1
|
McKee RK, Taillie PJ, Hart KM, Lopez CL, Sanjar A, McCleery RA. Ecological function maintained despite mesomammal declines. Sci Rep 2024; 14:19668. [PMID: 39181911 PMCID: PMC11344858 DOI: 10.1038/s41598-024-66534-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 07/02/2024] [Indexed: 08/27/2024] Open
Abstract
Mid-sized mammals (i.e., mesomammals) fulfill important ecological roles, serving as essential scavengers, predators, pollinators, and seed dispersers in the ecosystems they inhabit. Consequently, declines in mesomammal populations have the potential to alter ecological processes and fundamentally change ecosystems. However, ecosystems characterized by high functional redundancy, where multiple species can fulfil similar ecological roles, may be less impacted by the loss of mesomammals and other vertebrates. The Greater Everglades Ecosystem in southern Florida is a historically biodiverse region that has recently been impacted by multiple anthropogenic threats, most notably the introduction of the Burmese python (Python molurus bivittatus). Since pythons became established, mesomammal populations have become greatly reduced. To assess whether these declines in mesomammals have affected two critical ecosystem functions-scavenging and frugivory-we conducted experiments in areas where mesomammals were present and absent. We did not observe significant differences in scavenging or frugivory efficiency in areas with and without mesomammals, but we did observe significant differences in the communities responsible for scavenging and frugivory. Despite the observed evidence of redundancy, the changes in community composition could potentially lead to indirect consequences on processes like seed dispersal and disease dynamics within this ecosystem, emphasizing the need for further study.
Collapse
Affiliation(s)
- Rebecca K McKee
- Department of Biology, Mercer University, 1501 Mercer University Drive, Macon, Georgia, 31207, United States.
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, USA.
| | - Paul J Taillie
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, USA
- Department of Geography, University of North Carolina, Chapel Hill, NC, USA
| | - Kristen M Hart
- U.S. Geological Survey, Wetland and Aquatic Research Center, Davie, FL, USA
| | - Christopher L Lopez
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, USA
| | - Adam Sanjar
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, USA
| | - Robert A McCleery
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, USA
| |
Collapse
|
2
|
Beaudrot L, Acevedo MA, Gorczynski D, Harris NC. Geographic differences in body size distributions underlie food web connectance of tropical forest mammals. Sci Rep 2024; 14:6965. [PMID: 38521800 PMCID: PMC10960815 DOI: 10.1038/s41598-024-57500-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 03/19/2024] [Indexed: 03/25/2024] Open
Abstract
Understanding variation in food web structure over large spatial scales is an emerging research agenda in food web ecology. The density of predator-prey links in a food web (i.e., connectance) is a key measure of network complexity that describes the mean proportional dietary breadth of species within a food web. Connectance is a critical component of food web robustness to species loss: food webs with lower connectance have been shown to be more susceptible to secondary extinctions. Identifying geographic variation in food web connectance and its drivers may provide insight into community robustness to species loss. We investigated the food web connectance of ground-dwelling tropical forest mammal communities in multiple biogeographic regions to test for differences among regions in food web connectance and to test three potential drivers: primary productivity, contemporary anthropogenic pressure, and variation in mammal body mass distributions reflective of historical extinctions. Mammal communities from fifteen protected forests throughout the Neo-, Afro-, and Asian tropics were identified from systematic camera trap arrays. Predator-prey interaction data were collected from published literature, and we calculated connectance for each community as the number of observed predator-prey links relative to the number of possible predator-prey links. We used generalized linear models to test for differences among regions and to identify the site level characteristics that best predicted connectance. We found that mammal food web connectance varied significantly among continents and that body size range was the only significant predictor. More possible predator-prey links were observed in communities with smaller ranges in body size and therefore sites with smaller body size ranges had higher mean proportional dietary breadth. Specifically, mammal communities in the Neotropics and in Madagascar had significantly higher connectance than mammal communities in Africa. This geographic variation in contemporary mammalian food web structure may be the product of historical extinctions in the Late Quaternary, which led to greater losses of large-bodied species in the Neotropics and Madagascar thus contributing to higher average proportional dietary breadth among the remaining smaller bodied species in these regions.
