1
|
Park J, Brown C, Hess C, Armstrong M, Galvez F, Whitehead A. Multiple stressors in the Anthropocene: Urban evolutionary history modifies sensitivity to the toxic effects of crude oil exposure in killifish. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.25.640141. [PMID: 40060406 PMCID: PMC11888386 DOI: 10.1101/2025.02.25.640141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
Persistence of wild species in human-altered environments is difficult, in part because challenges to fitness are complex when multiple environmental changes occur simultaneously, which is common in the Anthropocene. This complexity is difficult to conceptualize because the nature of environmental change is often highly context specific. A mechanism-guided approach may help to shape intuition and predictions about complexity; fitness challenges posed by co-occurring stressors with similar mechanisms of action may be less severe than for those with different mechanisms of action. We approach these considerations within the context of ecotoxicology because this field is built upon a rich mechanistic foundation. We hypothesized that evolved resistance to one class of common toxicants would afford resilience to the fitness impacts of another class of common toxicants that shares mechanisms of toxicity. Fundulus killifish populations in urban estuaries have repeatedly evolved resistance to persistent organic pollutants including PCBs. Since PCBs and some of the toxicants that constitute crude oil (e.g., high molecular weight PAHs) exert toxicity through perturbation of AHR signaling, we predicted that PCB resistant populations would also be resilient to crude oil toxicity. Common garden comparative oil exposure experiments, including killifish populations with different exposure histories, showed that most killifish populations were sensitive to fitness impacts (reproduction and development) caused by oil exposure, but that fish from the PCB-resistant population were insensitive. Population differences in toxic outcomes were not compatible with random-neutral expectations. Transcriptomics revealed that the molecular mechanisms that contributed to population variation in PAH resilience were shared with those that contribute to evolved variation in PCB resilience. We conclude that the fitness challenge posed by environmental pollutants is effectively reduced when those chemicals share mechanisms that affect fitness. Mechanistic considerations may help to scale predictions regarding the fitness challenges posed by stressors that may co-occur in human-altered environments.
Collapse
Affiliation(s)
- Jane Park
- Department of Environmental Toxicology, University of California Davis, Davis, CA 95616, USA
| | - Charles Brown
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Chelsea Hess
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Madison Armstrong
- Department of Evolution and Ecology, University of California Davis, Davis, CA 95616, USA
| | - Fernando Galvez
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Andrew Whitehead
- Department of Environmental Toxicology, University of California Davis, Davis, CA 95616, USA
| |
Collapse
|
2
|
Jarne P. The Anthropocene and the biodiversity crisis: an eco-evolutionary perspective. C R Biol 2025; 348:1-20. [PMID: 39780736 DOI: 10.5802/crbiol.172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/22/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025]
Abstract
A major facet of the Anthropocene is global change, such as climate change, caused by human activities, which drastically affect biodiversity with all-scale declines and homogenization of biotas. This crisis does not only affect the ecological dynamics of biodiversity, but also its evolutionary dynamics, including genetic diversity, an aspect that is generally neglected. My tenet is therefore to consider biodiversity dynamics from an eco-evolutionary perspective, i.e. explicitly accounting for the possibility of rapid evolution and its feedback on ecological processes and the environment. I represent the impact of the various avatars of global change in a temporal perspective, from pre-industrial time to the near future, allowing to visualize their dynamics and to set desired values that should not be trespassed for a given time (e.g., +2 °C for 50 years from now). After presenting the impact of various stressors (e.g., climate change) on biodiversity, this representation is used to heuristically show the relevance of an eco-evolutionary perspective: (i) to analyze how biodiversity will respond to the stressors, for example by seeking out more suitable conditions or adapting to new conditions; (ii) to serve in predictive exercises to envision future dynamics (decades to centuries) under stressor impact; (iii) to propose nature-based solutions to the crisis. Significant obstacles stand in the way of the development of such an approach, in particular the general lack of interest in intraspecific diversity, and perhaps more generally a lack of understanding that, we, humans, are only a modest part of biodiversity.
