology, University of Bayreuth, Universitätsstraße, Bayreuth,Germany
| |
Collapse
|
19
|
Van Meyel S, Devers S, Dupont S, Dedeine F, Meunier J. Alteration of gut microbiota with a broad-spectrum antibiotic does not impair maternal care in the European earwig. J Evol Biol 2021; 34:1034-1045. [PMID: 33877702 DOI: 10.1111/jeb.13791] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 03/30/2021] [Indexed: 12/31/2022]
Abstract
The microbes residing within the gut of an animal host often increase their own fitness by modifying their host's physiological, reproductive and behavioural functions. Whereas recent studies suggest that they may also shape host sociality and therefore have critical effects on animal social evolution, the impact of the gut microbiota on maternal care remains unexplored. This is surprising, as this behaviour is widespread among animals, often determines the fitness of both juveniles and parents, and is essential in the evolution of complex animal societies. Here, we tested whether life-long alterations of the gut microbiota with rifampicin-a broad-spectrum antibiotic-impair pre- and post-hatching maternal care in the European earwig. Our results first confirm that rifampicin altered the mothers' gut microbial communities and indicate that the composition of the gut microbiota differs before and after egg care. Contrary to our predictions, however, the rifampicin-induced alterations of the gut microbiota did not modify pre- or post-hatching care. Independent of maternal care, rifampicin increased the females' faeces production and resulted in lighter eggs and juveniles. By contrast, rifampicin altered none of the other 21 physiological, reproductive and longevity traits measured over the 300 days of a female's lifetime. Overall, these findings reveal that altering the gut microbiota with a large spectrum antibiotic such as rifampicin does not necessarily affect host sociality. They also emphasize that not all animals have evolved a co-dependence with their microbiota and call for caution when generalizing the central role of gut microbes in host biology.
Collapse
Affiliation(s)
- Sophie Van Meyel
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261 CNRS - Université de Tours, Tours, France
| | - Séverine Devers
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261 CNRS - Université de Tours, Tours, France
| | - Simon Dupont
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261 CNRS - Université de Tours, Tours, France
| | - Franck Dedeine
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261 CNRS - Université de Tours, Tours, France
| | - Joël Meunier
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261 CNRS - Université de Tours, Tours, France
| |
Collapse
|
20
|
Abstract
Some parasitoid wasps possess soldier castes during their parasitic larval stage, but are often neglected from our evolutionary theories explaining caste systems in animal societies. This is primarily due to the polyembryonic origin of their societies. However, recent discoveries of polyembryonic trematodes (i.e. flatworms) possessing soldier castes require us to reconsider this reasoning. I argue we can benefit from including these polyembryonic parasites in eusocial discussions, for polyembryony and parasitism are taxonomically vast and influence the evolution of social behaviours and caste systems in various circumstances. Despite their polyembryony, their social evolution can be explained by theories of eusociality designed for parent–offspring groups, which are the subjects of most social evolution research. Including polyembryonic parasites in these theories follows the trend of major evolutionary transitions theory expanding social evolution research into all levels of biological organization. In addition, these continued discoveries of caste systems in parasites suggest social evolution may be more relevant to parasitology than currently acknowledged.
Collapse
Affiliation(s)
- Brian A Whyte
- Department of Environmental Science, Policy and Management, University of California, Berkeley, CA, USA
| |
Collapse
|
21
|
Social Systems. Anim Behav 2021. [DOI: 10.1007/978-3-030-82879-0_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
22
|
Meunier J, Dufour J, Van Meyel S, Rault M, Lécureuil C. Sublethal exposure to deltamethrin impairs maternal egg care in the European earwig Forficula auricularia. CHEMOSPHERE 2020; 258:127383. [PMID: 32559491 DOI: 10.1016/j.chemosphere.2020.127383] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/08/2020] [Accepted: 06/09/2020] [Indexed: 06/11/2023]
Abstract
The application of pesticides typically leads to lethal and sublethal exposure of non-target insects. Whereas our current understanding of these sublethal effects typically focuses on reproductive and physiological parameters, recent works emphasize that sublethal effects on behaviors such as maternal care could be of major importance in non-target species. However, it remained unknown whether these sublethal effects occur in insects. Here, we tested if exposure to sublethal doses of deltamethrin - a pyrethroid insecticide commonly used in crops - alters the expression of maternal egg care in females of the European earwig Forficula auricularia, a predator insect and pest control. Our results first reveal that deltamethrin exposure impaired the expression of three forms of maternal egg care: It decreased the likelihood of mothers to gather their otherwise scattered clutch of eggs, increased the time during which the female abandoned the clutch after a predator attack and reduced egg grooming duration. These sublethal effects did not reflect a lower activity of deltamethrin-exposed females, as these females increased their expression of self-grooming, and deltamethrin exposure did not affect females' exploration and mobility. Finally, we found that the negative effects of deltamethrin on egg care did not modify egg development, hatching rate and juvenile weight, possibly due to the transient effects of deltamethrin on maternal behaviors. Overall, our results reveal that sublethal exposure to a pesticide may diminish maternal egg care in a natural pest control and call for the integration of this measurement in assays on pesticides application.