Collapse
Affiliation(s)
- Lydia Beaudrot
- Program in Ecology and Evolutionary Biology, Department of BioSciences, Rice University, Houston, TX, USA.
- Department of Integrative Biology, Michigan State University, East Lansing, MI, USA.
| | - Miguel A Acevedo
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL, USA
| | - Daniel Gorczynski
- Program in Ecology and Evolutionary Biology, Department of BioSciences, Rice University, Houston, TX, USA
| | - Nyeema C Harris
- Applied Wildlife Ecology Lab, School of the Environment, Yale University, New Haven, CT, USA
| |
Collapse
|
3
|
Gorczynski D, Rovero F, Mtui A, Shinyambala S, Martine J, Hsieh C, Frishkoff L, Beaudrot L. Tropical forest mammal occupancy and functional diversity increase with microhabitat surface area. Ecology 2023; 104:e4181. [PMID: 37784251 DOI: 10.1002/ecy.4181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 06/23/2023] [Accepted: 09/07/2023] [Indexed: 10/04/2023]
Abstract
Many animal-environment interactions are mediated by the physical forms of the environment, especially in tropical forests, where habitats are structurally complex and highly diverse. Higher structural complexity, measured as habitat surface area, may provide increased resource availability for animals, leading to higher animal diversity. Greater habitat surface area supports increased animal diversity in other systems, such as coral reefs and forest canopies, but it is uncertain how this relationship translates to communities of highly mobile, terrestrial mammal species inhabiting forest floors. We tested the relative importance of forest floor habitat structure, encompassing vegetation and topographic structure, in determining species occupancy and functional diversity of medium to large mammals using data from a tropical forest in the Udzungwa Mountains of Tanzania. We related species occupancies and diversity obtained from a multispecies occupancy model with ground-level habitat structure measurements obtained from a novel head-mounted active remote sensing device, the Microsoft HoloLens. We found that habitat surface area was a significant predictor of mean species occupancy and had a significant positive relationship with functional dispersion. The positive relationships indicate that surface area of tropical forest floors may play an important role in promoting mammal occupancy and functional diversity at the microhabitat scale. In particular, habitat surface area had higher mean effects on occupancy for carnivorous and social species. These results support a habitat surface area-diversity relationship on tropical forest floors for mammals.
Collapse
Affiliation(s)
- Daniel Gorczynski
- Department of Biosciences, Rice University, Houston, Texas, USA
- Program in Ecology and Evolutionary Biology, Rice University, Houston, Texas, USA
| | - Francesco Rovero
- Department of Biology, University of Florence, Florence, Italy
- MUSE-Museo delle Scienze, Trento, Italy
| | - Arafat Mtui
- MUSE-Museo delle Scienze, Trento, Italy
- Udzungwa Ecological Monitoring Centre, Mang'ula, Tanzania
| | | | - Joseph Martine
- Udzungwa Ecological Monitoring Centre, Mang'ula, Tanzania
| | - Chia Hsieh
- Department of Biosciences, Rice University, Houston, Texas, USA
- Program in Ecology and Evolutionary Biology, Rice University, Houston, Texas, USA
| | - Luke Frishkoff
- Department of Biology, University of Texas at Arlington, Arlington, Texas, USA
| | - Lydia Beaudrot
- Department of Biosciences, Rice University, Houston, Texas, USA
- Program in Ecology and Evolutionary Biology, Rice University, Houston, Texas, USA
| |
Collapse
|
4
|
Losada M, Sobral M, Silvius KM, Varela S, Martínez Cortizas AM, Fragoso JMV. Mammal traits and soil biogeochemistry: Functional diversity relates to composition of soil organic matter. Ecol Evol 2023; 13:e10392. [PMID: 37600493 PMCID: PMC10433116 DOI: 10.1002/ece3.10392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 07/02/2023] [Accepted: 07/19/2023] [Indexed: 08/22/2023] Open
Abstract
Mammal diversity affects carbon concentration in Amazonian soils. It is known that some species traits determine carbon accumulation in organisms (e.g., size and longevity), and are also related to feeding strategies, thus linking species traits to the type of organic remains that are incorporated into the soil. Trait diversity in mammal assemblages - that is, its functional diversity - may therefore constitute another mechanism linking biodiversity to soil organic matter (SOM) accumulation. To address this hypothesis, we analyzed across 83 mammal assemblages in the Amazon biome (Guyana), the elemental (by ED-XRF and CNH analysis) and molecular (FTIR-ATR) composition of SOM of topsoils (401 samples) and trait diversity (functional richness, evenness, and divergence) for each mammal assemblage. Lower mammal functional richness but higher functional divergence were related to higher content of carbonyl and aliphatic SOM, potentially affecting SOM recalcitrance. Our results might allow the design of biodiversity management plans that consider the effect of mammal traits on carbon sequestration and accumulation in soils.