Collapse
|
3
|
Baruah G, Lakämper T. Stability, resilience and eco-evolutionary feedbacks of mutualistic networks to rising temperature. J Anim Ecol 2024; 93:989-1002. [PMID: 38859669 DOI: 10.1111/1365-2656.14118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 05/07/2024] [Indexed: 06/12/2024]
Abstract
Ecological networks comprising of mutualistic interactions can suddenly transition to undesirable states, such as collapse, due to small changes in environmental conditions such as a rise in local environmental temperature. However, little is known about the capacity of such interaction networks to adapt to a rise in temperature and the occurrence of critical transitions. Here, combining quantitative genetics and mutualistic dynamics in an eco-evolutionary framework, we evaluated the stability and resilience of mutualistic networks to critical transitions as environmental temperature increases. Specifically, we modelled the dynamics of an optimum trait that determined the tolerance of species to local environmental temperature as well as to species interaction. We then evaluated the impact of individual trait variation and evolutionary dynamics on the stability of feasible equilibria, the occurrence of threshold temperatures at which community collapses, and the abruptness of such community collapses. We found that mutualistic network architecture, that is the size of the community and the arrangement of species interactions, interacted with evolutionary dynamics to impact the onset of network collapses. Some networks had more capacity to track the rise in temperatures than others and thereby increased the threshold temperature at which the networks collapsed. However, such a result was modulated by the amount of heritable trait variation species exhibited, with high trait variation in the mean optimum phenotypic trait increasing the environmental temperature at which networks collapsed. Furthermore, trait variation not only increased the onset of temperatures at which networks collapsed but also increased the local stability of feasible equilibria. Our study argued that mutualistic network architecture interacts with species evolutionary dynamics and increases the capacity of networks to adapt to changes in temperature and thereby delayed the occurrence of community collapses.
Collapse
Affiliation(s)
- Gaurav Baruah
- Faculty of Biology, Theoretical Biology, University of Bielefeld, Bielefeld, Germany
| | - Tim Lakämper
- Faculty of Biology, Theoretical Biology, University of Bielefeld, Bielefeld, Germany
| |
Collapse
|
4
|
Cabanzo-Olarte LC, Cardoso Bícego K, Navas Iannini CA. Behavioral responses during sickness in amphibians and reptiles: Concepts, experimental design, and implications for field studies. J Therm Biol 2024; 123:103889. [PMID: 38897001 DOI: 10.1016/j.jtherbio.2024.103889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 06/09/2024] [Accepted: 06/10/2024] [Indexed: 06/21/2024]
Abstract
In ectothermic vertebrates, behavioral fever, where an individual actively seeks warmer areas, seems to be a primary response to pathogens. This is considered a broad and evolutionarily conserved response among vertebrates. Recent population declines in amphibians are associated with an increase of infectious disease driven largely by climate change, habitat degradation, and pollution. Immediate action through research is required to better understand and inform conservation efforts. The literature available, does not provide unifying concepts that can guide adequate experimental protocols and interpretation of data, especially when studying animals in the field. The aim of this review is to promote common understanding of terminology and facilitating improved comprehension and application of key concepts about the occurrence of both sickness behavior or behavioral fever in ectothermic vertebrates. We start with a conceptual synthesis of sickness behavior and behavioral fever, with examples in different taxa. Through this discussion we present possible paths to standardize terminology, starting from original use in endothermic tetrapods which was expanded to ectothermic vertebrates, particularly amphibians and reptiles. This conceptual expansion from humans (endothermic vertebrates) and then to ectothermic counterparts, gravitates around the concept of 'normality'. Thus, following this discussion, we highlight caveats with experimental protocols and state the need of a reference value considered normal (RVCN), which is different from experimental control and make recommendations regarding experimental procedures and stress the value of detailed documentation of behavioral responses. We also propose some future directions that could enhance interaction among disciplines, emphasizing relationships at different levels of biological organization. This is crucial given the increasing convergence of fields such as thermal physiology, immunology, and animal behavior due to emerging diseases and other global crises impacting biodiversity.
Collapse
Affiliation(s)
- Laura Camila Cabanzo-Olarte
- Physiology Department, Biosciences Institute, University of São Paulo, Trav. 14, N 321, CEP 05508-090 São Paulo, SP, Brazil.
| | - Kênia Cardoso Bícego
- Department of Animal Morphology and Physiology, São Paulo State University (FCAV-UNESP), Via de Acesso Prof. Paulo Donato Castellane s/n, Jaboticabal, SP 14884-900, Brazil.
| | - Carlos Arturo Navas Iannini
- Physiology Department, Biosciences Institute, University of São Paulo, Trav. 14, N 321, CEP 05508-090 São Paulo, SP, Brazil.
