1
|
Climate drives coupled regime shifts across subtropical estuarine ecosystems. Proc Natl Acad Sci U S A 2022; 119:e2121654119. [PMID: 35939671 PMCID: PMC9388116 DOI: 10.1073/pnas.2121654119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ecological regime shifts are expected to increase this century as climate change propagates cascading effects across ecosystems with coupled elements. Here, we demonstrate that the climate-driven salt marsh-to-mangrove transition does not occur in isolation but is linked to lesser-known oyster reef-to-mangrove regime shifts through the provision of mangrove propagules. Using aerial imagery spanning 82 y, we found that 83% of oyster reefs without any initial mangrove cover fully converted to mangrove islands and that mean (± SD) time to conversion was 29.1 ± 9.6 y. In situ assessments of mangrove islands suggest substantial changes in ecosystem structure during conversion, while radiocarbon dates of underlying reef formation indicate that such transitions are abrupt relative to centuries-old reefs. Rapid transition occurred following release from freezes below the red mangrove (Rhizophora mangle) physiological tolerance limit (-7.3 °C) and after adjacent marsh-to-mangrove conversion. Additional nonclimate-mediated drivers of ecosystem change were also identified, including oyster reef exposure to wind-driven waves. Coupling of regime shifts arises from the growing supply of mangrove propagules from preceding and adjacent marsh-to-mangrove conversion. Climate projections near the mangrove range limit on the Gulf coast of Florida suggest that regime shifts will begin to transform subtropical estuaries by 2070 if propagule supply keeps pace with predicted warming. Although it will become increasingly difficult to maintain extant oyster habitat with tropicalization, restoring oyster reefs in high-exposure settings or active removal of mangrove seedlings could slow the coupled impacts of climate change shown here.
Collapse
|
2
|
Litterfall and Associated Macrozoobenthic of Restored Mangrove Forests in Abandoned Aquaculture Ponds. SUSTAINABILITY 2022. [DOI: 10.3390/su14138082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Mangrove restoration projects are now widely established, aiming to regain the carbon benefit of the mangrove ecosystem that is essential for climate change mitigation. This study aimed to investigate mangrove litter as the source of carbon in restored mangrove forests in Perancak Estuary, Bali, Indonesia, which previously experienced substantial mangrove loss due to shrimp aquaculture development. We assessed the production and decomposition of mangrove litter and associated macrozoobenthic biodiversity in restored forests with plantation age ≥14 years and intact mangrove forests as the reference. The monthly production of three groups of mangrove litter (leaf, reproductive, and wood) was assessed over 12 months. A leaf litter decomposition experiment was performed to inspect the interspecific and disturbance history variation in organic matter formation among four major mangrove species: Rhizophora apiculata, Bruguiera gymnorhiza, Avicennia marina, and Sonneratia alba. Our results showed that annual litterfall production from restored and intact mangroves in Perancak Estuary were 13.96 and 10.18 Mg ha−1 year−1, which is equivalent to approximately 6282 and 4581 kg C ha−1 year−1 of annual litterfall carbon sink, respectively. Although restored mangroves had significantly higher plant litterfall production than intact mangroves, no significant difference was detected in leaf litter decomposition and macrozoobenthic biodiversity between these forest types.
Collapse
|
3
|
Celis-Hernandez O, Villoslada-Peciña M, Ward RD, Bergamo TF, Perez-Ceballos R, Girón-García MP. Impacts of environmental pollution on mangrove phenology: Combining remotely sensed data and generalized additive models. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 810:152309. [PMID: 34910948 DOI: 10.1016/j.scitotenv.2021.152309] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 12/03/2021] [Accepted: 12/07/2021] [Indexed: 06/14/2023]
Abstract
Mangrove ecosystems worldwide have been affected by anthropogenic activities that modify natural conditions and supply trace elements that affect mangrove health and development. In order to gain a better understanding of these ecosystems, and assess the influence of physicochemical (granulometry, pH, salinity and ORP) and geochemical variables (concentrations of V, Cr, Co, Ni, Cu, Zn, Pb, Rb, Sr and Zr) on mangrove phenology, we combined field and satellite derived remotely sensed data. Phenology metrics in combination with Generalized Additive Models showed that start of the season was strongly influenced by Pb and Cu pollution as well as salinity and pH, with a large percentage of deviance explained (92.10%) by the model. Start of season exhibited non-linear delays as a response to pollution. Other phenology parameters such as the length of season, timing of the peak of season, and growth peak also indicated responses to both trace elements and physicochemical and geochemical variables, with percentages of deviance explained by the models ranging between 33.90% and 97.70%. While the peak of season showed delays as a response to increased pH and decreased salinity, growth peak exhibited a non-linear decrease as a response to increased Sr concentrations. These results suggest that trace element pollution is likely to lead to altered phenological patterns in mangroves.
Collapse
Affiliation(s)
- Omar Celis-Hernandez
- Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Estación el Carmen, Campeche, C.P. 24157 Ciudad del Carmen, Mexico; Dirección de Cátedras CONACYT, Av. Insurgentes Sur 1582, Alcaldía Benito Juárez, C.P. 03940 Ciudad de México, Mexico.
| | - Miguel Villoslada-Peciña
- Institute of Agriculture and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 5, EE-51014 Tartu, Estonia; Department of Geographical and Historical Studies, University of Eastern Finland, P.O. Box 111, 80101 Joensuu, Finland
| | - Raymond D Ward
- Institute of Agriculture and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 5, EE-51014 Tartu, Estonia; Centre for Aquatic Environments, University of Brighton, Cockcroft Building, Moulsecoomb, Brighton BN2 4GJ, United Kingdom.
| | - T F Bergamo
- Institute of Agriculture and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 5, EE-51014 Tartu, Estonia
| | - Rosela Perez-Ceballos
- Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Estación el Carmen, Campeche, C.P. 24157 Ciudad del Carmen, Mexico; Dirección de Cátedras CONACYT, Av. Insurgentes Sur 1582, Alcaldía Benito Juárez, C.P. 03940 Ciudad de México, Mexico
| | - María Patricia Girón-García
- Laboratorio de Fluorescencia de Rayos X. LANGEM. Instituto de Geología, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Coyoacan, C.P. 04510, Ciudad de México, Mexico
| |
Collapse
|