Collapse
Affiliation(s)
- Joël Meunier
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261, CNRS, University of Tours, Tours, France.
| | - Juliette Dufour
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261, CNRS, University of Tours, Tours, France
| | - Sophie Van Meyel
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261, CNRS, University of Tours, Tours, France
| | - Magali Rault
- Avignon University, Aix Marseille Univ, CNRS, IRD, IMBE, Pôle Agrosciences, 301 rue Baruch de Spinoza, BP 21239, 84916, Avignon, France
| | - Charlotte Lécureuil
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261, CNRS, University of Tours, Tours, France.
| |
Collapse
|
23
|
Cunningham CB. Functional genomics of parental care of insects. Horm Behav 2020; 122:104756. [PMID: 32353447 DOI: 10.1016/j.yhbeh.2020.104756] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 04/01/2020] [Accepted: 04/06/2020] [Indexed: 12/19/2022]
Abstract
Parental care was likely the first step most lineages made towards sociality. However, the molecular mechanisms that generate parental care are not broadly characterized. Insects are important as an evolutionary independent group from classic models of parental care, such as, house mice. They provide an opportunity to test the generality of our understanding. With this review, I survey the functional genomics of parental care of insects, summarize several recent advances in the broader framework for studying and understanding parental care, and finish with suggested priorities for further research. Although there are too few studies to draw definitive conclusions, I argue that natural selection appears to be rewiring existing gene networks to produce parental care, that the epigenetic mechanisms influencing parental care are not well understood, and, as an interesting early consensus, that genes strongly associated with carer/offspring interactions appear biased towards proteins that are secreted. I summarize the studies that have functionally validate candidate genes and highlight the increasing need to perform this work. I finish with arguments for both conceptual and practical changes moving forward. I argue that future work can increase the use of predictive frameworks, broaden its definition of conservation of mechanism to gene networks rather than single genes, and increase the use of more established comparative methods. I further highlight the practical considerations of standardizing analyses and reporting, increasing the sampling of both carers and offspring, better characterizing gene regulatory networks, better characterizing taxonomically restricted genes and any consistent role they have underpinning parental care, and using factorial designs to disentangle the influence of multiple variables on the expression of parental care.
Collapse
|
24
|
Körner M, Vogelweith F, Libbrecht R, Foitzik S, Feldmeyer B, Meunier J. Offspring reverse transcriptome responses to maternal deprivation when reared with pathogens in an insect with facultative family life. Proc Biol Sci 2020; 287:20200440. [PMID: 32345162 DOI: 10.1098/rspb.2020.0440] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Offspring of species with facultative family life are able to live with and without parents (i.e. to adjust to extreme changes in their social environment). While these adjustments are well understood on a phenotypic level, their genetic underpinnings remain surprisingly understudied. Investigating gene expression changes in response to parental absence may elucidate the genetic constraints driving evolutionary transitions between solitary and family life. Here, we manipulated maternal presence to observe gene expression changes in the fat body of juvenile European earwigs, an insect with facultative family life. Because parents typically protect offspring against pathogens, expression changes were recorded in pathogen-free and pathogen-exposed environments. We found that manipulating maternal presence changed the expression of 154 genes, including several metabolism and growth-related genes, and that this change depended on pathogen presence. Specifically, localization and cell transporter genes were downregulated in maternal absence without pathogens but upregulated with pathogens. At least one immunity gene (pathogenesis-related protein 5) was affected by pathogen exposure regardless of maternal presence. Overall, our findings explicate how offspring adjust to parental deprivation on a molecular level and reveal that such adjustments heavily depend on pathogens in the environment. This emphasizes the central role of pathogens in family life evolution.