| |
Collapse
|
5
|
Kilner CL, Carrell AA, Wieczynski DJ, Votzke S, DeWitt K, Yammine A, Shaw J, Pelletier DA, Weston DJ, Gibert JP. Temperature and CO 2 interactively drive shifts in the compositional and functional structure of peatland protist communities. GLOBAL CHANGE BIOLOGY 2024; 30:e17203. [PMID: 38433341 DOI: 10.1111/gcb.17203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 01/20/2024] [Accepted: 01/26/2024] [Indexed: 03/05/2024]
Abstract
Microbes affect the global carbon cycle that influences climate change and are in turn influenced by environmental change. Here, we use data from a long-term whole-ecosystem warming experiment at a boreal peatland to answer how temperature and CO2 jointly influence communities of abundant, diverse, yet poorly understood, non-fungi microbial Eukaryotes (protists). These microbes influence ecosystem function directly through photosynthesis and respiration, and indirectly, through predation on decomposers (bacteria and fungi). Using a combination of high-throughput fluid imaging and 18S amplicon sequencing, we report large climate-induced, community-wide shifts in the community functional composition of these microbes (size, shape, and metabolism) that could alter overall function in peatlands. Importantly, we demonstrate a taxonomic convergence but a functional divergence in response to warming and elevated CO2 with most environmental responses being contingent on organismal size: warming effects on functional composition are reversed by elevated CO2 and amplified in larger microbes but not smaller ones. These findings show how the interactive effects of warming and rising CO2 levels could alter the structure and function of peatland microbial food webs-a fragile ecosystem that stores upwards of 25% of all terrestrial carbon and is increasingly threatened by human exploitation.
Collapse
Affiliation(s)
- Christopher L Kilner
- Department of Biology, Duke University, Durham, North Carolina, USA
- Bird Conservancy of the Rockies, Fort Collins, Colorado, USA
| | - Alyssa A Carrell
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | | | - Samantha Votzke
- Department of Biology, Duke University, Durham, North Carolina, USA
| | - Katrina DeWitt
- Department of Biology, Duke University, Durham, North Carolina, USA
| | - Andrea Yammine
- Department of Biology, Duke University, Durham, North Carolina, USA
| | - Jonathan Shaw
- Department of Biology, Duke University, Durham, North Carolina, USA
| | - Dale A Pelletier
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - David J Weston
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Jean P Gibert
- Department of Biology, Duke University, Durham, North Carolina, USA
| |
Collapse
|
6
|
Bagawade R, van Benthem KJ, Wittmann MJ. Multi-scale effects of habitat loss and the role of trait evolution. Ecol Evol 2024; 14:e10799. [PMID: 38187921 PMCID: PMC10766568 DOI: 10.1002/ece3.10799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 11/09/2023] [Accepted: 11/22/2023] [Indexed: 01/09/2024] Open
Abstract
Habitat loss (HL) is a major cause of species extinctions. Although the effects of HL beyond the directly impacted area have been previously observed, they have not been modelled explicitly, especially in an eco-evolutionary context. To start filling this gap, we study a two-patch deterministic consumer-resource model, with one of the patches experiencing loss of resources as a special case of HL. Our model allows foraging and mating within a patch as well as between patches. We then introduce heritable variation in consumer traits related to resource utilization and patch use to investigate eco-evolutionary dynamics and compare results with constant and no trait variation scenarios. Our results show that HL in one patch can indeed reduce consumer densities in the neighbouring patch but can also increase consumer densities in the neighbouring patch when the resources are overexploited. Yet at the landscape scale, the effect of HL on consumer densities is consistently negative. Patch isolation increases consumer density in the patch experiencing HL but has generally negative effects on the neighbouring patch, with context-dependent results at the landscape scale. With high cross-patch dependence and coupled foraging and mating preferences, local HL can sometimes even lead to landscape-level consumer extinction. Eco-evolutionary dynamics can rescue consumers from such extinction in some cases if their death rates are sufficiently small. More generally, trait evolution had positive or negative effects on equilibrium consumer densities after HL, depending on the evolving trait and the spatial scale considered. In summary, our findings show that HL at a local scale can affect the neighbouring patch and the landscape as a whole, where heritable trait variation can, in some cases, alleviate the impact of HL. We thus suggest joint consideration of multiple spatial scales and trait variation when assessing and predicting the impacts of HL.