Collapse
Affiliation(s)
- María Losada
- EcoPast (GI‐1553), Departmento de Edafoloxía e Química Agrícola, Facultade de BioloxíaUniversidade de Santiago de CompostelaSantiago de CompostelaSpain
| | - Mar Sobral
- EcoPast (GI‐1553), Departmento de Edafoloxía e Química Agrícola, Facultade de BioloxíaUniversidade de Santiago de CompostelaSantiago de CompostelaSpain
| | - Kirsten M. Silvius
- Department of Forest Resources and Environmental ConservationVirginia TechBlacksburgVirginiaUSA
| | - Sara Varela
- MAPAS Lab, Departamento de Ecoloxía e Bioloxía AnimalUniversidade de VigoVigoSpain
| | - Antonio M. Martínez Cortizas
- CRETUS – EcoPast (GI‐1553), Departmento de Edafoloxía e Química Agrícola, Facultade de BioloxíaUniversidade de Santiago de CompostelaSantiago de CompostelaSpain
| | - José M. V. Fragoso
- Departamento de ZoologiaUniversidade de BrasíliaBrasíliaBrazil
- Institute of Biodiversity Science and SustainabilityCalifornia Academy of SciencesSan FranciscoCaliforniaUSA
| |
Collapse
|
5
|
Gorczynski D, Hsieh C, Ahumada J, Akampurira E, Andrianarisoa MH, Espinosa S, Johnson S, Kayijamahe C, Lima MGM, Mugerwa B, Rovero F, Salvador J, Santos F, Sheil D, Uzabaho E, Beaudrot L. Human density modulates spatial associations among tropical forest terrestrial mammal species. GLOBAL CHANGE BIOLOGY 2022; 28:7205-7216. [PMID: 36172946 PMCID: PMC9827980 DOI: 10.1111/gcb.16434] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 08/16/2022] [Indexed: 06/16/2023]
Abstract
The spatial aggregation of species pairs often increases with the ecological similarity of the species involved. However, the way in which environmental conditions and anthropogenic activity affect the relationship between spatial aggregation and ecological similarity remains unknown despite the potential for spatial associations to affect species interactions, ecosystem function, and extinction risk. Given that human disturbance has been shown to both increase and decrease spatial associations among species pairs, ecological similarity may have a role in mediating these patterns. Here, we test the influences of habitat diversity, primary productivity, human population density, and species' ecological similarity based on functional traits (i.e., functional trait similarity) on spatial associations among tropical forest mammals. Large mammals are highly sensitive to anthropogenic change and therefore susceptible to changes in interspecific spatial associations. Using two-species occupancy models and camera trap data, we quantified the spatial overlap of 1216 species pairs from 13 tropical forest protected areas around the world. We found that the association between ecological similarity and interspecific species associations depended on surrounding human density. Specifically, aggregation of ecologically similar species was more than an order of magnitude stronger in landscapes with the highest human density compared to those with the lowest human density, even though all populations occurred within protected areas. Human-induced changes in interspecific spatial associations have been shown to alter top-down control by predators, increase disease transmission and increase local extinction rates. Our results indicate that anthropogenic effects on the distribution of wildlife within protected areas are already occurring and that impacts on species interactions, ecosystem functions, and extinction risk warrant further investigation.