Collapse
Affiliation(s)
- Maximilian Körner
- Evolutionary Animal Ecology, University of Bayreuth, Bayreuth, Germany
| | | | - Romain Libbrecht
- Institute of Organismic and Molecular Evolution, Johannes-Gutenberg University of Mainz, Mainz, Germany
| | - Susanne Foitzik
- Institute of Organismic and Molecular Evolution, Johannes-Gutenberg University of Mainz, Mainz, Germany
| | - Barbara Feldmeyer
- Molecular Ecology, Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Frankfurt am Main, Germany
| | - Joël Meunier
- Institut de Recherche sur la Biologie de l'Insecte (IRBI), UMR 7261, CNRS, University of Tours, Tours, France
| |
Collapse
|
25
|
Keppner EM, Ayasse M, Steiger S. Contribution of males to brood care can compensate for their food consumption from a shared resource. Ecol Evol 2020; 10:3535-3543. [PMID: 32274007 PMCID: PMC7141021 DOI: 10.1002/ece3.6150] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 12/07/2019] [Accepted: 12/13/2019] [Indexed: 11/11/2022] Open
Abstract
The sharing of the same food source among parents and offspring can be a driver of the evolution of family life and parental care. However, if all family members desire the same meal, competitive situations can arise, especially if resource depletion is likely. When food is shared for reproduction and the raising of offspring, parents have to decide whether they should invest in self-maintenance or in their offspring and it is not entirely clear how these two strategies are balanced. In the burying beetle Nicrophorus vespilloides, parents care for their offspring either bi- or uniparentally at a vertebrate carcass as the sole food source. The question of whether biparental care in this species offers the offspring a better environment for development compared with uniparental care has been the subject of some debate. We tested the hypothesis that male contribution to biparental brood care has a beneficial effect on offspring fitness but that this effect can be masked because the male also feeds from the shared resource. We show that a mouse carcass prepared by two Nicrophorus beetles is lighter compared with a carcass prepared by a single female beetle at the start of larval hatching and provisioning. This difference in carcass mass can influence offspring fitness when food availability is limited, supporting our hypothesis. Our results provide new insights into the possible evolutionary pathway of biparental care in this species of burying beetles.
Collapse
Affiliation(s)
- Eva M. Keppner
- Institute for Evolutionary Ecology and Conservation GenomicsUlm UniversityUlmGermany
| | - Manfred Ayasse
- Institute for Evolutionary Ecology and Conservation GenomicsUlm UniversityUlmGermany
| | - Sandra Steiger
- Department of Evolutionary Animal EcologyUniversity of BayreuthBayreuthGermany
| |
Collapse
|
26
|
Wu M, Walser JC, Sun L, Kölliker M. The genetic mechanism of selfishness and altruism in parent-offspring coadaptation. SCIENCE ADVANCES 2020; 6:eaaw0070. [PMID: 31922000 PMCID: PMC6941917 DOI: 10.1126/sciadv.aaw0070] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 11/07/2019] [Indexed: 05/04/2023]
Abstract
The social bond between parents and offspring is characterized by coadaptation and balance between altruistic and selfish tendencies. However, its underlying genetic mechanism remains poorly understood. Using transcriptomic screens in the subsocial European earwig, Forficula auricularia, we found the expression of more than 1600 genes associated with experimentally manipulated parenting. We identified two genes, Th and PebIII, each showing evidence of differential coexpression between treatments in mothers and their offspring. In vivo RNAi experiments confirmed direct and indirect genetic effects of Th and PebIII on behavior and fitness, including maternal food provisioning and reproduction, and offspring development and survival. The direction of the effects consistently indicated a reciprocally altruistic function for Th and a reciprocally selfish function for PebIII. Further metabolic pathway analyses suggested roles for Th-restricted endogenous dopaminergic reward, PebIII-mediated chemical communication and a link to insulin signaling, juvenile hormone, and vitellogenin in parent-offspring coadaptation and social evolution.