Collapse
Affiliation(s)
- Rishabh Bagawade
- Department of Theoretical Biology, Faculty of BiologyBielefeld UniversityBielefeldGermany
| | - Koen J. van Benthem
- Department of Theoretical Biology, Faculty of BiologyBielefeld UniversityBielefeldGermany
- Groningen Institute for Evolutionary Life SciencesFaculty of Science and Engineering, University of GroningenGroningenThe Netherlands
| | - Meike J. Wittmann
- Department of Theoretical Biology, Faculty of BiologyBielefeld UniversityBielefeldGermany
- Joint Institute for Individualisation in a Changing Environment (JICE), University of Münster and Bielefeld UniversityBielefeldGermany
| |
Collapse
|
7
|
Fronhofer EA, Corenblit D, Deshpande JN, Govaert L, Huneman P, Viard F, Jarne P, Puijalon S. Eco-evolution from deep time to contemporary dynamics: The role of timescales and rate modulators. Ecol Lett 2023; 26 Suppl 1:S91-S108. [PMID: 37840024 DOI: 10.1111/ele.14222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 10/17/2023]
Abstract
Eco-evolutionary dynamics, or eco-evolution for short, are often thought to involve rapid demography (ecology) and equally rapid heritable phenotypic changes (evolution) leading to novel, emergent system behaviours. We argue that this focus on contemporary dynamics is too narrow: Eco-evolution should be extended, first, beyond pure demography to include all environmental dimensions and, second, to include slow eco-evolution which unfolds over thousands or millions of years. This extension allows us to conceptualise biological systems as occupying a two-dimensional time space along axes that capture the speed of ecology and evolution. Using Hutchinson's analogy: Time is the 'theatre' in which ecology and evolution are two interacting 'players'. Eco-evolutionary systems are therefore dynamic: We identify modulators of ecological and evolutionary rates, like temperature or sensitivity to mutation, which can change the speed of ecology and evolution, and hence impact eco-evolution. Environmental change may synchronise the speed of ecology and evolution via these rate modulators, increasing the occurrence of eco-evolution and emergent system behaviours. This represents substantial challenges for prediction, especially in the context of global change. Our perspective attempts to integrate ecology and evolution across disciplines, from gene-regulatory networks to geomorphology and across timescales, from today to deep time.
Collapse
Affiliation(s)
| | - Dov Corenblit
- GEOLAB, Université Clermont Auvergne, CNRS, Clermont-Ferrand, France
- Laboratoire écologie fonctionnelle et environnement, Université Paul Sabatier, CNRS, INPT, UPS, Toulouse, France
| | | | - Lynn Govaert
- Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | - Philippe Huneman
- Institut d'Histoire et de Philosophie des Sciences et des Techniques (CNRS/Université Paris I Sorbonne), Paris, France
| | - Frédérique Viard
- ISEM, Université de Montpellier, CNRS, IRD, EPHE, Montpellier, France
| | - Philippe Jarne
- CEFE, UMR 5175, CNRS - Université de Montpellier - Université Paul-Valéry Montpellier - IRD - EPHE, Montpellier Cedex 5, France
| | - Sara Puijalon
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, Villeurbanne, France
| |
Collapse
|
8
|
Synodinos AD, Karnatak R, Aguilar‐Trigueros CA, Gras P, Heger T, Ionescu D, Maaß S, Musseau CL, Onandia G, Planillo A, Weiss L, Wollrab S, Ryo M. The rate of environmental change as an important driver across scales in ecology. OIKOS 2022. [DOI: 10.1111/oik.09616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Alexis D. Synodinos
- Theoretical and Experimental Ecology Station, CNRS Moulis France
- Plant Ecology and Nature Conservation, Univ. of Potsdam Potsdam Germany
- Berlin‐Brandenburg Inst. of Advanced Biodiversity Research Berlin Germany
| | - Rajat Karnatak
- Berlin‐Brandenburg Inst. of Advanced Biodiversity Research Berlin Germany