Collapse
Affiliation(s)
- Daniel Gorczynski
- Department of BiosciencesRice UniversityHoustonTexasUSA
- Program in Ecology and Evolutionary BiologyRice UniversityHoustonTexasUSA
| | - Chia Hsieh
- Department of BiosciencesRice UniversityHoustonTexasUSA
- Program in Ecology and Evolutionary BiologyRice UniversityHoustonTexasUSA
| | - Jorge Ahumada
- Moore Center for Science, Conservation InternationalArlingtonVirginiaUSA
| | - Emmanuel Akampurira
- Institute of Tropical Forest Conservation (ITFC), Mbarara University of Science and Technology (MUST)KabaleUganda
- Department of Conflict and Development Studies, Ghent UniversityGentBelgium
| | | | - Santiago Espinosa
- Facultad de CienciasUniversidad Autónoma de San Luis PotosíSan Luis PotosíMexico
- Escuela de Ciencias BiológicasPontificia Universidad Católica del EcuadorQuitoEcuador
| | - Steig Johnson
- Department of Anthropology and ArchaeologyUniversity of CalgaryCalgaryAlbertaCanada
| | | | - Marcela Guimarães Moreira Lima
- Biogeography of Conservation and Macroecology LaboratoryInstitute of Biological Sciences, Universidade Federal do ParáParáBrazil
| | - Badru Mugerwa
- Leibniz Institute for Zoo and Wildlife ResearchBerlinGermany
- Department of EcologyTechnische Universität BerlinBerlinGermany
| | - Francesco Rovero
- Department of BiologyUniversity of FlorenceFlorenceItaly
- MUSE‐Museo delle ScienzeTrentoItaly
| | - Julia Salvador
- Wildlife Conservation SocietyQuitoEcuador
- Pontificia Universidad Católica del EcuadorQuitoEcuador
| | - Fernanda Santos
- Programa de Capacitação Institucional, Coordenação de Ciências da Terra e Ecologia, Museu Paraense Emílio GoeldiBelémBrazil
| | - Douglas Sheil
- Faculty of Environmental Sciences and Natural Resource ManagementNorwegian University of Life Sciences (NMBU)AasNorway
- Forest Ecology and Forest Management GroupWageningen University & ResearchWageningenNetherlands
| | | | - Lydia Beaudrot
- Department of BiosciencesRice UniversityHoustonTexasUSA
- Program in Ecology and Evolutionary BiologyRice UniversityHoustonTexasUSA
| |
Collapse
|
6
|
Pereira LA, Campos VEW, Gestich CC, Ribeiro MC, Culot L. Erosion of primate functional diversity in small and isolated forest patches within movement‐resistant landscapes. Anim Conserv 2022. [DOI: 10.1111/acv.12784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- L. A. Pereira
- Programa de Pós‐Graduação em Ecologia, Evolução e Biodiversidade São Paulo State University (UNESP) Rio Claro Brazil
- Laboratory of Primatology (LaP), Department of Biodiversity, Institute of Biosciences São Paulo State University (UNESP) Rio Claro Brazil
| | - V. E. W. Campos
- Laboratory of Primatology (LaP), Department of Biodiversity, Institute of Biosciences São Paulo State University (UNESP) Rio Claro Brazil
- Programa de Pós‐Graduação em Ciências Biológicas (Zoologia) São Paulo State University (UNESP) Rio Claro Brazil
| | - C. C. Gestich
- Department of Genetics and Evolution, Biological and Health Sciences Center Federal University of São Carlos (UFSCar) São Carlos Brazil
| | - M. C. Ribeiro
- Spatial Ecology and Conservation Lab (LEEC), Institute of Biosciences, Department of Biodiversity São Paulo State University (UNESP) Rio Claro Brazil
| | - L. Culot
- Laboratory of Primatology (LaP), Department of Biodiversity, Institute of Biosciences São Paulo State University (UNESP) Rio Claro Brazil
| |
Collapse
|
7
|
Gorczynski D, Hsieh C, Luciano JT, Ahumada J, Espinosa S, Johnson S, Rovero F, Santos F, Andrianarisoa MH, Astaiza JH, Jansen PA, Kayijamahe C, Moreira Lima MG, Salvador J, Beaudrot L. Tropical mammal functional diversity increases with productivity but decreases with anthropogenic disturbance. Proc Biol Sci 2021; 288:20202098. [PMID: 33593187 PMCID: PMC7934904 DOI: 10.1098/rspb.2020.2098] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 01/22/2021] [Indexed: 11/12/2022] Open