Collapse
Affiliation(s)
- Min Wu
- Department of Environmental Sciences, Zoology and Evolution, University of Basel, Basel, Switzerland
- Corresponding author. (M.W.); (M.K.)
| | - Jean-Claude Walser
- Department of Environmental Systems Science, Genetic Diversity Centre (GDC), ETH Zürich, Zürich, Switzerland
| | - Lei Sun
- Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland
| | - Mathias Kölliker
- Department of Environmental Sciences, Zoology and Evolution, University of Basel, Basel, Switzerland
- Corresponding author. (M.W.); (M.K.)
| |
Collapse
|
27
|
Meunier J. On the link between endothermy, energy budget, and parental care: a comment on Beekman et al. Behav Ecol 2019. [DOI: 10.1093/beheco/arz034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Joël Meunier
- Institut de Recherche sur la Biologie de l’Insecte (IRBI), UMR 7261, CNRS, University of Tours, Tours, France
| |
Collapse
|
28
|
Socias-Martínez L, Kappeler PM. Catalyzing Transitions to Sociality: Ecology Builds on Parental Care. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00160] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
29
|
Van Meyel S, Devers S, Meunier J. Love them all: mothers provide care to foreign eggs in the European earwig Forficula auricularia. Behav Ecol 2019. [DOI: 10.1093/beheco/arz012] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Sophie Van Meyel
- Institut de Recherche sur la Biologie de l’Insecte, UMR, CNRS, University of Tours, Tours, France
| | - Séverine Devers
- Institut de Recherche sur la Biologie de l’Insecte, UMR, CNRS, University of Tours, Tours, France
| | - Joël Meunier
- Institut de Recherche sur la Biologie de l’Insecte, UMR, CNRS, University of Tours, Tours, France
| |
Collapse
|
30
|
Brossette L, Meunier J, Dupont S, Bagnères A, Lucas C. Unbalanced biparental care during colony foundation in two subterranean termites. Ecol Evol 2019; 9:192-200. [PMID: 30680106 PMCID: PMC6342128 DOI: 10.1002/ece3.4710] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 10/05/2018] [Accepted: 10/11/2018] [Indexed: 11/11/2022] Open
Abstract
Parental care is a major component of reproduction in social organisms, particularly during the foundation steps. Because investment into parental care is often costly, each parent is predicted to maximize its fitness by providing less care than its partner. However, this sexual conflict is expected to be low in species with lifelong monogamy, because the fitness of each parent is typically tied to the other's input. Somewhat surprisingly, the outcomes of this tug-of-war between maternal and paternal investments have received important attention in vertebrate species, but remain less known in invertebrates. In this study, we investigated how queens and kings share their investment into parental care and other social interactions during colony foundation in two termites with lifelong monogamy: the invasive species Reticulitermes flavipes and the native species R. grassei. Behaviors of royal pairs were recorded during six months using a non-invasive approach. Our results showed that queens and kings exhibit unbalanced investment in terms of grooming, antennation, trophallaxis, and vibration behavior. Moreover, both parents show behavioral differences toward their partner or their descendants. Our results also revealed differences among species, with R. flavipes exhibiting shorter periods of grooming and antennation toward eggs or partners. They also did more stomodeal trophallaxis and less vibration behavior. Overall, this study emphasizes that despite lifelong monogamy, the two parents are not equally involved in the measured forms of parental care and suggests that kings might be specialized in other tasks. It also indicates that males could play a central, yet poorly studied role in the evolution and maintenance of the eusocial organization.
Collapse
Affiliation(s)
- Lou Brossette
- Institut de Recherche sur la Biologie de l'Insecte (UMR7261)CNRS – University of ToursToursFrance
| | - Joël Meunier
- Institut de Recherche sur la Biologie de l'Insecte (UMR7261)CNRS – University of ToursToursFrance
| | - Simon Dupont
- Institut de Recherche sur la Biologie de l'Insecte (UMR7261)CNRS – University of ToursToursFrance
| | - Anne‐Geneviève Bagnères
- Institut de Recherche sur la Biologie de l'Insecte (UMR7261)CNRS – University of ToursToursFrance
- CEFE, CNRS UMR5175, Univ. Montpellier, Univ. Paul Valéry Montpellier 3, EPHE, IRDMontpellierFrance
| | - Christophe Lucas
- Institut de Recherche sur la Biologie de l'Insecte (UMR7261)CNRS – University of ToursToursFrance
| |
Collapse
|
31
|
Meunier J, Steiger S. Editorial overview: Beyond eusocial insects: studying the other social insects to better understand social evolution. CURRENT OPINION IN INSECT SCIENCE 2018; 28:vi-viii. [PMID: 30551776 DOI: 10.1016/j.cois.2018.07.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Affiliation(s)
- Joël Meunier
- Institut de Recherche sur la Biologie de l'Insecte (IRBI), UMR 7261, CNRS/University of Tours, 37250 Tours, France.
| | - Sandra Steiger
- Institute of Insect Biotechnology, University of Gießen, 35392 Gießen, Germany
| |
Collapse
|