- Leibniz Inst. of Freshwater Ecology and Inland Fisheries Berlin Germany
| | - Carlos A. Aguilar‐Trigueros
- Berlin‐Brandenburg Inst. of Advanced Biodiversity Research Berlin Germany
- Freie Universität Berlin, Inst. of Biology Berlin Germany
| | - Pierre Gras
- Berlin‐Brandenburg Inst. of Advanced Biodiversity Research Berlin Germany
- Dept of Ecological Dynamics, Leibniz Inst. for Zoo and Wildlife Research (IZW) Berlin Germany
| | - Tina Heger
- Berlin‐Brandenburg Inst. of Advanced Biodiversity Research Berlin Germany
- Leibniz Inst. of Freshwater Ecology and Inland Fisheries Berlin Germany
- Freie Universität Berlin, Inst. of Biology Berlin Germany
- Biodiversity Research/Botany, Univ. of Potsdam Potsdam Germany
- Restoration Ecology, Technical Univ. of Munich Freising Germany
| | - Danny Ionescu
- Berlin‐Brandenburg Inst. of Advanced Biodiversity Research Berlin Germany
- Leibniz Inst. of Freshwater Ecology and Inland Fisheries (IGB) Neuglobsow Germany
| | - Stefanie Maaß
- Plant Ecology and Nature Conservation, Univ. of Potsdam Potsdam Germany
- Berlin‐Brandenburg Inst. of Advanced Biodiversity Research Berlin Germany
| | - Camille L. Musseau
- Berlin‐Brandenburg Inst. of Advanced Biodiversity Research Berlin Germany
- Dept of Biology, Chemistry, Pharmacy, Inst. of Biology, Freie Univ. Berlin Berlin Germany
- Leibniz Inst.I of Freshwater Ecology and Inland Fisheries (IGB) Berlin Germany
| | - Gabriela Onandia
- Berlin‐Brandenburg Inst. of Advanced Biodiversity Research Berlin Germany
- Research Platform Data Analysis and Simulation, Leibniz Centre for Agricultural Landscape Research (ZALF) Muencheberg Germany
| | - Aimara Planillo
- Berlin‐Brandenburg Inst. of Advanced Biodiversity Research Berlin Germany
- Dept of Ecological Dynamics, Leibniz Inst. for Zoo and Wildlife Research (IZW) Berlin Germany
| | - Lina Weiss
- Plant Ecology and Nature Conservation, Univ. of Potsdam Potsdam Germany
- Berlin‐Brandenburg Inst. of Advanced Biodiversity Research Berlin Germany
| | - Sabine Wollrab
- Berlin‐Brandenburg Inst. of Advanced Biodiversity Research Berlin Germany
- Leibniz Inst. of Freshwater Ecology and Inland Fisheries Berlin Germany
| | - Masahiro Ryo
- Berlin‐Brandenburg Inst. of Advanced Biodiversity Research Berlin Germany
- Research Platform Data Analysis and Simulation, Leibniz Centre for Agricultural Landscape Research (ZALF) Muencheberg Germany
- Environment and Natural Sciences, Brandenburg Univ. of Technology Cottbus‐Senftenberg Cottbus Germany
| |
Collapse
|
9
|
Gawecka KA, Pedraza F, Bascompte J. Effects of habitat destruction on coevolving metacommunities. Ecol Lett 2022; 25:2597-2610. [PMID: 36223432 DOI: 10.1111/ele.14118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 07/27/2022] [Accepted: 09/06/2022] [Indexed: 11/30/2022]
Abstract
Habitat destruction is a growing threat to biodiversity and ecosystem services. The ecological consequences of habitat loss and fragmentation involve reductions in species abundance and even the extinction of species and their interactions. However, we do not yet understand how habitat loss alters the coevolutionary trajectories of the remaining species or how coevolution, in turn, affects their response to habitat loss. To investigate this, we develop a spatially explicit model which couples metacommunity and coevolutionary dynamics. We show that, by changing the size, composition and structure of local networks, habitat destruction increases the diversity of coevolutionary trajectories of mutualists across the landscape. Conversely, in antagonistic communities, some species increase while others reduce their spatial trait heterogeneity. Furthermore, we show that while coevolution dampens the negative effects of habitat destruction in mutualistic networks, its effects on the persistence of antagonistic communities tend to be smaller and less predictable.