Abstract
A variety of factors can affect the biodiversity of tropical mammal communities, but their relative importance and directionality remain uncertain. Previous global investigations of mammal functional diversity have relied on range maps instead of observational data to determine community composition. We test the effects of species pools, habitat heterogeneity, primary productivity and human disturbance on the functional diversity (dispersion and richness) of mammal communities using the largest standardized tropical forest camera trap monitoring system, the Tropical Ecology Assessment and Monitoring (TEAM) Network. We use occupancy values derived from the camera trap data to calculate occupancy-weighted functional diversity and use Bayesian generalized linear regression to determine the effects of multiple predictors. Mammal community functional dispersion increased with primary productivity, while functional richness decreased with human-induced local extinctions and was significantly lower in Madagascar than other tropical regions. The significant positive relationship between functional dispersion and productivity was evident only when functional dispersion was weighted by species' occupancies. Thus, observational data from standardized monitoring can reveal the drivers of mammal communities in ways that are not readily apparent from range map-based studies. The positive association between occupancy-weighted functional dispersion of tropical forest mammal communities and primary productivity suggests that unique functional traits may be more beneficial in more productive ecosystems and may allow species to persist at higher abundances.
Collapse
Affiliation(s)
- Daniel Gorczynski
- Department of Biosciences, Rice University, Houston, TX, USA
- Program in Ecology and Evolutionary Biology, Rice University, Houston, TX, USA
| | - Chia Hsieh
- Department of Biosciences, Rice University, Houston, TX, USA
- Program in Ecology and Evolutionary Biology, Rice University, Houston, TX, USA
| | - Jadelys Tonos Luciano
- Department of Biosciences, Rice University, Houston, TX, USA
- Program in Ecology and Evolutionary Biology, Rice University, Houston, TX, USA
| | - Jorge Ahumada
- Moore Center for Science, Conservation International, Arlington, VA, USA
| | - Santiago Espinosa
- Facultad de Ciencias, Universidad Autónoma de San Luis Potosí, SLP, México
- Escuela de Ciencias Biológicas, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | - Steig Johnson
- Department of Anthropology and Archaeology, University of Calgary, Calgary, Alberta, Canada
| | - Francesco Rovero
- Department of Biology, University of Florence, Florence, Italy
- Tropical Biodiversity Section, MUSE-Museo delle Scienze, Trento, Italy
| | - Fernanda Santos
- Department of Mastozoology, Museu Paraense Emílio Goeldi, Belém, Pará, Brazil
| | | | | | - Patrick A. Jansen
- Smithsonian Tropical Research Institute, Balboa, Ancon, Republic of Panama
- Department of Environmental Sciences, Wageningen University, Wageningen, The Netherlands
| | | | - Marcela Guimarães Moreira Lima
- Biogeography of Conservation and Macroecology Laboratory, Institute of Biological Sciences, Universidade Federal do Pará, Pará, Brazil
| | - Julia Salvador
- Wildlife Conservation Society, Mariana de Jesús E7-248 y Pradera, Quito, Ecuador
| | - Lydia Beaudrot
- Department of Biosciences, Rice University, Houston, TX, USA
- Program in Ecology and Evolutionary Biology, Rice University, Houston, TX, USA
| |
Collapse
|