Collapse
Affiliation(s)
- Klementyna A Gawecka
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Fernando Pedraza
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Jordi Bascompte
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| |
Collapse
|
10
|
Sentis A, Hemptinne J, Magro A, Outreman Y. Biological control needs evolutionary perspectives of ecological interactions. Evol Appl 2022; 15:1537-1554. [PMID: 36330295 PMCID: PMC9624075 DOI: 10.1111/eva.13457] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 07/20/2022] [Accepted: 07/26/2022] [Indexed: 05/30/2024] Open
Abstract
While ecological interactions have been identified as determinant for biological control efficiency, the role of evolution remains largely underestimated in biological control programs. With the restrictions on the use of both pesticides and exotic biological control agents (BCAs), the evolutionary optimization of local BCAs becomes central for improving the efficiency and the resilience of biological control. In particular, we need to better account for the natural processes of evolution to fully understand the interactions of pests and BCAs, including in biocontrol strategies integrating human manipulations of evolution (i.e., artificial selection and genetic engineering). In agroecosystems, the evolution of BCAs traits and performance depends on heritable phenotypic variation, trait genetic architecture, selection strength, stochastic processes, and other selective forces. Humans can manipulate these natural processes to increase the likelihood of evolutionary trait improvement, by artificially increasing heritable phenotypic variation, strengthening selection, controlling stochastic processes, or overpassing evolution through genetic engineering. We highlight these facets by reviewing recent studies addressing the importance of natural processes of evolution and human manipulations of these processes in biological control. We then discuss the interactions between the natural processes of evolution occurring in agroecosystems and affecting the artificially improved BCAs after their release. We emphasize that biological control cannot be summarized by interactions between species pairs because pests and biological control agents are entangled in diverse communities and are exposed to a multitude of deterministic and stochastic selective forces that can change rapidly in direction and intensity. We conclude that the combination of different evolutionary approaches can help optimize BCAs to remain efficient under changing environmental conditions and, ultimately, favor agroecosystem sustainability.
Collapse
Affiliation(s)
- Arnaud Sentis
- INRAEAix Marseille University, UMR RECOVERAix‐en‐ProvenceFrance
| | - Jean‐Louis Hemptinne
- Laboratoire Évolution et Diversité biologiqueUMR 5174 CNRS/UPS/IRDToulouseFrance
- Université Fédérale de Toulouse Midi‐Pyrénées – ENSFEACastanet‐TolosanFrance
| | - Alexandra Magro
- Laboratoire Évolution et Diversité biologiqueUMR 5174 CNRS/UPS/IRDToulouseFrance
- Université Fédérale de Toulouse Midi‐Pyrénées – ENSFEACastanet‐TolosanFrance
| | | |
Collapse
|
11
|
Colares LF, de Assis Montag LF, Dunck B. Habitat loss predicts the functional extinction of fish from Amazonian streams during the Anthropocene. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156210. [PMID: 35618116 DOI: 10.1016/j.scitotenv.2022.156210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 05/15/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
The evaluation of extinction risk has typically focused on individual species, although a shift to a focus on ecosystem functioning would appear to be an urgent priority for conservation planning, especially considering that a sixth mass extinction event has already begun. In the present study, we investigated how fish extinction driven by habitat loss may modify the functioning of freshwater Amazonian ecosystems. We sampled the fish and environmental conditions of 63 streams in the eastern Amazon and simulated extinction based on the vulnerability of the species to habitat loss, which is the principal threat to tropical biodiversity. The simulated extinction of vulnerable species led to a decrease in both the mean body size of the community and functional rarity and culminated in abrupt losses of ecosystem functions after 5% and 10% of extinction at local and regional scales. Our functional approach demonstrated the progressive loss of ecological functions in Amazon streams, which may collapse altogether following the extinction of functions related to protection against biological invasions, and associated alterations in nutrient cycling and water quality. We provide robust predictions on the modification of the ecosystem following the extinction of fish species, which is a major step toward the development of effective conservation measures that ensure the avoidance of the predicted processes, and help to prevent the loss of biodiversity and the potentially irreversible modifications to ecosystem functioning.
Collapse
Affiliation(s)
- Lucas Ferreira Colares
- Programa de Pós-Graduação em Biodiversidade Animal, Laboratório de Ecologia Teórica e Aplicada, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Av. Roraima, 1000 - Camobi, Santa Maria, RS 97105-900, Brazil; Programa de Pós-Graduação em Ecologia, Laboratório de Ecologia de Produtores, Instituto de Ciências Biológicas, Universidade Federal do Pará, Av. Perimetral, 2651 - Terra Firme, Belém, PA, 66077-530, Brazil; Laboratório de Ecologia e Conservação, Instituto de Ciências Biológicas, Universidade Federal do Pará, Av. Perimetral, 2651 - Terra Firme, Belém, PA 66077-530, Brazil.
| | - Luciano Fogaça de Assis Montag
- Laboratório de Ecologia e Conservação, Instituto de Ciências Biológicas, Universidade Federal do Pará, Av. Perimetral, 2651 - Terra Firme, Belém, PA 66077-530, Brazil
| | - Bárbara Dunck
- Programa de Pós-Graduação em Ecologia, Laboratório de Ecologia de Produtores, Instituto de Ciências Biológicas, Universidade Federal do Pará, Av. Perimetral, 2651 - Terra Firme, Belém, PA, 66077-530, Brazil; Universidade Federal Rural da Amazônia, Instituto Socioambiental e dos Recursos Hídricos, Avenida Perimetral, 660778-30 Belém, PA, Brazil
| |
Collapse
|
12
|
Habitat Fragmentation and Lichen Diversity in Peri-Urban Woodlands: A Case Study in the Municipality of Potenza (Southern Italy). PLANTS 2022; 11:plants11141858. [PMID: 35890491 PMCID: PMC9323602 DOI: 10.3390/plants11141858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/27/2022] [Accepted: 07/12/2022] [Indexed: 11/17/2022]
Abstract
The fragmentation of the natural habitat is a process that is exponentially increasing worldwide and represents one of the biggest threats to biological diversity. Habitat destruction and fragmentation have a major impact on landscapes and may also affect ecosystems, populations, and species. The ongoing anthropogenic process can result in habitat loss for some species, habitat creation for others, reduced patch size, and increased distance between patches, which may lead to local extinction. We analyzed the effects of patch size and isolation on lichens in Quercus pubescens woods surrounding the city of Potenza (south Italy). We randomly sampled 11 forest patches with homogeneous environmental variables using circular plots with a 10 m radius; the patches ranged from 0.3 to 30 ha. For each plot, we collected data about presence and abundance of epiphytic lichens. We performed the analyses at the patch level using linear regression and multivariate analysis, searching for effects on species richness, life forms, and community compositions. Multivariate analyses were used to study the effect of fragmentation on the structure of lichen vegetation. We investigated the main predictor of lichen species richness in habitat fragmentations and concluded that patch area per se is an important (positive) driver of lichen species richness in Mediterranean peri-urban forests.
Collapse
|
13
|
Pardikes NA, Revilla TA, Lue CH, Thierry M, Souto-Vilarós D, Hrcek J. Effects of phenological mismatch under warming are modified by community context. GLOBAL CHANGE BIOLOGY 2022; 28:4013-4026. [PMID: 35426203 DOI: 10.1111/gcb.16195] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 03/02/2022] [Indexed: 06/14/2023]
Abstract
Climate change is altering the relative timing of species interactions by shifting when species first appear in communities and modifying the duration organisms spend in each developmental stage. However, community contexts, such as intraspecific competition and alternative resource species, can prolong shortened windows of availability and may mitigate the effects of phenological shifts on species interactions. Using a combination of laboratory experiments and dynamic simulations, we quantified how the effects of phenological shifts in Drosophila-parasitoid interactions differed with concurrent changes in temperature, intraspecific competition, and the presence of alternative host species. Our study confirmed that warming shortens the window of host susceptibility. However, the presence of alternative host species sustained interaction persistence across a broader range of phenological shifts than pairwise interactions by increasing the degree of temporal overlap with suitable development stages between hosts and parasitoids. Irrespective of phenological shifts, parasitism rates declined under warming due to reduced parasitoid performance, which limited the ability of community context to manage temporally mismatched interactions. These results demonstrate that the ongoing decline in insect diversity may exacerbate the effects of phenological shifts in ecological communities under future global warming temperatures.
Collapse
Affiliation(s)
- Nicholas A Pardikes
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Ceske Budejovice, Czech Republic
- Department of Life and Earth Sciences, Georgia State University-Perimeter College, Clarkston, Georgia, USA
| | - Tomás A Revilla
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Ceske Budejovice, Czech Republic
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
| | - Chia-Hua Lue
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Ceske Budejovice, Czech Republic
- Biology Department, Brooklyn College, City University of New York (CUNY), Brooklyn, New York, USA
| | - Melanie Thierry
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Ceske Budejovice, Czech Republic
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
| | - Daniel Souto-Vilarós
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Ceske Budejovice, Czech Republic
| | - Jan Hrcek
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Ceske Budejovice, Czech Republic
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
| |
Collapse
|